CSE548, AMS542: Analysis of Algorithms, Spring 2014

Date: May 12

Final In-Class Exam
( 2:35 PM — 3:50 PM : 75 Minutes )

e This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 30% of your grade, and the lower one 15%.

e There are three (3) questions, worth 75 points in total. Please answer all of them in the

spaces provided.

e There are 16 pages including three (3) blank pages and two (2) pages of appendices. Please
use the blank pages if you need additional space for your answers.

e The exam is open slides.

Goobp Luck!

Question Pages | Score | Maximum
1. Parallel Prefix Sum 2-5 25
2. e-Approximate Frequency | 7-9 30
3. Matrix Rotation 11-13 20
Total 75
NAME:




QUESTION 1. [ 25 Points | Parallel Prefix Sum. Given a sequence of n elements (1, x2, ... Zy)
drawn from a set S with a binary associative operator @ (e.g., addition, multiplication, maximum,
matrix product, union, etc.), the prefiz sum problem asks one to compute a sequence of n partial
sums (81, S2, ... Sy) such that s;, = x1 o ®...x; for 1 < i < n. In lecture 26 we studied a parallel
prefix sum algorithm with © (n) work and © (log2 n) span'.

In this problem we will analyze another parallel prefix sum algorithm given in Figure 1.

ALT-PREFIX-SUM( (z1,Z2,...,Zn), @ )
(Input is a sequence of n elements (z1, z2,...,z,) and a binary associative operator @. Output is a sequence
(81,82y.--,Sn) With $i =21 B 22 ® ... D xy, for 1 < i < n. We assume n = 2F for some integer k > 0.)

1. if n=1 then

2 S1 ¢ T1 {the prefiz sum of a single element is the element itself}
3. else
4 spawn <51, S2,..., s%> < ALT-PREFIX-SUM ( <x1, To, ... 7:c%> , 8 )

{setssi:méB:rgéB...EBxi for1<i< %}
5. <s%+1,s%+2, .. .,sn> — ALT—PREFIX—SUM( <azg+1,x%+2,...,xn>, &) )

{sets Sy =221 @@, Broy; for1 << %}

6. sync

=

. n
parallel for i< 1 to 3 do
8. Snyi < Sn@snyy {emtends Sy =T 1 @Tr2@ ... DTnyy
to Snyy=sn €B$%+1@CL’%+2€B...EBCL‘%+¢:3:1@3:269...@I%+1}

9. return (si1,82,...,8n)

Figure 1: An alternate parallel prefix sum algorithm.

'assuming the span of a parallel for loop with n iterations to be O (logn + k), where k is the maximum span of
a single iteration



1(a) [ 7 Points | Write down a recurrence relation describing the work done (i.e., 71) by ALT-
PREFIX-SUM, and solve it.



1(b) [ 7 Points | Write down a recurrence relation describing the span (i.e., T) of ALT-PREFIX-
SuM, and solve it.



1(c) [ 6 Points | Find the parallel running time (i.e., 7,) and parallelism of ALT-PREFIX-SUM.

1(d) [ 5 Points ] Is ALT-PREFIX-SUM work-optimal? Why or why not?



Use this page if you need additional space for your answers.



QUESTION 2. [ 30 Points | e-Approximate Frequency. Let A[ 1:n | be an array of length n
containing both positive and negative numbers. Let m be the number of positive numbers in A,
and let p = 7r. We are interested in estimating the value of m fast. Clearly, one can find the exact
value of m in © (n) time simply by scanning A once and counting the number of positive numbers.

For any ¢ € (0, p], we say that 7 is an e-approximation? of m provided m — en < M < m + en.

APPROX-FREQ( A[1:mn ], €)

(Inputs are an array A[ 1:n | of n numbers, and a floating point parameter € € (0, 1]. This routine chooses
a sample of size (6% In n-| from A uniformly at random (with replacement), and uses that sample to estimate
the number of entries of A that are positive.)

L. s+ [SInn] {size of the sample}
2. ¢+ 0 {a counter that keeps track of the frequency of v in the chosen sample}
3. for i<+ 1tomdo {sample s items (with replacement) from A}
4. j < Ranpom( 1,n ) {choose an integer uniformly at random from [ 1,n |}
5. if A{j]>0then c+c+1 {choose A[ j | as the next sample from A}
6. return T xn {return the estimate}

Figure 2: Estimate the number of entries of A[ 1: n | that are positive.

This problem asks you to show that the function APPROX-FREQ given in Figure 2 which runs
in © (}2 In n) worst-case time returns an e-approximation of m w.h.p. in n. While analyzing the
algorithm we will drop the ceiling in line 1 for simplicity, i.e., we will assume that s = 6% Inn.

2(a) [ 5 Points | Let p be the expected value of ¢ right after the loop in lines 3-5 completes
execution. Show that y = (6%) (%) Inn.

Zfor simplicity, we have used ‘<’ instead of ‘<’ in the definition of e-approximation



2(b) [ 12 Points | Let ¢ be the exact value of ¢ right after the loop in lines 3-5 completes execution.

Prove that for 0 < e < p and § = fo,

1

Pr[é§(1—5),u]§n3

R 1
and Pr[cz(l—l—é)u]gﬁ.



2(c) [ 5 Points ] let m be the estimate of m returned by APPROX-FREQ. Argue that for 0 < e < p,
the results from part 2(b) imply the following:

1 1
Prim<m-—en]< S andPr{m>m+en] < —.
n n

2(d) [ 8 Points | Use your results from part 2(c) to argue that for 0 < € < p, APPROX-FREQ
returns an e-approximation of m w.h.p. in n.



Use this page if you need additional space for your answers.
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QUESTION 3. [ 20 Points | Matrix Rotation. The rotation of an n x n matrix X is another
n x n matrix X obtained by writing the i-th row of X as the n — i + 1-th column of X% for
1 <i < n. An example is given below.

ap a2 as a4 di c1 b1 a
X — b1 b2 b3 b4 N XR _ d2 C2 b2 a9
cl1 Cy C3 C4 d3 c3 bz a3
di do ds dy dy cq4 by ag

In this problem we will analyze the cache complexity of a couple of algorithms for rotating square
matrices. We will assume that all matrices are stored in row-major order.

3(a) [ 5 Points | Analyze the cache complexity of ITER-MATRIX-ROTATE given in Figure 3.

ITER-MATRIX-ROTATE( X, Y, n)

(Input is an n X n square matrix X[ 1:n, 1:n]. This function generates the rotation of X in Y.)
1. for i<+ 1ton do
2. for j + 1ton do
3. Y[i, j]+ X[n—7+1, 1]

Figure 3: Iterative matrix rotation.

11



3(b) [ 10 Points | Complete the recursive divide-and-conquer algorithm (REC-MATRIX-ROTATE)
for rotating a square matrix given in Figure 4. Analyze its cache complexity assuming a tall
cache (i.e., M = (BQ), where M is the cache size and B is the cache block size).

REC-MATRIX-ROTATE( X, Y, n )

(Input is an n X n square matrix X[ 1 : n, 1: n |. This function recursively generates the rotation of X
in Y. We assume n = 2% for some integer k > 0. If n > 1, let X11, X12, X21 and Xa2 denote the top-left,
top-right, bottom-left and bottom-right quadrants of X, respectively. Similarly for Y.)

1. ifn=1thenY + X {base case: the rotation of a 1 x 1 matriz is the matriz itself}
2. else {divide X andY into quadrants, and generate the rotation of X recursively.}
3. REC-MATRIX-ROTATE( , , ) {fill out}
4 REC-MATRIX-ROTATE( , , ) {fill out}
5. REC-MATRIX-ROTATE( , , ) {fill out}
6 REC-MATRIX-ROTATE( , , ) {fill out}

Figure 4: Recursive matrix rotation.
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3(c) [ 5 Points ] Is the cache complexity result of part 4(b) optimal? Why or why not?

13



Use this page if you need additional space for your answers.
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APPENDIX I: SOME ELEMENTARY PROBABILITY RESULTS

Given an event A, Pr[ A | denotes the probability of occurrence of A. By A we denote the opposite

or complement of event A. Then Pr[ A | denotes the probability of event A not occurring. Clearly,
0<Pr[A],Pr[A]<1 and Pr[A]=1-Pr[A].
Given two events A and B,

— AN B is the event of both A and B occurring, and

— AU B is the event of at least one of A and B occurring.

Then the corresponding complements are as follows:
ANB=AUB and AUB=ANB.

If A and B are mutually exclusive (i.e., both cannot occur simultanesouly?), then Pr[ AN B ] = 0.

You might find the following relationship useful:
PrlAUB|=Pr[A]+Pr[B|-Pr[ANB].
Observe that if A and B are mutually exclusive, the relationship given above reduces to:

PrlAUB|=Pr[A]|+Pr][B].

3e.g., if A is the event (z < 5) and B is the event (z > 5) then both A and B cannot be true (i.e., cannot occur)
at the same time
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APPENDIX II: USEruL TAIL BOUNDS

Markov’s Inequality. Let X be a random variable that assumes only nonnegative values. Then
for all § > 0, Pr[X > 4] < ZXL.

Chebyshev’s Inequality. Let X be a random variable with a finite mean E[X] and a finite
variance Var[X]. Then for any 6 > 0, Pr[|X — E[X]| > §] < V%Q[X].

Chernoff Bounds. Let X1,..., X,, be independent Poisson trials, that is, each X is a 0-1 random
n
variable with Pr[X; = 1] = p; for some p;. Let X = ZXi and ¢ = E[X]. Following bounds hold:

i=1

Lower Tail:

— for 0 <0 <1, Pr[Xg(l—é)uK((l_f;)_%)u

ué?

—for0<d<1,PriX<(1-o0)u]<e =z

ﬂ/2

—for0<y<p, PriX<pu—~]<e 2

Upper Tail:
m
— for any 0 >0, Pr[X > (1+d)u] < ((I—MG)%)

62

—for0<d< 1, PriX>(1+d0)p] <e 5
2
y

—for0<ny<p PriX>p+q]<e 3

APPENDIX IIl: THE MASTER THEOREM

Let a > 1 and b > 1 be constants, let f(n) be a function, and let T'(n) be defined on the nonnegative
integers by the recurrence

B (e (1) , ifn S 1’
T(n) = { aT (%) + f(n)’ otherwise,

where, 7 is interpreted to mean either L%J or {%] Then T'(n) has the following bounds:

Case 1: If f(n) = O (n'°% %) for some constant € > 0, then T'(n) = © (n'°% ).
Case 2: If f(n) =0 (nlogba log® n) for some constant k > 0, then T'(n) = © (nlogb“ logh+! n)

Case 3: If f(n) = Q(n'°® %) for some constant ¢ > 0, and af (%) < cf(n) for some
constant ¢ < 1 and all sufficiently large n, then T'(n) = © (f(n)).
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