Final In-Class Exam

(2:35 PM - 3:50 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.
- There are three (3) questions, worth 75 points in total. Please answer all of them in the spaces provided.
- There are 16 pages including three (3) blank pages and two (2) pages of appendices. Please use the blank pages if you need additional space for your answers.
- The exam is open slides.

Good Luck!

Question	Pages	Score	Maximum
1. Parallel Prefix Sum	$2-5$		25
2. ϵ-Approximate Frequency	$7-9$		30
3. Matrix Rotation	$11-13$		20
Total			75

NAME: \qquad

Question 1. [25 Points] Parallel Prefix Sum. Given a sequence of n elements $\left\langle x_{1}, x_{2}, \ldots x_{n}\right\rangle$ drawn from a set S with a binary associative operator \oplus (e.g., addition, multiplication, maximum, matrix product, union, etc.), the prefix sum problem asks one to compute a sequence of n partial sums $\left\langle s_{1}, s_{2}, \ldots s_{n}\right\rangle$ such that $s_{i}=x_{1} \oplus x_{2} \oplus \ldots x_{i}$ for $1 \leq i \leq n$. In lecture 26 we studied a parallel prefix sum algorithm with $\Theta(n)$ work and $\Theta\left(\log ^{2} n\right) \operatorname{span}^{1}$.
In this problem we will analyze another parallel prefix sum algorithm given in Figure 1.

```
\(\operatorname{Alt-Prefix-Sum}\left(\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle, \oplus\right)\)
(Input is a sequence of \(n\) elements \(\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle\) and a binary associative operator \(\oplus\). Output is a sequence
\(\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle\) with \(s_{i}=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{i}\), for \(1 \leq i \leq n\). We assume \(n=2^{k}\) for some integer \(k \geq 0\).)
    if \(n=1\) then
    \(s_{1} \leftarrow x_{1} \quad\) \{the prefix sum of a single element is the element itself\}
    else
            spawn \(\left\langle s_{1}, s_{2}, \ldots, s_{\frac{n}{2}}\right\rangle \leftarrow\) Alt-Prefix-Sum \(\left(\left\langle x_{1}, x_{2}, \ldots, x_{\frac{n}{2}}\right\rangle, \oplus\right)\)
                                    \(\left\{\right.\) sets \(s_{i}=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{i}\) for \(\left.1 \leq i \leq \frac{n}{2}\right\}\)
5. \(\left\langle s_{\frac{n}{2}+1}, s_{\frac{n}{2}+2}, \ldots, s_{n}\right\rangle \leftarrow \operatorname{Alt-Prefix-Sum~}\left(\left\langle x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_{n}\right\rangle, \oplus\right)\)
                                    \(\left\{\right.\) sets \(s_{\frac{n}{2}+i}=x_{\frac{n}{2}+1} \oplus x_{\frac{n}{2}+2} \oplus \ldots \oplus x_{\frac{n}{2}+i}\) for \(\left.1 \leq i \leq \frac{n}{2}\right\}\)
6. sync
7. parallel for \(i \leftarrow 1\) to \(\frac{n}{2}\) do
8. \(s_{\frac{n}{2}+i} \leftarrow s_{\frac{n}{2}} \oplus s_{\frac{n}{2}+i}\)
    \(\left\{\right.\) extends \(s_{\frac{n}{2}+i}=x_{\frac{n}{2}+1} \oplus x_{\frac{n}{2}+2} \oplus \ldots \oplus x_{\frac{n}{2}+i}\)
    to \(\left.s_{\frac{n}{2}+i}=s_{\frac{n}{2}} \oplus x_{\frac{n}{2}+1} \oplus x_{\frac{n}{2}+2} \oplus \ldots \oplus x_{\frac{n}{2}+i}=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{\frac{n}{2}+i}\right\}\)
    9. return \(\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle\)
```

Figure 1: An alternate parallel prefix sum algorithm.

[^0]1(a) [7 Points] Write down a recurrence relation describing the work done (i.e., T_{1}) by Alt-Prefix-Sum, and solve it.
$1(b)$ [7 Points] Write down a recurrence relation describing the span (i.e., T_{∞}) of Alt-PrefixSum, and solve it.

1(c) [6 Points] Find the parallel running time (i.e., T_{p}) and parallelism of Alt-Prefix-Sum.

1(d) [5 Points] Is Alt-Prefix-Sum work-optimal? Why or why not?

Use this page if you need additional space for your answers.

