Final In-Class Exam (2:35 PM – 3:50 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.
- There are three (3) questions, worth 75 points in total. Please answer all of them in the spaces provided.
- There are 16 pages including three (3) blank pages and two (2) pages of appendices. Please use the blank pages if you need additional space for your answers.
- The exam is *open slides*.

GOOD LUCK!

Question	Pages	Score	Maximum
1. Parallel Prefix Sum	2-5		25
2. ϵ -Approximate Frequency	7–9		30
3. Matrix Rotation	11-13		20
Total			75

NAME:

QUESTION 1. [25 Points] Parallel Prefix Sum. Given a sequence of n elements $\langle x_1, x_2, \ldots, x_n \rangle$ drawn from a set S with a binary associative operator \oplus (e.g., addition, multiplication, maximum, matrix product, union, etc.), the *prefix sum* problem asks one to compute a sequence of n partial sums $\langle s_1, s_2, \ldots, s_n \rangle$ such that $s_i = x_1 \oplus x_2 \oplus \ldots x_i$ for $1 \le i \le n$. In lecture 26 we studied a parallel prefix sum algorithm with $\Theta(n)$ work and $\Theta(\log^2 n)$ span¹.

In this problem we will analyze another parallel prefix sum algorithm given in Figure 1.

ALT-PREFIX-SUM($\langle x_1, x_2, \ldots, x_n \rangle$, \oplus) (Input is a sequence of n elements $\langle x_1, x_2, \ldots, x_n \rangle$ and a binary associative operator \oplus . Output is a sequence $\langle s_1, s_2, \ldots, s_n \rangle$ with $s_i = x_1 \oplus x_2 \oplus \ldots \oplus x_i$, for $1 \le i \le n$. We assume $n = 2^k$ for some integer $k \ge 0$.) 1. if n = 1 then {the prefix sum of a single element is the element itself} 2. $s_1 \leftarrow x_1$ 3. else **spawn** $\left\langle s_1, s_2, \dots, s_{\frac{n}{2}} \right\rangle \leftarrow \text{Alt-Prefix-Sum} \left(\left\langle x_1, x_2, \dots, x_{\frac{n}{2}} \right\rangle, \oplus \right)$ 4. $\{sets \ s_i = x_1 \oplus x_2 \oplus \ldots \oplus x_i \ for \ 1 \le i \le \frac{n}{2}\}$ $\left\langle s_{\frac{n}{2}+1}, s_{\frac{n}{2}+2}, \dots, s_n \right\rangle \leftarrow \text{Alt-Prefix-Sum} \left(\left\langle x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \dots, x_n \right\rangle, \oplus \right)$ 5. $\left\{ sets \ s_{\frac{n}{2}+i} = x_{\frac{n}{2}+1} \oplus x_{\frac{n}{2}+2} \oplus \ldots \oplus x_{\frac{n}{2}+i} \text{ for } 1 \le i \le \frac{n}{2} \right\}$ 6. sync parallel for $i \leftarrow 1$ to $\frac{n}{2}$ do 7. $\left\{ extends \ s_{\frac{n}{2}+i} = x_{\frac{n}{2}+1} \oplus x_{\frac{n}{2}+2} \oplus \ldots \oplus x_{\frac{n}{2}+i} \right.$ $s_{\frac{n}{2}+i} \leftarrow s_{\frac{n}{2}} \oplus s_{\frac{n}{2}+i}$ 8. to $s_{\frac{n}{2}+i} = s_{\frac{n}{2}} \oplus x_{\frac{n}{2}+1} \oplus x_{\frac{n}{2}+2} \oplus \ldots \oplus x_{\frac{n}{2}+i} = x_1 \oplus x_2 \oplus \ldots \oplus x_{\frac{n}{2}+i} \Big\}$ 9. return $\langle s_1, s_2, \ldots, s_n \rangle$

Figure 1: An alternate parallel prefix sum algorithm.

¹assuming the span of a *parallel for* loop with n iterations to be $\mathcal{O}(\log n + k)$, where k is the maximum span of a single iteration

1(a) [7 Points] Write down a recurrence relation describing the work done (i.e., T_1) by ALT-PREFIX-SUM, and solve it.

1(b) [7 Points] Write down a recurrence relation describing the span (i.e., T_{∞}) of ALT-PREFIX-SUM, and solve it. $1(c) \ \mbox{[6 Points]}$ Find the parallel running time (i.e., $T_p)$ and parallelism of Alt-Prefix-Sum.

1(d) [${\bf 5}~{\bf Points}$] Is Alt-Prefix-Sum work-optimal? Why or why not?

Use this page if you need additional space for your answers.

QUESTION 2. [30 Points] ϵ -Approximate Frequency. Let A[1:n] be an array of length n containing both positive and negative numbers. Let m be the number of positive numbers in A, and let $p = \frac{m}{n}$. We are interested in estimating the value of m fast. Clearly, one can find the exact value of m in $\Theta(n)$ time simply by scanning A once and counting the number of positive numbers. For any $\epsilon \in (0, p]$, we say that \hat{m} is an ϵ -approximation² of m provided $m - \epsilon n < \hat{m} < m + \epsilon n$.

