CSE 638: Advanced Algorithms

Lectures 18 & 19 (Cache-efficient Searching and Sorting)

Rezaul A. Chowdhury

Department of Computer Science SUNY Stony Brook Spring 2013

Searching (Static B-Trees)

A Static Search Tree

- □ A perfectly balanced binary search tree
- Static: no insertions or deletions
- **T** Height of the tree, $h = \Theta(\log_2 n)$

A Static Search Tree

- A perfectly balanced binary search tree
- Static: no insertions or deletions
- **T** Height of the tree, $h = \Theta(\log_2 n)$
 - A search path visits O(h) nodes, and incurs $O(h) = O(\log_2 n)$ I/Os

I/O-Efficient Static B-Trees

- □ Each node stores *B* keys, and has degree *B* + 1
- $\Box \quad \text{Height of the tree, } h = \Theta(\log_B n)$

I/O-Efficient Static B-Trees

- Each node stores *B* keys, and has degree *B* + 1
- $\Box \quad \text{Height of the tree, } h = \Theta(\log_B n)$

A search path visits O(h) nodes, and incurs $O(h) = O(\log_B n)$ I/Os

Cache-Oblivious Static B-Trees?

If the tree contains n nodes,

If the tree contains n nodes,

I/O-Complexity of a Search

I/O-Complexity of a Search

Sorting (Mergesort)

Merge Sort

Merging k Sorted Sequences

- $k \ge 2$ sorted sequences S_1, S_2, \dots, S_k stored in external memory
- $|S_i| = n_i \text{ for } 1 \le i \le k$
- $n = n_1 + n_2 + \dots + n_k$ is the length of the merged sequence S
- S (initially empty) will be stored in external memory
- Cache must be large enough to store
 - one block from each S_i
 - one block from *S*

Thus $M \ge (k+1)B$

Merging k Sorted Sequences

- Let \mathcal{B}_i be the cache block associated with S_i , and let \mathcal{B} be the block associated with S (initially all empty)
- Whenever a \mathcal{B}_i is empty fill it up with the next block from S_i
- Keep transferring the next smallest element among all \mathcal{B}_i s to \mathcal{B}
- Whenever $\mathcal B$ becomes full, empty it by appending it to S
- In the *Ideal Cache Model* the block emptying and replacements
 will happen automatically \Rightarrow cache-oblivious merging

I/O Complexity

- Reading S_i : #block transfers $\leq 2 + \frac{n_i}{R}$
- Writing S: #block transfers $\leq 1 + \frac{n}{B}$

- Total #block transfers $\leq 1 + \frac{n}{B} + \sum_{1 \leq i \leq k} \left(2 + \frac{n_i}{B}\right) = O\left(k + \frac{n}{B}\right)$

Cache-Oblivious 2-Way Merge Sort

Merge-Sort (A, p, r){ sort the elements in A[$p \dots r$] }1. if p < r then2. $q \leftarrow \lfloor (p + r) / 2 \rfloor$ 3. Merge-Sort (A, p, q)4. Merge-Sort (A, q + 1, r)5. Merge (A, p, q, r)

I/O Complexity:
$$Q(n) = \begin{cases} O\left(1 + \frac{n}{B}\right), & \text{if } n \le M, \\ 2Q\left(\frac{n}{2}\right) + O\left(1 + \frac{n}{B}\right), & \text{otherwise.} \end{cases}$$
$$= O\left(\frac{n}{B}\log\frac{n}{M}\right)$$

How to improve this bound?

Cache-Oblivious k-Way Merge Sort

I/O Complexity:
$$Q(n) = \begin{cases} O\left(1 + \frac{n}{B}\right), & \text{if } n \le M, \\ k \cdot Q\left(\frac{n}{k}\right) + O\left(k + \frac{n}{B}\right), & \text{otherwise.} \end{cases}$$
$$= O\left(k \cdot \frac{n}{M} + \frac{n}{B}\log_k \frac{n}{M}\right)$$

How large can k be?

