CSE 638: Advanced Algorithms

Lectures 20821
 (Cache-oblivious Priority Queue with Decrease-Keys)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2013

Cache-Oblivious Buffer Heap

		Amortized I/O Bounds	
	Priority Queue	Delete / Delete-Min	Decrease-Key
Cacheoblivious	Buffer Heap	$\boldsymbol{O}\left(\frac{1}{B} \log _{2} \frac{N}{B}\right)$	
awa	Tournament Tree		
Internal Memory	Binary Heap (worst-case)	$\boldsymbol{O}\left(\log _{2} N\right)$	
	Fibonacci Heap	$\boldsymbol{O}\left(\log _{2} N\right)$	$\boldsymbol{O}(1)$

Cache-Oblivious Buffer Heap: Structure

Consists of $r=1+\left\lceil\log _{2} N\right\rceil$ levels, where $N=$ total number of elements.
For $0 \leq i \leq r-1$, level i contains two buffers:
\square element buffer B_{i}
contains elements of the form (x, k_{x}), where x is the element id, and k_{x} is its key
\square update buffer U_{i} contains updates (Delete, Decrease-Key and Sink), each augmented with a time-stamp.

Fig: The Buffer Heap

Cache-Oblivious Buffer Heap: Invariants

Invariant 1: $\left|B_{i}\right| \leq 2^{i}$

Invariant 2:

(a) No key in B_{i} is larger than any key in B_{i+1}
(b) For each element x in B_{i}, all updates yet to be applied on x reside in $U_{0}, U_{1}, \ldots, U_{i}$

Invariant 3:

(a) Each B_{i} is kept sorted by element id

Fig: The Buffer Heap
(b) Each U_{i} (except U_{0}) is kept (coarsely) sorted by element id and time-stamp

Cache-Oblivious Buffer Heap: Operations

The following operations are supported:

- Delete(x):

Deletes the element x from the queue.

- Delete-Min():

Extracts an element with minimum key from queue.

- Decrease-Key (x, $k_{\underline{x}}$): (weak Decrease-Key)

If x already exists in the queue, replaces key k_{x}^{\prime} of x with $\min \left(k_{x}, k_{x}^{\prime}\right)$, otherwise inserts x with key k_{x} into the queue.

A new element x with key k_{x} can be inserted into queue by Decrease-Key $\left(x, k_{x}\right)$.

Cache-Oblivious Buffer Heap: Operations

Decrease-Key $\left(x, k_{x}\right)$:
Insert the operation into U_{0} augmented with current time-stamp.

Delete(x):
Insert the operation into U_{0} augmented with current time-stamp.

Delete-Min():
Two phases:

- Descending Phase (Apply Updates)
- Ascending Phase (Redistribute Elements)

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Descending Phase (Apply Updates) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Descending Phase (Apply Updates):

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Descending Phase (Apply Updates) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Descending Phase (Apply Updates) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Descending Phase (Apply Updates) :

1. sort updates:

- merge segments

U_{2}

$$
B_{k-1} \bigcirc \bigcirc \bigcirc
$$

$$
\square \square \square \ldots \ldots \ldots . \square \boldsymbol{U}_{k-1}
$$

\square
■■ U_{k+1}

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Descending Phase (Apply Updates) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Descending Phase (Apply Updates) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Descending Phase (Apply Updates) :

$B_{0} \quad \square$		U_{0}
B_{1}		U_{1}
B_{2}		U_{2}
$B_{k-1} \bigcirc \bigcirc \bigcirc$	- ■ ■...........	$U_{\text {k-1 }}$
$B_{k} \bigcirc 0 \cdot 0 \cdot 0$	- ■ -	$U_{\text {k }}$
	- ■ ■............	$\boldsymbol{U}_{\text {k+1 }}$

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Descending Phase (Apply Updates) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Descending Phase (Apply Updates) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

$B_{k-1} \bigcirc \bullet \bullet \bullet \bullet \bullet 0$
$\square \boldsymbol{U}_{\boldsymbol{k}-1}$
\square
$\square \square \square . . .$.