APPROX-FREQ($A[1:n], \epsilon$) (Inputs are an array A[1:n] of n numbers, and a floating point parameter $\epsilon \in (0, 1]$. This routine chooses a sample of size $\left[\frac{6}{r^2} \ln n\right]$ from A uniformly at random (with replacement), and uses that sample to estimate the number of entries of A that are positive.) 1. $s \leftarrow \left[\frac{6}{\epsilon^2} \ln n\right]$ {size of the sample} 2. $c \leftarrow 0$ $\{a \text{ counter that keeps track of the frequency of } v \text{ in the chosen sample}\}$ 3. for $i \leftarrow 1$ to m do $\{sample \ s \ items \ (with \ replacement) \ from \ A\}$ $j \leftarrow \text{Random}(1, n)$ $\{choose an integer uniformly at random from [1, n]\}$ 4. if A[j] > 0 then $c \leftarrow c+1$ $\{choose \ A[j] \ as the next sample from \ A\}$ 5.6. return $\frac{c}{s} \times n$ {return the estimate}

Figure 2: Estimate the number of entries of A[1:n] that are positive.

This problem asks you to show that the function APPROX-FREQ given in Figure 2 which runs in $\Theta\left(\frac{1}{\epsilon^2}\ln n\right)$ worst-case time returns an ϵ -approximation of m w.h.p. in n. While analyzing the algorithm we will drop the ceiling in line 1 for simplicity, i.e., we will assume that $s = \frac{6}{\epsilon^2} \ln n$.

2(a) [**5 Points**] Let μ be the expected value of c right after the loop in lines 3–5 completes execution. Show that $\mu = \left(\frac{6}{c^2}\right)\left(\frac{m}{n}\right) \ln n$.

² for simplicity, we have used '<' instead of ' \leq ' in the definition of ϵ -approximation

2(b) [**12 Points**] Let \hat{c} be the exact value of c right after the loop in lines 3–5 completes execution. Prove that for $0 < \epsilon < p$ and $\delta = \frac{\epsilon}{p}$,

$$\Pr\left[\hat{c} \le (1-\delta)\mu \right] \le \frac{1}{n^3} \quad \text{and} \quad \Pr\left[\hat{c} \ge (1+\delta)\mu \right] \le \frac{1}{n^2}.$$

2(c) [**5 Points**] let \hat{m} be the estimate of m returned by APPROX-FREQ. Argue that for $0 < \epsilon < p$, the results from part 2(b) imply the following:

$$\Pr\left[\hat{m} \le m - \epsilon n \right] \le \frac{1}{n^3} \text{ and } \Pr\left[\hat{m} \ge m + \epsilon n \right] \le \frac{1}{n^2}.$$

2(d) [8 Points] Use your results from part 2(c) to argue that for $0 < \epsilon < p$, APPROX-FREQ returns an ϵ -approximation of m w.h.p. in n.

Use this page if you need additional space for your answers.

QUESTION 3. [20 Points] Matrix Rotation. The *rotation* of an $n \times n$ matrix X is another $n \times n$ matrix X^R obtained by writing the *i*-th row of X as the n - i + 1-th column of X^R for $1 \le i \le n$. An example is given below.

X =	$\begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$	a_2 b_2	a_3 b_3	$\begin{bmatrix} a_4 \\ b_4 \end{bmatrix}$	\Rightarrow	$X^R =$	$\begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$	c_1 c_2	$b_1 \\ b_2$	$\begin{array}{c} a_1 \\ a_2 \end{array}$	
	$c_1 \\ d_1$	$c_2 \\ d_2$	$c_3 \\ d_3$	$\begin{bmatrix} c_4 \\ d_4 \end{bmatrix}$			d_3 d_4	c_3 c_4	b_3 b_4	$a_3 \\ a_4$	

In this problem we will analyze the cache complexity of a couple of algorithms for rotating square matrices. We will assume that all matrices are stored in row-major order.

3(a) [5 Points] Analyze the cache complexity of ITER-MATRIX-ROTATE given in Figure 3.

ITER-MATRIX-ROTATE(X, Y, n) (Input is an $n \times n$ square matrix X[1:n, 1:n]. This function generates the rotation of X in Y.) 1. for $i \leftarrow 1$ to n do 2. for $j \leftarrow 1$ to n do 3. $Y[i, j] \leftarrow X[n - j + 1, i]$

Figure 3: Iterative matrix rotation.

3(b) [10 Points] Complete the recursive divide-and-conquer algorithm (REC-MATRIX-ROTATE) for rotating a square matrix given in Figure 4. Analyze its cache complexity assuming a *tall* cache (i.e., $M = \Omega(B^2)$, where M is the cache size and B is the cache block size).