Recall that for k-way merging, we must ensure

$$M \ge (k+1)B \Rightarrow k \le \frac{M}{B} - 1$$

$$\frac{\text{Cache-Aware}\left(\frac{M}{B}-1\right)-\text{Way Merge Sort}}{I/O \text{ Complexity: } Q(n)} = \begin{cases} O\left(1+\frac{n}{B}\right), & \text{if } n \leq M, \\ k \cdot Q\left(\frac{n}{k}\right)+O\left(k+\frac{n}{B}\right), & \text{otherwise.} \end{cases}$$
$$= O\left(k \cdot \frac{n}{M} + \frac{n}{B}\log_k \frac{n}{M}\right)$$

Using
$$k = \frac{M}{B} - 1$$
, we get:
 $Q(n) = O\left(\left(\frac{M}{B} - 1\right)\frac{n}{M} + \frac{n}{B}\log_{\frac{M}{B}}\left(\frac{n}{M}\right)\right) = O\left(\frac{n}{B}\log_{\frac{M}{B}}\left(\frac{n}{M}\right)\right)$

Sorting (Funnelsort)

<u>Memory layout of a *k*-merger</u>:

$$R$$
 L_1
 B_1
 L_2
 B_2
 $L_{\sqrt{k}}$
 $B_{\sqrt{k}}$

k-Merger (k-Funnel)

Space usage of a k-merger:
$$S(k) = \begin{cases} \Theta(1), & \text{if } k \leq 2, \\ (\sqrt{k}+1)S(\sqrt{k}) + \Theta(k^2), & \text{otherwise} \end{cases}$$
$$= \Theta(k^2)$$

A k-merger occupies $\Theta(k^2)$ contiguous locations.

Each invocation of a k-merger

– produces a sorted sequence of length k^3

- incurs
$$O\left(1+k+\frac{k^3}{B}+\frac{k^3}{B}\log_M\left(\frac{k}{B}\right)\right)$$
 cache misses provided $M=\Omega(B^2)$

Cache-complexity:

$$Q'(k) = \begin{cases} O\left(1+k+\frac{k^3}{B}\right), & \text{if } k < \alpha \sqrt{M}, \\ \left(2k^{\frac{3}{2}}+2\sqrt{k}\right)Q'(\sqrt{k}) + \Theta(k^2), & \text{otherwise.} \end{cases}$$
$$= O\left(\frac{k^3}{B}\log_M\left(\frac{k}{B}\right)\right), & \text{provided } M = \Omega(B^2) \end{cases}$$

$$k < \alpha \sqrt{M}$$
: $Q'(k) = O\left(1 + k + \frac{k^3}{B}\right)$

- Let r_i be #items extracted the *i*-th input queue. Then $\sum_{i=1}^{k} r_i = O(k^3)$.
- Since $k < \alpha \sqrt{M}$ and $M = \Omega(B^2)$, at least $\frac{M}{B} = \Omega(k)$ cache blocks are available for the input buffers.
- Hence, #cache-misses for accessing the input queues (assuming circular buffers) = $\sum_{i=1}^{k} O\left(1 + \frac{r_i}{B}\right) = O\left(k + \frac{k^3}{B}\right)$

$$k < \alpha \sqrt{M}$$
: $Q'(k) = O\left(1 + k + \frac{k^3}{B}\right)$

- #cache-misses for accessing the input queues = $O\left(k + \frac{k^3}{B}\right)$
- #cache-misses for writing the output queue = $O\left(1 + \frac{k^3}{B}\right)$
- #cache-misses for touching the internal data structures = $O\left(1 + \frac{k^2}{B}\right)$
- Hence, total #cache-misses = $O\left(1 + k + \frac{k^3}{B}\right)$

$$k \ge \alpha \sqrt{M}: Q'^{(k)} = \left(2k^{\frac{3}{2}} + 2\sqrt{k}\right)Q'\left(\sqrt{k}\right) + \Theta(k^2)$$

Each call to R outputs k^{3/2}/₂ items. So, #times merger R is called = k³/_{k²/₂} = k^{3/2}/_{k²/₂}
Each call to an L_i puts k^{3/2}/₂ items into B_i. Since k³ items are output, and the buffer space is $\sqrt{k} \times 2k^{3/2} = 2k^2$, #times the L_i's are called $\leq k^{3/2} + 2\sqrt{k}$

- Before each call to R, the merger must check each L_i for emptiness, and thus incurring $O(\sqrt{k})$ cache-misses. So, #such cache-misses = $k^{\frac{3}{2}} \times O(\sqrt{k}) = O(k^2)$

