CSE 638: Advanced Algorithms

Lectures 18 \& 19
 (Cache-efficient Searching and Sorting)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2013

Searching (Static B-Trees)

A Static Search Tree

\square A perfectly balanced binary search tree
\square Static: no insertions or deletions
\square Height of the tree, $h=\Theta\left(\log _{2} n\right)$

A Static Search Tree

- A perfectly balanced binary search tree
\square Static: no insertions or deletions
Height of the tree, $h=\Theta\left(\log _{2} n\right)$
A search path visits $\mathrm{O}(h)$ nodes, and incurs $\mathrm{O}(h)=\mathrm{O}\left(\log _{2} n\right) \mathrm{I} / \mathrm{Os}$

I/O-Efficient Static B-Trees

- Each node stores B keys, and has degree $B+1$
- Height of the tree, $h=\Theta\left(\log _{B} n\right)$

I/O-Efficient Static B-Trees

- Each node stores B keys, and has degree $B+1$
- Height of the tree, $h=\Theta\left(\log _{B} n\right)$
[A search path visits $O(h)$ nodes, and incurs $O(h)=O\left(\log _{B} n\right)$ I/Os

Cache-Oblivious Static B-Trees?

van Emde Boas Layout

van Emde Boas Layout

| A | B_{1} | B_{2} | \ldots |
| :--- | :--- | :--- | :--- | :--- |

If the tree contains n nodes, each subtree contains $\Theta\left(2^{h / 2}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$.

van Emde Boas Layout

| A | B_{1} | B_{2} | \ldots |
| :--- | :--- | :--- | :--- | :--- |

Recursive Subdivision
If the tree contains n nodes, each subtree contains $\Theta\left(2^{h / 2}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$.

van Emde Boas Layout

A	B_{1}	B_{2}	$\ldots \ldots \ldots \ldots \ldots \ldots$	B_{k}

Recursive Subdivision
If the tree contains n nodes, each subtree contains $\Theta\left(2^{h / 2}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$.

van Emde Boas Layout

A	B_{1}	B_{2}	$\ldots \ldots \ldots \ldots \ldots$	B_{k}

Recursive Subdivision
If the tree contains n nodes, each subtree contains $\Theta\left(2^{h / 2}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$.

van Emde Boas Layout

\boldsymbol{A}	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\ldots \ldots$.	$\boldsymbol{B}_{\boldsymbol{k}}$

Recursive Subdivision
If the tree contains n nodes, each subtree contains $\Theta\left(2^{h / 2}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$.

1/O-Complexity of a Search

1/O-Complexity of a Search

$\square p=$ number of \triangle 's visited by a search path
\square Then $p \geq \frac{\log n}{\log B}=\log _{B} n$, and $p \leq \frac{\log n}{\frac{1}{2} \log B}=2 \log _{B} n$
\square The number of blocks transferred is $\leq 2 \times 2 \log _{B} n=4 \log _{B} n$

Sorting (Mergesort)

Merge Sort

Merge-Sort $(A, p, r) \quad\{$ sort the elements in $A[p \ldots r]\}$

1. if $p<r$ then
2. $\quad q \leftarrow\lfloor(p+r) / 2\rfloor$
3. Merge-Sort ($A, p, q)$
4. Merge-Sort ($A, q+1, r)$
5. Merge ($A, p, q, r)$

Merging k Sorted Sequences

- $k \geq 2$ sorted sequences $S_{1}, S_{2}, \ldots, S_{k}$ stored in external memory
- $\left|S_{i}\right|=n_{i}$ for $1 \leq i \leq k$
- $n=n_{1}+n_{2}+\cdots+n_{k}$ is the length of the merged sequence S
- S (initially empty) will be stored in external memory
- Cache must be large enough to store
- one block from each S_{i}
- one block from S

