
CSE 638: Advanced Algorithms

Lectures 6 & 7

(Analysis of a Work Stealing Scheduler)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2013

Work-Sharing and Work-Stealing Schedulers

Work-Sharing

― Whenever a processor generates new tasks it tries to

distribute some of them to underutilized processors

― Easy to implement through centralized (global) task pool

― The centralized task pool creates scalability problems

― Distributed implementation is also possible (but see below)

Work-Stealing

― Whenever a processor runs out of tasks it tries steal tasks

from other processors

― Distributed implementation

― Scalable

― Fewer task migrations compared to work-sharing (why?)

Cilk++’s Work-Stealing Scheduler

― A randomized distributed scheduler

― Time bounds

o Provably: �� � ��
� � Ο �∞ (expected time)

o Empirically: ��	≈	 ��� � �∞
― Space bound: ≤ p × serial space bound

― Has provably good cache performance

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

P1 P2 P3 P4

Cilk++’s Work-Stealing Scheduler

P1 P2 P3 P4

spawn spawn

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

P1 P2 P3 P4

return return

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

returnreturn

P1 P2 P3 P4

spawn

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

P1 P2 P3 P4

steal

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

P1 P2 P3 P4

steal

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

P1 P2 P3 P4

spawn return

― Each core maintains a work dqueue of ready threads

― A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution

o Pushes new/spawned threads

― Whenever a core runs out of ready threads it steals one

from the top of the dqueue of a random core

Cilk++’s Work-Stealing Scheduler

Bound on the Number of Attempted Steals

We will show that � � Ο 	�
 . Then

�� � Ο
�� � �

	 � Ο
��	 � �

Let �� be the running time on 	 processors. Then ��= total work.

Let � be the number of attempted steals.

Since each processor is either working or stealing, we have,

�� � Ο
�� � �

	

Assumptions

DAG: We treat the multithreaded

computation as a DAG, where

each node corresponds to one

instruction.

Deques: The deques contain

ready nodes, that is, each ready

thread in a deque is replaced with

its currently ready node.

Assigned Node: The node a

processor is currently executing.

Assumptions

Scheduler: Operates on nodes instead of threads as follows.

― if a processor does not have an assigned node,

o Deque nonempty: pops the bottom-most node off its

deque, and that node becomes the assigned node

o Deque empty: pops the top-most node off the deque of a

random victim, and that node becomes the assigned node

― if the execution of an assigned node enables

o Two child nodes: one is pushed onto the bottom of the

deque, and the other child becomes the assigned node

o One child node: that child becomes the assigned node

o No child node: the processor returns to the deque or

becomes a thief to obtain an assigned node

Assumptions

Enabling Edge: If execution of node u enables node v we call edge

(u, v) an enabling edge.

Designated Parent: If u enables v, we call u the designated parent of v.

Each node except the root has exactly one designated parent.

Enabling Tree: Subgraph of the DAG consisting of only enabling edges

form a rooted tree that we call the enabling tree.

Each execution of the computation DAG may have a different

enabling tree.

Node depth: The depth d(u) of node u in the enabling tree is the

number of edges on the path from the root of the tree to u

Node weight: The weight of node u is defined as w(u) = T∞ - d(u)

A Structural Lemma

Lemma 1: For a given processor, if � is

the assigned node, ��, … , �� are the

nodes in deque, �� is the designated

parent of ��, then ���� is an ancestor

of ��, and for � � 1, ���� � ��.
Proof: By induction on the number of assigned node executions.

The claim holds vacuously when execution begins.

Assume that the claim holds before an assigned node execution.

Show that the claim continues to hold if the number of child node

enabled by the execution is

0: two cases: deque empty & deque nonempty

1: straight-forward

2: gives rise to the possibility that � � ��

A Structural Lemma

Corollary 1: For a given processor, if � is

the assigned node, and ��, … , �� are the

nodes in deque, then � � � � �� �
	… 	� � ���� � � �� .
Proof: From Lemma 1 we know that if �� is the designated parent of ��,
then ���� is an ancestor of ��, and for � � 1, ���� � ��.
Hence, � � � � �� �	… 	� � ���� � � �� .	
But � �� � � �� � 1. So,

� � � � �� �	… 	� � ���� � � �� .	
Since � �� � �
 � � �� , we have,

� � � � �� �	… 	� � ���� � � �� .

Potential Function

To simplify analysis we assume that each operation (i.e., execution of a

node or a steal attempt) takes one time step to complete.

The potential of a ready node u at time step is:

φ! � � "3$% & ��, 			if	�	is	being	executed;
3$% & , otherwise	8�	is	in	deque:.

Let ;! < be the set of ready nodes associated with processor < at

time step . Then potential of < at time :

φ! < � = φ! �
&∈?@ A

Then the total potential at time step :

Φ! � = φ! <
A

Potential Function

Initial Value: The only ready node is the root node at depth 0. Hence,

Φ � 3$�B��

Final Value: No ready nodes. Hence,

ΦC�DEF � 0
Intermediate Values: Throughout the entire execution the potential

never increases, that is, for each time step :

Φ!�� � Φ!

Potential Function

Lemma 2: For each time step , Φ!�� � Φ! .
Proof: Only the following two actions may change the potential.

― Removal of any node � from deque to assign to a processor:

Decrease in potential � φ! � � φ!�� �
� 3$% & � 3$% & ��
� $

H φ! �
� 0

― Execution of an assigned node �:

The execution may enable 0, 1 or 2 child nodes.