Funnelsort

- Split the input sequence A of length n into $n^{\frac{1}{3}}$ contiguous subsequences $A_1, A_2, \dots, A_{n^{\frac{1}{3}}}$ of length $n^{\frac{2}{3}}$ each
- Recursively sort each subsequence
- Merge the $n^{\frac{1}{3}}$ sorted subsequences using a $n^{\frac{1}{3}}$ -merger

Cache-complexity:

$$Q(n) = \begin{cases} O\left(1 + \frac{n}{B}\right), & \text{if } n \le M, \\ \frac{1}{n^3}Q\left(n^{\frac{2}{3}}\right) + Q'\left(n^{\frac{1}{3}}\right), & \text{otherwise.} \end{cases}$$

$$= \begin{cases} O\left(1+\frac{n}{B}\right), & \text{if } n \leq M, \\ n^{\frac{1}{3}}Q\left(n^{\frac{2}{3}}\right) + O\left(\frac{n}{B}\log_{M}\left(\frac{n}{B}\right)\right), & \text{otherwise.} \end{cases}$$

 $= O\left(1 + \frac{n}{B}\log_M n\right)$

Sorting (Distribution Sort)

Cache-Oblivious Distribution Sort

<u>Step 1</u>: Partition, and recursively sort partitions.

<u>Step 2</u>: Distribute partitions into buckets.

<u>Step 3</u>: Recursively sort buckets.

Step 1: Partition & Recursively Sort Partitions

Order:	2		9	-	91.0	2.0				
<u> </u>							 			

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Step 2: Distribute to Buckets

Recursively Sorted

Distributed to Buckets

Step 3: Recursively Sort Buckets

Recursively Sort Each Bucket

Done!

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Distribution Sort

Step 1: Partition, and recursively sort partitions.

<u>Step 2</u>: Distribute partitions into buckets.

<u>Step 3</u>: Recursively sort buckets.

Distribution Sort

<u>Step 1</u>: Partition, and recursively sort partitions.

<u>Step 2</u>: Distribute partitions into buckets.

<u>Step 3</u>: Recursively sort buckets.

The Distribution Step

Sorted Partitions

Buckets

□ We can take the partitions one by one, and distribute

all elements of current partition to buckets

u Has very poor cache performance: upto $\Theta(\sqrt{n} \times \sqrt{n}) = \Theta(n)$

```
cache-misses
```

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU

Recursive Distribution

Let R(m, d) denote the cache misses incurred by *Distribute* (*i*, *j*, *m*) that copies *d* elements from *m* partitions to *m* buckets. Then

$$R(m,d) = \begin{cases} O\left(B + \frac{d}{B}\right), & \text{if } n \le \alpha B, \\ \sum_{i=1}^{4} R\left(\frac{m}{2}, d_i\right), & \text{otherwise, where } d = \sum_{i=1}^{4} d_i. \\ = O\left(B + \frac{m^2}{B} + \frac{d}{B}\right) \\ R(\sqrt{n}, n) = O\left(\frac{n}{B}\right) \end{cases}$$

Recursive Distribution

Recursive Distribution

Cache-complexity of *Distribute*(1,1,
$$\sqrt{n}$$
) is = $R(\sqrt{n},n) + O\left(\frac{n}{B}\right) = O\left(\frac{n}{B}\right)$

Cache-Complexity of Distribution Sort

<u>Step 1</u>: Partition into \sqrt{n} sub-arrays containing \sqrt{n} elements each and sort the sub-arrays recursively.

<u>Step 2</u>: Distribute sub-arrays into buckets $B_1, B_2, ..., B_q$.

<u>Step 3</u>: Recursively sort the buckets.

Cache-complexity of Distribution Sort:

$$Q(n) = \begin{cases} O\left(1 + \frac{n}{B}\right), & \text{if } n \le \alpha' M, \\ \sqrt{n}Q(\sqrt{n}) + \sum_{i=1}^{q} Q(n_i) + O\left(1 + \frac{n}{B}\right), & \text{otherwise.} \end{cases}$$
$$= O\left(1 + \frac{n}{B}\log_M n\right), & \text{when } M = \Omega(B^2)$$