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

\square
$B_{k-1} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0$
$\square \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \boldsymbol{U}_{\boldsymbol{k}-1}$
\square
$\square \square \square$.

Cache-Oblivious Buffer Heap: Delete-Min

Delete-Min() - Ascending Phase (Redistribute Elements) :

- \longleftarrow element with minimum key

Cache-Oblivious Buffer Heap: I/O Complexity

Potential Function: $\Phi(H)=\frac{1}{B}\left(4 r\left|U_{0}\right|+\sum_{i=1}^{r-1}(3 r-i)\left|U_{i}\right|+\sum_{i=0}^{r-1}(i+1)\left|B_{i}\right|\right)$

Fig: Major Data Flow Paths in the Buffer Heap

Lemma: A Buffer Heap on N elements supports Delete, Delete-Min and Decrease-Key operations cache-obliviously in $\mathrm{O}\left(\frac{1}{B} \log _{2} N\right)$ amortized I/Os each using $\mathrm{O}(N)$ space.

Cache-Oblivious Buffer Heap: I/O Complexity

Potential Function: $\Phi(H)=\frac{1}{B}\left(4 r\left|U_{0}\right|+\sum_{i=1}^{r-1}(3 r-i)\left|U_{i}\right|+\sum_{i=0}^{r-1}(i+1)\left|B_{i}\right|\right)$

Lemma: A Buffer Heap on N elements supports Delete, Delete-Min and Decrease-Key operations cache-obliviously in $\mathrm{O}\left(\frac{1}{B} \log _{2} N\right)$ amortized I/Os each using $\mathrm{O}(N)$ space.

Cache-Oblivious Buffer Heap: I/O Complexity

Potential Function: $\Phi(H)=\frac{1}{B}\left(4 r\left|U_{0}\right|+\sum_{i=1}^{r-1}(3 r-i)\left|U_{i}\right|+\sum_{i=0}^{r-1}(i+1)\left|B_{i}\right|\right)$

Fig: Major Data Flow Paths in the Buffer Heap

Lemma: A Buffer Heap on N elements supports Delete, Delete-Min and Decrease-Key operations cache-obliviously in $\mathrm{O}\left(\frac{1}{B} \log _{2} N\right)$ amortized I/Os each using $\mathrm{O}(N)$ space.

Cache-Oblivious Buffer Heap: I/O Complexity

Potential Function: $\Phi(H)=\frac{1}{B}\left(4 r\left|U_{0}\right|+\sum_{i=1}^{r-1}(3 r-i)\left|U_{i}\right|+\sum_{i=0}^{r-1}(i+1)\left|B_{i}\right|\right)$

Fig: Major Data Flow Paths in the Buffer Heap

Lemma: A Buffer Heap on N elements supports Delete, Delete-Min and Decrease-Key operations cache-obliviously in $\mathrm{O}\left(\frac{1}{B} \log _{2} N\right)$ amortized I/Os each using $\mathrm{O}(N)$ space.

Cache-Oblivious Buffer Heap: I/O Complexity

Potential Function: $\Phi(H)=\frac{1}{B}\left(4 r\left|U_{0}\right|+\sum_{i=1}^{r-1}(3 r-i)\left|U_{i}\right|+\sum_{i=0}^{r-1}(i+1)\left|B_{i}\right|\right)$

Fig: Major Data Flow Paths in the Buffer Heap

Lemma: A Buffer Heap on N elements supports Delete, Delete-Min and Decrease-Key operations cache-obliviously in $\mathrm{O}\left(\frac{1}{B} \log _{2} N\right)$ amortized I/Os each using $\mathrm{O}(N)$ space.