Potential Function

Lemma 2: For each time step , Φ!�� � Φ! .
Proof: Only the following two actions may change the potential.

― Removal of any node � from deque to assign to a processor:

Decrease in potential � φ! � � φ!�� � � $
H φ! � � 0

― Execution of an assigned node �:

The execution may enable 0, 1 or 2 child nodes.

Suppose � enables I (dequed) and J (assigned). Then potential drop:

φ! � � φ!�� I �φ!�� J � 3$% & �� � 3$% K � 3$% L ��
� 3$% & �� � 3$ % & �� � 3$ % & �� ��

� 3$% & �� 1 � �
H � �

M � N
M φ! � � 0

For fewer than 2 child nodes the potential drops even more.

Top-Heavy Deques

Lemma 3: If the deque of processor < is nonempty, and � is the top

node of the deque, then φ! � � H
O φ! < .

Proof: Let �� � � , ����, … , �� be the nodes in the deque from top to

bottom, and let � be the assigned node. Then

φ! � � �
H φ! �� and φ! �P�� � �

M φ! �P for 2 � R � S.
Hence,

φ! < � = φ! �P
TPT�

� φ! �� 1 � 1
9 � 1

9$ � ⋯� 1
9��� � 1

9��� ∙ 13
� 4

3 φ! �� � 4
3 φ! �

Successful Steals

Lemma 4: A successful steal by processor Y from processor < at time

step decreases Φ! by at least
�
$ φ! < .

Proof: Let � be the top node in <’s deque. Then from Lemma 3:

φ! � � 3
4 φ! <

The potential of < decreases by φ! � .

The potential of Y increases by
�
H φ! � .

Hence, the total potential drop � φ! � � �
H φ! � � $

H φ! � � �
$ φ! <

Attempted Steals

Corollary 2: An attempted steal from processor < at time step
decreases Φ! by at least

�
$ φ! < .

Proof: If φ! < � 0, the claim is vacuously true. So, let φ! < � 0.

If the steal succeeds, then Φ! drops by at least
�
$ φ! < . [Lemma 4]

If fails, then Φ! drops by at least
N
M φ! < � �

$ φ! < . [Proof of Lemma 2]

Balls and Weighted Bins

Lemma 5: Suppose 	 balls are thrown independently and uniformly at

random into 		bins, where bin � has weight Z�, for � � 1,… , 	. Define

[� � \Z�, 	if	some	ball	lands	in	bin	�;0, 																																otherwise.
If Z � ∑ Z���a� and [� ∑ [���a� , then for any b s.t. 0 � b � 1,

Pr [� bZ � 1
1 � b d .

Proof: Pr [� � 0 � 1 � �
�

� � �
e.

Then f [� � 0 g Pr [� � 0 � Z� g Pr [� � 0 � 1 � �
e Z�.

Hence, f [� 1 � �
e Z	⇒f Z � [� h

e .

Using Markov’s inequality,

Pr [� bZ � Pr Z � [� 1 � b Z � f Z � [
1 � b Z � 1

1 � b d .

Potential Drops in Phases

Lemma 6: Consider time steps � and R � � such that at least 	 steal

attempts occur between time steps � (inclusive) and R (exclusive). Then

Pr Φ� �ΦP � 1
4Φ� � 1

4 .
Proof: Each processor < is a bin, and each attempted steal is a throw

of a ball. Let i be the set of processors that were victims of attempted

steals during this phase.

Let [A � φ� < for each < ∈ i, and [A � 0 otherwise.

Then setting b � �
$ in Lemma 5, we get,

Pr ∑ φ� <A∈j	 � �
$Φ� � $

e 	⇒Pr ∑ φ� <A∈k � �
$Φ� � 1 � $

e � �
O

But from Corollary 2: Φ� �ΦP � �
$∑ φ� <A∈k

Combining: Pr Φ� �ΦP � �
OΦ� � �

O

Expected Number of Steal Attempts

Theorem 1: The expected number of steal attempts during the entire

computation is Ο 	�
 .

Proof: We say that a phase is successful if the potential drops by a

factor of at least
�
O during that phase.

Since Φ � 3$�B��, the computation terminates after at most

logl
m
Φ � 2�
 � 1 logl

m
3 � 8�
 successful phases.

Since a phase is successful with probability at least
�
O, the expected

number of phases required for 8�
successes is at most 32�
.

Each phase consists of 	 steal attempts. Hence, the expected

number of steals before termination is Ο 	�
 .

High Probability Bound on Steal Attempts

Theorem: The number of steal attempts is Ο 	 �
 � log �
o with

probability at least 1 � p, for 0 � p � 1.

Proof: Suppose the execution takes q � 32�
 � r phases. Each

phase succeeds with probability � �
O. Then s � q g �

O � 8�
 � t
O .

Chernoff bound 3 for lower tail with u � t
O and r � 32�
 � 16 ln �

o .
wY [� 8�
 � d�	 t O⁄ y

�z�B�t $⁄ � d�	 t O⁄ y
t $⁄ �t $⁄ � d�	t�z � d�	�z {|�o�z � p

Thus the probability that the execution takes 64�
 � 16 ln �
o phases

or more is less than p.

Hence, the number of steal attempts is Ο 	 �
 � log �
o with

probability at least 1 � p.