Thus $M \geq(k+1) B$

Merging k Sorted Sequences

- Let \mathcal{B}_{i} be the cache block associated with S_{i}, and let \mathcal{B} be the block associated with S (initially all empty)
- Whenever a \mathcal{B}_{i} is empty fill it up with the next block from S_{i}
- Keep transferring the next smallest element among all \mathcal{B}_{i} s to \mathcal{B}
- Whenever \mathcal{B} becomes full, empty it by appending it to S
- In the Ideal Cache Model the block emptying and replacements will happen automatically \Rightarrow cache-oblivious merging

I/O Complexity

- Reading S_{i} : \#block transfers $\leq 2+\frac{n_{i}}{B}$
- Writing S : \#block transfers $\leq 1+\frac{n}{B}$
- Total \#block transfers $\leq 1+\frac{n}{B}+\sum_{1 \leq i \leq k}\left(2+\frac{n_{i}}{B}\right)=0\left(k+\frac{n}{B}\right)$

Cache-Oblivious 2-Way Merge Sort

```
Merge-Sort (A,p,r) { sort the elements in A[p ...r]}
```

1. if $p<r$ then
2. $q \leftarrow\lfloor(p+r) / 2\rfloor$
3. Merge-Sort ($A, p, q)$
4. Merge-Sort ($A, q+1, r)$
5. Merge ($A, p, q, r)$

I/O Complexity: $Q(n)= \begin{cases}\mathrm{O}\left(1+\frac{n}{B}\right), & \text { if } n \leq M, \\ 2 Q\left(\frac{n}{2}\right)+\mathrm{O}\left(1+\frac{n}{B}\right), & \text { otherwise } .\end{cases}$

$$
=\mathrm{O}\left(\frac{n}{B} \log \frac{n}{M}\right)
$$

How to improve this bound?

Cache-Oblivious k-Way Merge Sort

I/O Complexity: $Q(n)= \begin{cases}O\left(1+\frac{n}{B}\right), & \text { if } n \leq M, \\ k \cdot Q\left(\frac{n}{k}\right)+\mathrm{O}\left(k+\frac{n}{B}\right), & \text { otherwise. }\end{cases}$

$$
=\mathrm{O}\left(k \cdot \frac{n}{M}+\frac{n}{B} \log _{k} \frac{n}{M}\right)
$$

How large can k be?
Recall that for k-way merging, we must ensure

$$
M \geq(k+1) B \Rightarrow k \leq \frac{M}{B}-1
$$

Cache-Aware $\left(\frac{M}{B}-1\right)$-Way Merge Sort
I/O Complexity: $Q(n)= \begin{cases}\mathrm{O}\left(1+\frac{n}{B}\right), & \text { if } n \leq M, \\ k \cdot Q\left(\frac{n}{k}\right)+\mathrm{O}\left(k+\frac{n}{B}\right), & \text { otherwise. }\end{cases}$

$$
=\mathrm{O}\left(k \cdot \frac{n}{M}+\frac{n}{B} \log _{k} \frac{n}{M}\right)
$$

Using $k=\frac{M}{B}-1$, we get:

$$
Q(n)=\mathrm{O}\left(\left(\frac{M}{B}-1\right) \frac{n}{M}+\frac{n}{B} \log _{\frac{M}{B}}\left(\frac{n}{M}\right)\right)=\mathrm{O}\left(\frac{n}{B} \log _{\frac{M}{B}}\left(\frac{n}{M}\right)\right)
$$

Sorting (Funnelsort)

k-Merger (k-Funnel)

Memory layout of a k-merger:

R	L_{1}	B_{1}	L_{2}	B_{2}	$L_{\sqrt{k}}$	B

k-Merger (k-Funnel)

Space usage of a k-merger: $S(k)=\left\{\begin{array}{lc}\Theta(1), & \text { if } k \leq 2, \\ (\sqrt{k}+1) S(\sqrt{k})+\Theta\left(k^{2}\right), & \text { otherwise } .\end{array}\right.$ $=\Theta\left(k^{2}\right)$

