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Searching

( Static B-Trees )



� A perfectly balanced binary search tree

� Height of the tree, � � Θ log� �

(((( ))))2
Θ==== logh n

degree: 2 

� Static: no insertions or deletions

A Static Search Tree
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a search path

� A search path visits O � nodes, and incurs O � � O log� � I/Os

A Static Search Tree

� A perfectly balanced binary search tree

� Height of the tree, � � Θ log� �� Static: no insertions or deletions



B + 1

� Each node stores B keys, and has degree B + 1

� Height of the tree, � � Θ log
 �

(((( ))))logBh nΘ====

I/O-Efficient Static B-Trees
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I/O-Efficient Static B-Trees



Cache-Oblivious Static B-Trees?
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� Each          has height between 
�� log� & log�.

� The height of the tree is log �
� Each          spans at most 2 blocks of size �.

I/O-Complexity of a Search



� p = number of         ‘s  visited by a search path

� Then � � ��� ���� 
 � log
 �, and � � ��� ������ 
 � 2log
 �
� The number of blocks transferred is � 2 � 2 log
 � � 4 log
 �

a search path

I/O-Complexity of a Search

� Each          has height between 
�� log� & log�.

� The height of the tree is log �
� Each          spans at most 2 blocks of size �.



Sorting 

( Mergesort )



Merge-Sort ( A, p, r )         { sort the elements in A[ p … r ] }

1.  if p < r then

3.       Merge-Sort (  A,  p,  q )

4. Merge-Sort (  A,  q + 1,  r )

2.       q ←  ( p + r ) / 2 

5.       Merge (  A,  p,  q, r )

Merge Sort



Merging k Sorted Sequences

‒ � � 2 sorted sequences ��, ��, … , �� stored in external memory

‒ � � � for 1 � " � �
‒ � � �� # �� # ⋯# �� is the length of the merged sequence �
‒ � ( initially empty ) will be stored in external memory

‒ Cache must be large enough to store 

• one block from each � 
• one block from �

Thus % � � # 1 �



Merging k Sorted Sequences

‒ Let Bi be the cache block associated with � , and let B be the 

block associated with � ( initially all empty )

‒ Whenever a Bi is empty fill it up with the next block from � 
‒ Keep transferring the next smallest element among all Bis to B

‒ Whenever B becomes full, empty it by appending it to �
‒ In the Ideal Cache Model the block emptying and replacements 

will happen automatically ⇒ cache-oblivious merging

I/O Complexity

‒ Reading � : #block transfers � 2 # �&

‒ Writing �: #block transfers � 1 # �

‒ Total #block transfers � 1 # �
 # ∑ 2 # �&
�( (� � O � # �




Merge-Sort ( A, p, r )         { sort the elements in A[ p … r ] }

1.  if p < r then

3.       Merge-Sort (  A,  p,  q )

4. Merge-Sort (  A,  q + 1,  r )

2.       q ←  ( p + r ) / 2 

5.       Merge (  A,  p,  q, r )

Cache-Oblivious 2-Way Merge Sort

) � � Ο 1 # �� , 															"+	� � %,
2) �2 # Ο 1 # �� , 		,-�./0"1..

� Ο
�
 log �3

I/O Complexity:

How to improve this bound?



Cache-Oblivious k-Way Merge Sort

) � � Ο 1 # �� , 															"+	� � %,
� ⋅ ) �� # Ο � # �� , 		,-�./0"1..

� Ο � ⋅ �3 # �
 log� �3

I/O Complexity:

How large can � be?

Recall that for �-way merging, we must ensure 

% � � # 1 � ⇒ � � %� 6 1



Cache-Aware 
78 6 9 -Way Merge Sort

) � � Ο 1 # �� , 															"+	� � %,
� ⋅ ) �� # Ο � # �� , 		,-�./0"1..

� Ο � ⋅ �3 # �
 log� �3

I/O Complexity:

Using � � 3
 6 1, we get:

) � � Ο
%� 6 1 �% # �� log3


�% � Ο
�� log3


�%



Sorting 

( Funnelsort )



k-Merger ( k-Funnel )

� � 2 sorted 

input sequences

one merged 

output sequence

� - mergers

( � of them )

� - merger

( one )

� linking buffers

( each of size 2�:� )

��

� �

;� ; ��� ;� �� � �<
Memory layout of a �-merger:



k-Merger ( k-Funnel )

Space usage of a �-merger: � � � = Θ 1 , 																															"+	� � 2,� # 1 � � # Θ �� , 		,-�./0"1..
� Θ ��

A �-merger occupies Θ �� contiguous locations.



k-Merger ( k-Funnel )

Each invocation of a �-merger

‒ produces a sorted sequence of length  �>
‒ incurs Ο 1 # � # �:
 # �:
 log3 �
 cache misses provided % � Ω ��



k-Merger ( k-Funnel )

)′ � � Ο 1 # � # �>� , 																			"+	� A B %,
2�>� # 2 � )′ � # Θ �� , 						,-�./0"1..

� Ο
�:
 log3 �
 ,               provided % � ΩC��D

Cache-complexity:



k-Merger ( k-Funnel )

� A B %: 	)′ � � Ο 1 # � # �>�
‒ Let / be #items extracted the "-th input queue. Then ∑ / � F� � Ο �> . 

‒ Since � A B % and % � Ω �� , at least 
3
 � Ω � cache blocks are available 

for the input buffers. 