Cache-Oblivious Buffer Heap: Layout

- All B_{i} 's are kept in a stack S_{B}.
- All U_{i} 's are kept in a stack S_{U}.
- An array A_{s} is maintained in a stack S_{A}. for $0 \leq i \leq r-1 A_{s}[i]$ contains:
$-\left|B_{i}\right|$
- number of segments in U_{i}
- number of updates in each segment of U_{i}

In both stacks lower level buffers are placed above higher level buffers. The left to right order of the elements in any buffer are maintained top to bottom in the stack.

Cache-Oblivious Buffer Heap: Reconstruction

After each operation check whether $\sum\left|U_{i}\right| \geq \sum\left|B_{i}\right|$, and if so,
Step 1: Sort the elements in S_{B} by element id and level number.
Step 2: Sort the updates in S_{U} by element id and time-stamp.
Step 3: Scan S_{B} and S_{U} simultaneously, and apply the updates in S_{u} on the elements of S_{B}.

Step 4: Reconstruct the data structure by filling the shallowest levels with the current elements in S_{B}, and emptying S_{U}.

Cache-Oblivious Buffer Heap: I/O Complexity

Lemma: A BH supports Delete, Delete-Min, and Decrease-Key operations in $O\left((1 / B) \log _{2}(N / B)\right)$ amortized I/Os each assuming a tall cache.

Potential Method:

Associates credit with the entire data structure instead of specific objects.

- $D_{0}=$ initial state of the data structure
- $\quad D_{i}=$ state of data structure after i-th operation, $i=1,2, \ldots, n$
- $\quad \Phi=$ a potential function mapping each D_{i} to a real number $\Phi\left(D_{i}\right)$
- $\quad c_{i} / a_{i}=$ actual $/$ amortized cost of the i-th operation, $i=1,2, \ldots, n$ Then $a_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \Rightarrow \sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} c_{i}+\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right)$
- \quad define Φ so that $\Phi\left(D_{0}\right)=0$ and $\Phi\left(D_{i}\right) \geq 0$ for all i.

Then $\sum_{i=1}^{n} c_{i}=\sum_{i=1}^{n} a_{i}-\Phi\left(D_{n}\right) \leq \sum_{i=1}^{n} a_{i}$
Thus the total amortized cost is an upper bound on the total actual cost.

Cache-Oblivious Buffer Heap: I/O Complexity

Lemma: A BH supports Delete, Delete-Min, and Decrease-Key operations in $O\left((1 / B) \log _{2}(N / B)\right)$ amortized I/Os each assuming a tall cache.

Proof: We will use the Potential Method.

- Each Decrease-Key inserted into U_{0} will be treated as a pair of operations: 〈Decrease-Key, Dummy〉.
- Each component of the actual cost will have a $\Theta(1 / B)$ factor associated with it which we will drop for simplicity.
- For $0 \leq i \leq r-1$, let $u_{i}=\left|U_{i}\right|$, and $b_{i}=\left|B_{i}\right|$.
- If H is the current state of $B H$, we define potential of H as:

$$
\Phi(H)=4 r u_{0}+\sum_{i=1}^{r-1}(3 r-i) u_{i}+\sum_{i=0}^{r-1}(i+1) b_{i}
$$

Cache-Oblivious Buffer Heap: I/O Complexity

Amortized Cost of Reconstruction:-
 $$
\Phi(H)=4 r u_{0}+\sum_{i=1}^{r-1}(3 r-i) u_{i}+\sum_{i=0}^{r-1}(i+1) b_{i}
$$

Starts with $\sum_{i=0}^{r-1} u_{i} \geq \sum_{i=0}^{r-1} b_{i}$. Thus cost of steps 1 to 4 is $\leq 2 r \sum_{i=0} u_{i}$.