A k-merger occupies $\Theta\left(k^{2}\right)$ contiguous locations.

k-Merger (k-Funnel)

Each invocation of a k-merger

- produces a sorted sequence of length k^{3}
- incurs $\mathrm{O}\left(1+k+\frac{k^{3}}{B}+\frac{k^{3}}{B} \log _{M}\left(\frac{k}{B}\right)\right)$ cache misses provided $M=\Omega\left(B^{2}\right)$

k-Merger (k-Funnel)

Cache-complexity:

$$
\begin{aligned}
Q^{\prime}(k) & = \begin{cases}O\left(1+k+\frac{k^{3}}{B}\right), & \text { if } k<\alpha \sqrt{M}, \\
\left(2 k^{\frac{3}{2}}+2 \sqrt{k}\right)_{Q^{\prime}}(\sqrt{k})+\Theta\left(k^{2}\right), & \text { otherwise. }\end{cases} \\
& =\mathrm{O}\left(\frac{k^{3}}{B} \log _{M}\left(\frac{k}{B}\right)\right), \quad \text { provided } M=\Omega\left(B^{2}\right)
\end{aligned}
$$

k-Merger (k-Funnel)

Memory layout of a k-merger:

R	L_{1}	B_{1}	L_{2}	B_{2}

Cache-complexity:

$$
\begin{aligned}
Q^{\prime}(k) & = \begin{cases}\mathrm{O}\left(1+k+\frac{k^{3}}{B}\right), & \text { if } k<\alpha \sqrt{M} \\
\left(2 k^{\frac{3}{2}}+2 \sqrt{k}\right)\end{cases} \\
& =\mathrm{O}\left(\frac{k^{3}}{B} \log _{M}\left(\frac{k}{B}\right)\right), \quad \text { provided } M=\Omega\left(B^{2}\right)
\end{aligned}
$$

$$
k<\alpha \sqrt{M}: Q^{\prime}(k)=\mathrm{O}\left(1+k+\frac{k^{3}}{B}\right)
$$

- Let r_{i} be \#items extracted the i-th input queue. Then $\sum_{i=1}^{k} r_{i}=\mathrm{O}\left(k^{3}\right)$.
- Since $k<\alpha \sqrt{M}$ and $M=\Omega\left(B^{2}\right)$, at least $\frac{M}{B}=\Omega(k)$ cache blocks are available for the input buffers.
- Hence, \#cache-misses for accessing the input queues (assuming circular buffers) $=\sum_{i=1}^{k} \mathrm{O}\left(1+\frac{r_{i}}{B}\right)=\mathrm{O}\left(k+\frac{k^{3}}{B}\right)$

k-Merger (k-Funnel)

Memory layout of a k-merger:

| R | L_{1} | B_{1} | L_{2} | B_{2} |
| :--- | :--- | :--- | :--- | :--- | :--- |

Cache-complexity:

$$
\begin{aligned}
Q^{\prime}(k) & = \begin{cases}\mathrm{O}\left(1+k+\frac{k^{3}}{B}\right), & \text { if } k<\alpha \sqrt{M} \\
\left(2 k^{\frac{3}{2}}+2 \sqrt{k}\right) Q^{\prime}(\sqrt{k})+\Theta\left(k^{2}\right), & \text { otherwise }\end{cases} \\
& =\mathrm{O}\left(\frac{k^{3}}{B} \log _{M}\left(\frac{k}{B}\right)\right), \quad \text { provided } M=\Omega\left(B^{2}\right)
\end{aligned}
$$

$$
k<\alpha \sqrt{M}: Q^{\prime}(k)=\mathrm{O}\left(1+k+\frac{k^{3}}{B}\right)
$$