REC-MATRIX-ROTATE(X, Y, n) (Input is an $n \times n$ square matrix X[1:n, 1:n]). This function recursively generates the rotation of X in Y. We assume $n = 2^k$ for some integer $k \ge 0$. If n > 1, let X_{11}, X_{12}, X_{21} and X_{22} denote the top-left, top-right, bottom-left and bottom-right quadrants of X, respectively. Similarly for Y.) {base case: the rotation of a 1×1 matrix is the matrix itself} 1. if n = 1 then $Y \leftarrow X$ 2. else $\{ divide X and Y into quadrants, and generate the rotation of X recursively. \}$ 3. **REC-MATRIX-ROTATE**() {fill out} {fill out} 4. **REC-MATRIX-ROTATE**() REC-MATRIX-ROTATE({fill out} 5.) 6. REC-MATRIX-ROTATE({fill out})

Figure 4: Recursive matrix rotation.

3(c) [**5 Points**] Is the cache complexity result of part 4(b) optimal? Why or why not?

Use this page if you need additional space for your answers.

APPENDIX I: SOME ELEMENTARY PROBABILITY RESULTS

Given an event A, $\Pr[A]$ denotes the probability of occurrence of A. By \overline{A} we denote the opposite or complement of event A. Then $\Pr[\overline{A}]$ denotes the probability of event A not occurring. Clearly,

$$0 \leq \Pr[A], \Pr[\overline{A}] \leq 1$$
 and $\Pr[\overline{A}] = 1 - \Pr[A].$

Given two events A and B,

- $-A \cap B$ is the event of both A and B occurring, and
- $-A \cup B$ is the event of at least one of A and B occurring.

Then the corresponding complements are as follows:

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
 and $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

If A and B are mutually exclusive (i.e., both cannot occur simultaneouly³), then $\Pr[A \cap B] = 0$. You might find the following relationship useful:

$$\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B].$$

Observe that if A and B are mutually exclusive, the relationship given above reduces to:

$$\Pr[A \cup B] = \Pr[A] + \Pr[B].$$

³e.g., if A is the event (x < 5) and B is the event (x > 5) then both A and B cannot be true (i.e., cannot occur) at the same time

APPENDIX II: USEFUL TAIL BOUNDS

Markov's Inequality. Let X be a random variable that assumes only nonnegative values. Then for all $\delta > 0$, $Pr[X \ge \delta] \le \frac{E[X]}{\delta}$.

Chebyshev's Inequality. Let X be a random variable with a finite mean E[X] and a finite variance Var[X]. Then for any $\delta > 0$, $Pr[|X - E[X]| \ge \delta] \le \frac{Var[X]}{\delta^2}$.

Chernoff Bounds. Let X_1, \ldots, X_n be independent Poisson trials, that is, each X_i is a 0-1 random variable with $Pr[X_i = 1] = p_i$ for some p_i . Let $X = \sum_{i=1}^n X_i$ and $\mu = E[X]$. Following bounds hold:

Lower Tail:

$$\begin{aligned} &-\text{ for } 0 < \delta < 1, \ Pr\left[X \le (1-\delta)\mu\right] \le \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu} \\ &-\text{ for } 0 < \delta < 1, \ Pr\left[X \le (1-\delta)\mu\right] \le e^{-\frac{\mu\delta^2}{2}} \\ &-\text{ for } 0 < \gamma < \mu, \ Pr\left[X \le \mu - \gamma\right] \le e^{-\frac{\gamma^2}{2\mu}} \end{aligned}$$

Upper Tail:

$$- \text{ for any } \delta > 0, \ \Pr\left[X \ge (1+\delta)\mu\right] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$$
$$- \text{ for } 0 < \delta < 1, \ \Pr\left[X \ge (1+\delta)\mu\right] \le e^{-\frac{\mu\delta^2}{3}}$$
$$- \text{ for } 0 < \gamma < \mu, \ \Pr\left[X \ge \mu + \gamma\right] \le e^{-\frac{\gamma^2}{3\mu}}$$

APPENDIX III: THE MASTER THEOREM

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \le 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise,} \end{cases}$$

where, $\frac{n}{b}$ is interpreted to mean either $\left\lfloor \frac{n}{b} \right\rfloor$ or $\left\lfloor \frac{n}{b} \right\rfloor$. Then T(n) has the following bounds:

Case 1: If $f(n) = \mathcal{O}\left(n^{\log_b a - \epsilon}\right)$ for some constant $\epsilon > 0$, then $T(n) = \Theta\left(n^{\log_b a}\right)$.

Case 2: If $f(n) = \Theta\left(n^{\log_b a} \log^k n\right)$ for some constant $k \ge 0$, then $T(n) = \Theta\left(n^{\log_b a} \log^{k+1} n\right)$.

Case 3: If $f(n) = \Omega(n^{\log_b a+\epsilon})$ for some constant $\epsilon > 0$, and $af(\frac{n}{b}) \leq cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.