- Total potential drop is $\geq 2 r \sum_{i=0}^{r-1} u_{i}$.

$$
\text { Amortized cost of reconstruction is } \leq 2 r \sum_{i=0}^{r-1} u_{i}-2 r \sum_{i=0}^{r-1} u_{i}=0
$$

After each operation check whether $\sum u_{i} \geq \sum b_{i}$, and if so,
Step 1: Sort the elements in S_{B} by element id and level number.
Step 2: Sort the updates in S_{U} by element id and time-stamp.
Step 3: Scan S_{B} and S_{U} simultaneously, and apply the updates in S_{u} on the elements of S_{B}.

Step 4: Reconstruct the data structure by filling the shallowest levels with the current elements in S_{B}, and emptying S_{U}.
I / O cost of sorting X elements $=\mathrm{O}\left(\frac{X}{B} \log _{2} X\right) r r=\mathrm{O}\left(\log _{2} N\right)$

Cache-Oblivious Buffer Heap: I/O Complexity

Amortized Cost of Reconstruction: $\Phi(H)=4 r u_{0}+\sum_{i=1}^{r-1}(3 r-i) u_{i}+\sum_{i=0}^{r-1}(i+1) b_{i}$

- Starts with $\sum_{i=0}^{r-1} u_{i} \geq \sum_{i=0}^{r-1} 力_{i}$. Thus cost of steps 1 to 4 is $\leq 2 r \sum_{i=0} u_{i}$.
- Total potential drop is $\geq 2 r \sum_{i=0}^{r-1} u_{i}$.
- Amortized cost of reconstruction is $\leq 2 r \sum_{i=0}^{r-1} u_{i}-2 r \sum_{i=0}^{r-1} u_{i}=\mathbf{0}$. Amortized Cost of Delete:

Actual cost $=1$.
Increase in potential $=4 r$.

$$
\text { Amortized cost }=1+4 r=O\left(\log _{2} N\right) .
$$

Delete(x) :

Insert the operation into U_{0} augmented with current time-stamp. [Stack Push/Pop requires O(1/B) amortized I/Os each]

Cache-Oblivious Buffer Heap: I/O Complexity

Amortized Cost of Reconstruction: $\quad \Phi(H)=4 r u_{0}+\sum_{i=1}^{r-1}(3 r-i) u_{i}+\sum_{i=0}^{r-1}(i+1) b_{i}$

- Starts with $\sum_{i=0}^{r-1} u_{i} \geq \sum_{i=0}^{r-1} b_{j}$. Thus cost of steps 1 to 4 is $\leq 2 r \sum_{i=0}^{r-1} u_{i} \cdot$
- Total potential drop $i s \geq 2 r \sum_{i=0}^{r-1} u_{i}$ •
- Amortized cost of reconstruction is $\leq 2 r \sum_{i=0}^{r-1} u_{i}-2 r \sum_{i=0}^{r-1} \boldsymbol{u}_{i}=\mathbf{0}$.

Amortized Cost of Delete:

- Actual cost $=1$.
- Increase in pot Decrease-Key $\left(x, k_{x}\right)$:
- Increase in pot Insert the operation into U_{0} augmented with current time-stamp.
- Amortized COS [Each Decrease-Key is considered as two operations]

Amortized Cost of Decrease-Key:
Actual cost $=2 \times 1$.
Increase in potential $=2 \times 4 r$.

- \quad Amortized cost $=2+8 r=O\left(\log _{2} N\right)$.

Cache-Oblivious Buffer Heap: I/O Complexity

Amortized Cost of Delete-Min
 $$
\text { I/O cost of sorting } X \text { elements }=O\left(\frac{X}{B} \log _{2} X\right)
$$

 I/O cost of sorting X elements $=O\left(\frac{X}{B} \log _{2} X\right)$

 I/O cost of sorting X elements $=O\left(\frac{X}{B} \log _{2} X\right)$} Actual Cost:$\square$ Cost of sorting U_{0} is $\leq r u_{0}$.
Cost of examining the updates in $U_{0}, U_{1}, \ldots, U_{k}$ is $\sum_{i=0}^{k}(k-i+1) u_{i}$.
Cost of examining the elements in $B_{0}, B_{1}, \ldots, B_{k-1}$ is $\sum_{i=0} b_{i}$.

- Let b_{k} and b_{k}^{\prime} be the number of elements in B_{ν} before and after the updates, respectively Then the total cost of exa after updates is $\max \left(b_{k}\right.$ I/O cost of scanning X elements $=O\left(\frac{X}{B}\right)$
k is the smallest level with non-empty B_{k} after updates.
- Cost of accessing A_{s} is

Thus actual cost, $c \leq r u_{0}+\sum_{i=0}^{k}(k-i+1) u_{i}+\sum_{i=0}^{k-1} b_{i}+\max \left(b_{k}, b_{k}^{\prime}\right)+r$

Cache-Oblivious Buffer Heap: I/O Complexity

Amortized Cost of Delete-Min:

Actual Cost:

- Cost of sorting U_{0} is $\leq r u_{0}$.
- Cost of examining th I/O cost of selection from X elements $=O\left(\frac{X}{B}\right)$
- Cost of examining the c.c.......... $0,-1, \cdots,-_{k-1} \sum_{i=0}^{N_{i}} \cdot$

Let b_{k} and b_{k}^{\prime} be the number of ele A_{s} stores information on each the updates, respectively. buffer and has length $=\mathrm{O}(r)$
Then the total cost of examining B_{k} पurn's upaaces ant serction after updates is $\max \left(b_{k}, b_{k}^{\prime}\right)$.
Cost of accessing A_{s} is $\leq r$.
Thus actual cost, $c \leq r u_{0}+\sum_{i=0}^{k}(k-i+1) u_{i}+\sum_{i=0}^{k-1} b_{i}+\max \left(b_{k}, b_{k}^{\prime}\right)+r$

Cache-Oblivious Buffer Heap: I/O Complexity

Amortized Cost of Delete-Min:

$$
\Phi(H)=4 r u_{0}+\sum_{i=1}^{r-1}(3 r-i) u_{i}+\sum_{i=0}^{r-1}(i+1) b_{i}
$$

Potential Drop:

\square Potential drop due to changes in update buffers is

Potential drop due to changes in element buffers is

$$
\geq \sum_{i=0}^{k-1} b_{i}+\max \left(b_{k}, b_{k}^{\prime}\right)
$$

Thus, total drop in potential is

$$
\geq r u_{0}+\sum_{i=0}^{k}(k-i+1) u_{i}+\sum_{i=0}^{k-1} b_{i}+\max \left(b_{k}, b_{k}^{\prime}\right)
$$

Therefore, amortized cost of Delete-Min is

$$
\hat{c}=c+\left(\Phi\left(H_{\text {after }}\right)-\Phi\left(H_{\text {before }}\right)\right) \leq r=\mathrm{O}\left(\log _{2} N\right)
$$

Cache-Oblivious Buffer Heap: I/O Complexity

We assume $N \gg M=\Omega\left(B^{1+\varepsilon}\right)$ for some $\varepsilon>0$

$$
\Rightarrow \log _{2} N=O\left(\log _{2} \frac{N}{B}\right)
$$

Therefore, under the tall cache assumption,
Amortized I/O cost of each operation
(Delete, Delete-Min and Decrease-Key) is $=\mathrm{O}\left(\frac{1}{B} \log _{2} \frac{N}{B}\right)$

Removing the "Tall Cache" Assumption

- Restrict the size of each update buffer: $\left|U_{i}\right| \leq 2^{i}$
- Now all buffers (U_{i} and B_{i}) of the first $\log _{2} B$ levels occupy only $O(B)$ blocks.
- No external I/O is required to access the first $\log _{2} B$ levels.
- Thus amortized I/O cost of each operation is

$$
=\mathrm{O}\left(\frac{1}{B}\left(\log _{2} N-\log _{2} B\right)\right)=\mathrm{O}\left(\frac{1}{B} \log _{2} \frac{N}{B}\right)
$$