- \#cache-misses for accessing the input queues $=\mathrm{O}\left(k+\frac{k^{3}}{B}\right)$
- \#cache-misses for writing the output queue $=\mathrm{O}\left(1+\frac{k^{3}}{B}\right)$
- \#cache-misses for touching the internal data structures $=\mathrm{O}\left(1+\frac{k^{2}}{B}\right)$
- Hence, total \#cache-misses $=\mathrm{O}\left(1+k+\frac{k^{3}}{B}\right)$

k-Merger (k-Funnel)

$k \geq \alpha \sqrt{M}: Q^{\prime(k)}=\left(2 k^{\frac{3}{2}}+2 \sqrt{k}\right) Q^{\prime}(\sqrt{k})+\Theta\left(k^{2}\right)$

- Each call to R outputs $k^{\frac{3}{2}}$ items. So, \#times merger R is called $=\frac{k^{3}}{k^{\frac{3}{2}}}=k^{\frac{3}{2}}$
- Each call to an L_{i} puts $k^{\frac{3}{2}}$ items into B_{i}. Since k^{3} items are output, and the buffer space is $\sqrt{k} \times 2 k^{\frac{3}{2}}=2 k^{2}$, \#times the L_{i} 's are called $\leq k^{\frac{3}{2}}+2 \sqrt{k}$
- Before each call to R, the merger must check each L_{i} for emptiness, and thus incurring $\mathrm{O}(\sqrt{k})$ cache-misses. So, \#such cache-misses $=k^{\frac{3}{2}} \times \mathrm{O}(\sqrt{k})=\mathrm{O}\left(k^{2}\right)$

Funnelsort

- Split the input sequence A of length n into $n^{\frac{1}{3}}$ contiguous subsequences $A_{1}, A_{2}, \ldots, A_{n^{\frac{1}{3}}}$ of length $n^{\frac{2}{3}}$ each
- Recursively sort each subsequence
- Merge the $n^{\frac{1}{3}}$ sorted subsequences using a $n^{\frac{1}{3}}$-merger

Cache-complexity:

$$
\begin{aligned}
Q(n) & = \begin{cases}\mathrm{O}\left(1+\frac{n}{B}\right), & \text { if } n \leq M, \\
n^{\frac{1}{3}} Q\left(n^{\frac{2}{3}}\right)+Q^{\prime}\left(n^{\frac{1}{3}}\right), & \text { otherwise } .\end{cases} \\
& = \begin{cases}\mathrm{O}\left(1+\frac{n}{B}\right), & \text { if } n \leq M, \\
n^{\frac{1}{3}} Q\left(n^{\frac{2}{3}}\right)+\mathrm{O}\left(\frac{n}{B} \log _{M}\left(\frac{n}{B}\right)\right), & \text { otherwise } .\end{cases} \\
& =\mathrm{O}\left(1+\frac{n}{B} \log _{M} n\right)
\end{aligned}
$$

Sorting (Distribution Sort)

Cache-Oblivious Distribution Sort

Step 1: Partition, and recursively sort partitions.

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

Step 1: Partition \& Recursively Sort Partitions

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Step 2：Distribute to Buckets

Recursively Sorted

Distributed to Buckets

ロロローロロロロロロココ

 $\square \square 1 \square 1 \square 1|\square 11| 1111 \square$

－Number of buckets，$q \leq \sqrt{n}$
D Number of elements in $B_{i}=n_{i} \leq 2 \sqrt{n}$
$\square \max \left\{x \mid x \in B_{i}\right\} \leq \min \left\{x \mid x \in B_{i+1}\right\}$

Figure Source：Adapted from figures drawn by Piyush Kumar（2003），FSU

Step 3: Recursively Sort Buckets

Recursively Sort Each Bucket

Done!

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Distribution Sort

Step 1: Partition, and recursively sort partitions.

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

Distribution Sort

Step 1: Partition, and recursively sort partitions.

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.

The Distribution Step

Sorted Partitions

\square We can take the partitions one by one, and distribute all elements of current partition to buckets
\square Has very poor cache performance: upto $\Theta(\sqrt{n} \times \sqrt{n})=\Theta(n)$ cache-misses

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Recursive Distribution

Recursive Distribution

```
Distribute (i, j,m )
    1. if }m=1\mathrm{ then copy elements from }\mp@subsup{A}{i}{}\mathrm{ to }\mp@subsup{B}{j}{
    2. else
    3. Distribute( i, j, m/2)
    4. Distribute (i+m/2, j, m/2)
    5. Distribute( i, j+m/2,m/2)
    6. Distribute (i+m/2,j+m/2,m/2)
4. Distribute \((i+m / 2, \quad j, m / 2)\)
5. Distribute ( \(\quad i, j+m / 2, m / 2)\)
6. Distribute \((i+m / 2, j+m / 2, m / 2)\)
```

ignore
the cost of splits
for the time being

Let $R(m, d)$ denote the cache misses incurred by Distribute (i, j, m) that copies d elements from m partitions to m buckets. Then

$$
\begin{aligned}
R(m, d) & =\left\{\begin{array}{l}
\mathrm{O}\left(B+\frac{d}{B}\right) \\
\sum_{i=1}^{4} R\left(\frac{m}{2}, d_{i}\right), \quad \text { if } n \leq \alpha B \\
\end{array}=\mathrm{O}\left(B+\frac{m^{2}}{B}+\frac{d}{B}\right)\right. \\
R(\sqrt{n}, n) & =\mathrm{O}\left(\frac{n}{B}\right)
\end{aligned}
$$

Recursive Distribution

Distribute (i, j, m)

1. if $m=1$ then copy elements from A_{i} to B_{j}
2. else
3. Distribute ($i, \quad j, m / 2$)
4. \quad Distribute $(i+m / 2, \quad j, m / 2)$
5. Distribute ($\quad i, j+m / 2, m / 2)$
6. Distribute $(i+m / 2, j+m / 2, m / 2)$
the cost of splits
for the time being

Recursive Distribution

Distribute (i, j, m)

1. if $m=1$ then copy elements from A_{i} to B_{j}
2. else
3. Distribute ($\quad i, \quad j, m / 2$)
4. Distribute $(i+m / 2, \quad j, m / 2)$
5. Distribute ($\quad i, j+m / 2, m / 2$)
6. Distribute $(i+m / 2, j+m / 2, m / 2)$
\#cache-misses
incurred by all splits

$$
\begin{gathered}
=\sqrt{n} \times \mathrm{O}\left(\frac{\sqrt{n}}{B}\right) \\
=\mathrm{O}\left(\frac{n}{B}\right)
\end{gathered}
$$

Cache-complexity of Distribute $(1,1, \sqrt{n})$ is $=R(\sqrt{n}, n)+\mathrm{O}\left(\frac{n}{B}\right)=\mathrm{O}\left(\frac{n}{B}\right)$

Cache-Complexity of Distribution Sort

Step 1: Partition into \sqrt{n} sub-arrays containing \sqrt{n} elements each and sort the sub-arrays recursively.

Step 2: Distribute sub-arrays into buckets $B_{1}, B_{2}, \ldots, B_{q}$.
Step 3: Recursively sort the buckets.
Cache-complexity of Distribution Sort:

$$
\begin{aligned}
Q(n) & = \begin{cases}\mathrm{O}\left(1+\frac{n}{B}\right), & \text { if } n \leq \alpha^{\prime} M, \\
\sqrt{n} Q(\sqrt{n})+\sum_{i=1}^{q} Q\left(n_{i}\right)+\mathrm{O}\left(1+\frac{n}{B}\right), & \text { otherwise. }\end{cases} \\
& =\mathrm{O}\left(1+\frac{n}{B} \log _{M} n\right), \quad \text { when } M=\Omega\left(B^{2}\right)
\end{aligned}
$$