‒ Hence, #cache-misses for accessing the input queues (assuming circular 

buffers) � ∑ Ο 1 # G&
 � Ο � # �:
� F�



k-Merger ( k-Funnel )

� A B %: 	)′ � � Ο 1 # � # �>�
‒ #cache-misses for accessing the input queues � Ο � # �:

‒ #cache-misses for writing the output queue � Ο 1 # �:

‒ #cache-misses for touching the internal data structures � Ο 1 # ��

‒ Hence, total #cache-misses � Ο 1 # � # �:




k-Merger ( k-Funnel )

� � B %:	)H � � 2�>� # 2 � )H � # Θ ��
‒ Each call to < outputs �:� items. So, #times merger < is called � �:

�:� � �:�
‒ Each call to an ; puts �:� items into � . Since �> items are output, and the 

buffer space is � � 2�:� � 2��, #times the ; ’s are called � �:� # 2 �
‒ Before each call to <, the merger must check each ; for emptiness, and thus 

incurring Ο � cache-misses. So, #such cache-misses � �:� � Ο � � Ο ��



Funnelsort

‒ Split the input sequence I of length � into ��: contiguous 

subsequences I�, I�, … , I��: of length ��: each

‒ Recursively sort each subsequence

‒ Merge the ��: sorted subsequences using a ��:-merger

) � � JΟ 1 # �� , 																														"+	� � %,
��>) ��> # )′ ��> , 																					,-�./0"1..

										� Ο 1 # �� , 																															"+	� � %,
��>) ��> # Ο

�� log3 �� , 		,-�./0"1..
� Ο 1 # �
 log3 �

Cache-complexity:



Sorting 

( Distribution Sort )



Step 1: Partition, and recursively sort partitions.

Cache-Oblivious Distribution Sort

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.



Step 1: Partition & Recursively Sort Partitions

sub-arraysn

elementsn

Partitioned Recursively Sorted

Order:

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU



Step 2: Distribute to Buckets

1
:A

elementsn

Recursively Sorted

2
:A

3
:A

:
n

A

1
:B

2
:B

3
:B

:qB

Distributed to Buckets

� Number of buckets, K � �
� Number of elements in � � � � 2 �
� max O O ∈ � � min O O ∈ � S�

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU



Step 3: Recursively Sort Buckets

Recursively Sort Each Bucket

1
:B

2
:B

3
:B

:qB

Done!

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU



Step 1: Partition, and recursively sort partitions.

Distribution Sort

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.



Distribution Sort

Step 1: Partition, and recursively sort partitions.

Step 2: Distribute partitions into buckets.

Step 3: Recursively sort buckets.



The Distribution Step

1
A

Sorted Partitions

2
A

3
A

n
A

1
B

2
B

3
B

qB

Buckets

� We can take the partitions one by one, and  distribute 

all elements of current partition to buckets

� Has very poor cache performance: upto Θ � � � � Θ �
cache-misses

Figure Source: Adapted from figures drawn by Piyush Kumar (2003), FSU



Recursive Distribution
Sorted Partitions Buckets

1
A

2
A

3
A

n
A

1
B

2
B

3
B

n
B

Distribute ( i, j, m )

1.  if m = 1  then copy elements from Ai to Bj

2.  else

3.       Distribute (             i,               j,   m / 2 )

4.       Distribute ( i + m / 2,               j,   m / 2 )

5.       Distribute (             i,   j + m / 2,   m / 2 )

6.       Distribute ( i + m / 2,   j + m / 2,   m / 2 )

[ Ai, …, Ai + m – 1 ]

[ Bj, …, Bj + m – 1 ]

may need 

to split � 
to maintain� � 2 �



Recursive Distribution

ignore 

the cost of splits 

for the time being

Distribute ( i, j, m )

1.  if m = 1  then copy elements from Ai to Bj

2.  else

3.       Distribute (               i,                j,   m / 2 )

4.       Distribute ( i + m / 2,                j,   m / 2 )

5.       Distribute (              i,   j + m / 2,   m / 2 )

6.       Distribute ( i + m / 2,   j + m / 2,   m / 2 )

Let < T, U denote the cache misses incurred by Distribute ( i, j, m ) 

that copies U elements from m partitions to T buckets. Then

< T, U � Ο � # U� , 																																							"+	� � B�,
V< T2 , U 
W

 F� , 							,-�./0"1., 0�./.	U � VU 
W

 F� .
						� Ο � # X�
 # Y
< �, � � Ο

��



Recursive Distribution

ignore 

the cost of splits 

for the time being

Distribute ( i, j, m )

1.  if m = 1  then copy elements from Ai to Bj

2.  else

3.       Distribute (               i,                j,   m / 2 )

4.       Distribute ( i + m / 2,                j,   m / 2 )

5.       Distribute (              i,   j + m / 2,   m / 2 )

6.       Distribute ( i + m / 2,   j + m / 2,   m / 2 )



Recursive Distribution

#cache-misses

incurred by all splits 

� � � Ο
��

� Ο
��

Distribute ( i, j, m )

1.  if m = 1  then copy elements from Ai to Bj

2.  else

3.       Distribute (               i,                j,   m / 2 )

4.       Distribute ( i + m / 2,                j,   m / 2 )

5.       Distribute (              i,   j + m / 2,   m / 2 )

6.       Distribute ( i + m / 2,   j + m / 2,   m / 2 )

Cache-complexity of Distribute( 1,1, �	) is � < �, � # Ο
�
 � Ο

�




Step 1: Partition into � sub-arrays containing � elements each

and sort the sub-arrays recursively.

Cache-Complexity of Distribution Sort

Step 2: Distribute sub-arrays into buckets ��, ��, … , �Z.

Step 3: Recursively sort the buckets.

Cache-complexity of Distribution Sort:

) � � Ο 1 # �� , 																																										"+	� � B′%,
�) � # V) � 

Z
 F� # Ο 1 # �� , 					,-�./0"1..

� Ο 1 # �� log3 � , 			0�.�	% � Ω ��


