
CSE548, AMS542: Analysis of Algorithms, Spring 2014 Date: May 12

Final In-Class Exam
( 2:35 PM – 3:50 PM : 75 Minutes )

• This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 30% of your grade, and the lower one 15%.

• There are three (3) questions, worth 75 points in total. Please answer all of them in the
spaces provided.

• There are 16 pages including three (3) blank pages and two (2) pages of appendices. Please
use the blank pages if you need additional space for your answers.

• The exam is open slides.

Good Luck!

Question Pages Score Maximum

1. Parallel Prefix Sum 2–5 25

2. ε-Approximate Frequency 7–9 30

3. Matrix Rotation 11–13 20

Total 75

Name:
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Question 1. [ 25 Points ] Parallel Prefix Sum. Given a sequence of n elements 〈x1, x2, . . . xn〉
drawn from a set S with a binary associative operator ⊕ (e.g., addition, multiplication, maximum,
matrix product, union, etc.), the prefix sum problem asks one to compute a sequence of n partial
sums 〈s1, s2, . . . sn〉 such that si = x1⊕x2⊕ . . . xi for 1 ≤ i ≤ n. In lecture 26 we studied a parallel
prefix sum algorithm with Θ (n) work and Θ

(
log2 n

)
span1.

In this problem we will analyze another parallel prefix sum algorithm given in Figure 1.

Alt-Prefix-Sum( 〈x1, x2, . . . , xn〉, ⊕ )

(Input is a sequence of n elements 〈x1, x2, . . . , xn〉 and a binary associative operator ⊕. Output is a sequence
〈s1, s2, . . . , sn〉 with si = x1 ⊕ x2 ⊕ . . .⊕ xi, for 1 ≤ i ≤ n. We assume n = 2k for some integer k ≥ 0.)

1. if n = 1 then

2. s1 ← x1 {the prefix sum of a single element is the element itself}
3. else

4. spawn
〈
s1, s2, . . . , sn

2

〉
← Alt-Prefix-Sum

( 〈
x1, x2, . . . , xn

2

〉
, ⊕

)
{

sets si = x1 ⊕ x2 ⊕ . . .⊕ xi for 1 ≤ i ≤ n
2

}
5.

〈
sn

2
+1, sn

2
+2, . . . , sn

〉
← Alt-Prefix-Sum

( 〈
xn

2
+1, xn

2
+2, . . . , xn

〉
, ⊕

)
{

sets sn
2
+i = xn

2
+1 ⊕ xn

2
+2 ⊕ . . .⊕ xn

2
+i for 1 ≤ i ≤ n

2

}
6. sync

7. parallel for i← 1 to n
2
do

8. sn
2
+i ← sn

2
⊕ sn

2
+i

{
extends sn

2
+i = xn

2
+1 ⊕ xn

2
+2 ⊕ . . .⊕ xn

2
+i

to sn
2
+i = sn

2
⊕ xn

2
+1 ⊕ xn

2
+2 ⊕ . . .⊕ xn

2
+i = x1 ⊕ x2 ⊕ . . .⊕ xn

2
+i

}
9. return 〈s1, s2, . . . , sn〉

Figure 1: An alternate parallel prefix sum algorithm.

1assuming the span of a parallel for loop with n iterations to be O (logn+ k), where k is the maximum span of
a single iteration
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1(a) [ 7 Points ] Write down a recurrence relation describing the work done (i.e., T1) by Alt-
Prefix-Sum, and solve it.
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1(b) [ 7 Points ] Write down a recurrence relation describing the span (i.e., T∞) of Alt-Prefix-
Sum, and solve it.

4



1(c) [ 6 Points ] Find the parallel running time (i.e., Tp) and parallelism of Alt-Prefix-Sum.

1(d) [ 5 Points ] Is Alt-Prefix-Sum work-optimal? Why or why not?
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Use this page if you need additional space for your answers.
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Question 2. [ 30 Points ] ε-Approximate Frequency. Let A[ 1 : n ] be an array of length n
containing both positive and negative numbers. Let m be the number of positive numbers in A,
and let p = m

n . We are interested in estimating the value of m fast. Clearly, one can find the exact
value of m in Θ (n) time simply by scanning A once and counting the number of positive numbers.

For any ε ∈ (0, p], we say that m̂ is an ε-approximation2 of m provided m− εn < m̂ < m+ εn.

Approx-Freq( A[ 1 : n ], ε )

(Inputs are an array A[ 1 : n ] of n numbers, and a floating point parameter ε ∈ (0, 1]. This routine chooses
a sample of size

⌈
6
ε2

lnn
⌉

from A uniformly at random (with replacement), and uses that sample to estimate
the number of entries of A that are positive.)

1. s←
⌈

6
ε2

lnn
⌉

{size of the sample}
2. c← 0 {a counter that keeps track of the frequency of v in the chosen sample}
3. for i← 1 to m do {sample s items (with replacement) from A}
4. j ← Random( 1, n ) {choose an integer uniformly at random from [ 1, n ]}
5. if A[ j ] > 0 then c← c+ 1 {choose A[ j ] as the next sample from A}
6. return c

s
× n {return the estimate}

Figure 2: Estimate the number of entries of A[ 1 : n ] that are positive.

This problem asks you to show that the function Approx-Freq given in Figure 2 which runs
in Θ

(
1
ε2

lnn
)

worst-case time returns an ε-approximation of m w.h.p. in n. While analyzing the
algorithm we will drop the ceiling in line 1 for simplicity, i.e., we will assume that s = 6

ε2
lnn.

2(a) [ 5 Points ] Let µ be the expected value of c right after the loop in lines 3–5 completes
execution. Show that µ =

(
6
ε2

)(
m
n

)
lnn.

2for simplicity, we have used ‘<’ instead of ‘≤’ in the definition of ε-approximation
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2(b) [ 12 Points ] Let ĉ be the exact value of c right after the loop in lines 3–5 completes execution.
Prove that for 0 < ε < p and δ = ε

p ,

Pr [ ĉ ≤ (1− δ)µ ] ≤ 1

n3
and Pr [ ĉ ≥ (1 + δ)µ ] ≤ 1

n2
.
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2(c) [ 5 Points ] let m̂ be the estimate of m returned by Approx-Freq. Argue that for 0 < ε < p,
the results from part 2(b) imply the following:

Pr [ m̂ ≤ m− εn ] ≤ 1

n3
and Pr [ m̂ ≥ m+ εn ] ≤ 1

n2
.

2(d) [ 8 Points ] Use your results from part 2(c) to argue that for 0 < ε < p, Approx-Freq
returns an ε-approximation of m w.h.p. in n.
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Use this page if you need additional space for your answers.
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Question 3. [ 20 Points ] Matrix Rotation. The rotation of an n × n matrix X is another
n × n matrix XR obtained by writing the i-th row of X as the n − i + 1-th column of XR for
1 ≤ i ≤ n. An example is given below.

X =


a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

 ⇒ XR =


d1 c1 b1 a1
d2 c2 b2 a2
d3 c3 b3 a3
d4 c4 b4 a4


In this problem we will analyze the cache complexity of a couple of algorithms for rotating square
matrices. We will assume that all matrices are stored in row-major order.

3(a) [ 5 Points ] Analyze the cache complexity of Iter-Matrix-Rotate given in Figure 3.

Iter-Matrix-Rotate( X, Y, n )

(Input is an n× n square matrix X[ 1 : n, 1 : n ]. This function generates the rotation of X in Y .)

1. for i← 1 to n do

2. for j ← 1 to n do

3. Y [ i, j ]← X[ n− j + 1, i ]

Figure 3: Iterative matrix rotation.
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3(b) [ 10 Points ] Complete the recursive divide-and-conquer algorithm (Rec-Matrix-Rotate)
for rotating a square matrix given in Figure 4. Analyze its cache complexity assuming a tall
cache (i.e., M = Ω

(
B2
)
, where M is the cache size and B is the cache block size).

Rec-Matrix-Rotate( X, Y, n )

(Input is an n × n square matrix X[ 1 : n, 1 : n ]. This function recursively generates the rotation of X
in Y . We assume n = 2k for some integer k ≥ 0. If n > 1, let X11, X12, X21 and X22 denote the top-left,
top-right, bottom-left and bottom-right quadrants of X, respectively. Similarly for Y .)

1. if n = 1 then Y ← X {base case: the rotation of a 1× 1 matrix is the matrix itself}
2. else {divide X and Y into quadrants, and generate the rotation of X recursively.}
3. Rec-Matrix-Rotate( , , ) {fill out}
4. Rec-Matrix-Rotate( , , ) {fill out}
5. Rec-Matrix-Rotate( , , ) {fill out}
6. Rec-Matrix-Rotate( , , ) {fill out}

Figure 4: Recursive matrix rotation.
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3(c) [ 5 Points ] Is the cache complexity result of part 4(b) optimal? Why or why not?
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Use this page if you need additional space for your answers.

14



Appendix I: Some Elementary Probability Results

Given an event A, Pr[ A ] denotes the probability of occurrence of A. By A we denote the opposite
or complement of event A. Then Pr[ A ] denotes the probability of event A not occurring. Clearly,

0 ≤ Pr[ A ],Pr[ A ] ≤ 1 and Pr[ A ] = 1− Pr[ A ].

Given two events A and B,

– A ∩B is the event of both A and B occurring, and

– A ∪B is the event of at least one of A and B occurring.

Then the corresponding complements are as follows:

A ∩B = A ∪B and A ∪B = A ∩B.

If A and B are mutually exclusive (i.e., both cannot occur simultanesouly3), then Pr[ A∩B ] = 0.

You might find the following relationship useful:

Pr[ A ∪B ] = Pr[ A ] + Pr[ B ]− Pr[ A ∩B ].

Observe that if A and B are mutually exclusive, the relationship given above reduces to:

Pr[ A ∪B ] = Pr[ A ] + Pr[ B ].

3e.g., if A is the event (x < 5) and B is the event (x > 5) then both A and B cannot be true (i.e., cannot occur)
at the same time
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Appendix II: Useful Tail Bounds

Markov’s Inequality. Let X be a random variable that assumes only nonnegative values. Then
for all δ > 0, Pr [X ≥ δ] ≤ E[X]

δ .

Chebyshev’s Inequality. Let X be a random variable with a finite mean E[X] and a finite

variance V ar[X]. Then for any δ > 0, Pr [|X − E[X]| ≥ δ] ≤ V ar[X]
δ2

.

Chernoff Bounds. Let X1, . . . , Xn be independent Poisson trials, that is, each Xi is a 0-1 random

variable with Pr[Xi = 1] = pi for some pi. Let X =

n∑
i=1

Xi and µ = E[X]. Following bounds hold:

Lower Tail:

– for 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ
– for 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−

µδ2

2

– for 0 < γ < µ, Pr [X ≤ µ− γ] ≤ e−
γ2

2µ

Upper Tail:

– for any δ > 0, Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
– for 0 < δ < 1, Pr [X ≥ (1 + δ)µ] ≤ e−

µδ2

3

– for 0 < γ < µ, Pr [X ≥ µ+ γ] ≤ e−
γ2

3µ

Appendix III: The Master Theorem

Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T (n) be defined on the nonnegative
integers by the recurrence

T (n) =

{
Θ (1) , if n ≤ 1,
aT
(
n
b

)
+ f(n), otherwise,

where, n
b is interpreted to mean either

⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) has the following bounds:

Case 1: If f(n) = O
(
nlogb a−ε

)
for some constant ε > 0, then T (n) = Θ

(
nlogb a

)
.

Case 2: If f(n) = Θ
(
nlogb a logk n

)
for some constant k ≥ 0, then T (n) = Θ

(
nlogb a logk+1 n

)
.

Case 3: If f(n) = Ω
(
nlogb a+ε

)
for some constant ε > 0, and af

(
n
b

)
≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T (n) = Θ (f(n)).
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