Question 2. [30 Points] ϵ-Approximate Frequency. Let $A[1: n]$ be an array of length n containing both positive and negative numbers. Let m be the number of positive numbers in A, and let $p=\frac{m}{n}$. We are interested in estimating the value of m fast. Clearly, one can find the exact value of m in $\Theta(n)$ time simply by scanning A once and counting the number of positive numbers.
For any $\epsilon \in(0, p]$, we say that \hat{m} is an ϵ-approximation ${ }^{2}$ of m provided $m-\epsilon n<\hat{m}<m+\epsilon n$.

```
Approx-Freq( A[1:n],\epsilon)
(Inputs are an array A[1:n] of n numbers, and a floating point parameter \epsilon\in(0,1]. This routine chooses
a sample of size \lceil\frac{6}{\mp@subsup{\epsilon}{}{2}}\operatorname{ln}n\rceil\mathrm{ from A uniformly at random (with replacement), and uses that sample to estimate}
the number of entries of }A\mathrm{ that are positive.)
    1. s\leftarrow\lceil\frac{6}{\mp@subsup{\epsilon}{}{2}}\operatorname{ln}n\rceil {size of the sample}
    2. c\leftarrow0 {a counter that keeps track of the frequency of v in the chosen sample}
    3. for }i\leftarrow1\mathrm{ to m do {sample s items (with replacement) from A}
    4. }j\leftarrow\operatorname{RaNDOM}(1,n)\quad{choose an integer uniformly at random from [ 1,n]
    5. if A[j]>0 then }c\leftarrowc+1\quad{choose A[j] as the next sample from A
    6. return }\frac{c}{s}\timesn\{return the estimate}
```

Figure 2: Estimate the number of entries of $A[1: n]$ that are positive.
This problem asks you to show that the function Approx-Freq given in Figure 2 which runs in $\Theta\left(\frac{1}{\epsilon^{2}} \ln n\right)$ worst-case time returns an ϵ-approximation of m w.h.p. in n. While analyzing the algorithm we will drop the ceiling in line 1 for simplicity, i.e., we will assume that $s=\frac{6}{\epsilon^{2}} \ln n$.

2(a) [5 Points] Let μ be the expected value of c right after the loop in lines 3-5 completes execution. Show that $\mu=\left(\frac{6}{\epsilon^{2}}\right)\left(\frac{m}{n}\right) \ln n$.

[^1]2(b) [12 Points] Let \hat{c} be the exact value of c right after the loop in lines 3-5 completes execution. Prove that for $0<\epsilon<p$ and $\delta=\frac{\epsilon}{p}$,

$$
\operatorname{Pr}[\hat{c} \leq(1-\delta) \mu] \leq \frac{1}{n^{3}} \quad \text { and } \quad \operatorname{Pr}[\hat{c} \geq(1+\delta) \mu] \leq \frac{1}{n^{2}}
$$

2(c) [5 Points] let \hat{m} be the estimate of m returned by Approx-Freq. Argue that for $0<\epsilon<p$, the results from part $2(b)$ imply the following:

$$
\operatorname{Pr}[\hat{m} \leq m-\epsilon n] \leq \frac{1}{n^{3}} \text { and } \operatorname{Pr}[\hat{m} \geq m+\epsilon n] \leq \frac{1}{n^{2}}
$$

2(d) [8 Points] Use your results from part 2(c) to argue that for $0<\epsilon<p$, Approx-Freq returns an ϵ-approximation of m w.h.p. in n.

Use this page if you need additional space for your answers.

Question 3. [20 Points] Matrix Rotation. The rotation of an $n \times n$ matrix X is another $n \times n$ matrix X^{R} obtained by writing the i-th row of X as the $n-i+1$-th column of X^{R} for $1 \leq i \leq n$. An example is given below.

$$
X=\left[\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right] \quad \Rightarrow \quad X^{R}=\left[\begin{array}{cccc}
d_{1} & c_{1} & b_{1} & a_{1} \\
d_{2} & c_{2} & b_{2} & a_{2} \\
d_{3} & c_{3} & b_{3} & a_{3} \\
d_{4} & c_{4} & b_{4} & a_{4}
\end{array}\right]
$$

In this problem we will analyze the cache complexity of a couple of algorithms for rotating square matrices. We will assume that all matrices are stored in row-major order.

3(a) [5 Points] Analyze the cache complexity of Iter-Matrix-Rotate given in Figure 3.

```
Iter-Matrix-Rotate( X, Y, n)
(Input is an n\timesn square matrix X[1:n, 1:n]. This function generates the rotation of X in Y.)
    1. for }i\leftarrow1\mathrm{ to n do
    2. for }j\leftarrow1\mathrm{ to n do
    3. }\quadY[i,j]\leftarrowX[n-j+1,i
```

Figure 3: Iterative matrix rotation.
$3(b)$ [10 Points] Complete the recursive divide-and-conquer algorithm (Rec-Matrix-Rotate) for rotating a square matrix given in Figure 4. Analyze its cache complexity assuming a tall cache (i.e., $M=\Omega\left(B^{2}\right)$, where M is the cache size and B is the cache block size).

```
Rec-Matrix-Rotate( X, Y, n)
(Input is an n }\timesn\mathrm{ square matrix }X[1:n,1:n]. This function recursively generates the rotation of X
in Y. We assume n=\mp@subsup{2}{}{k}}\mathrm{ for some integer }k\geq0\mathrm{ . If n>1, let X X1, X12, X X1 and X X2 denote the top-left,
top-right, bottom-left and bottom-right quadrants of X, respectively. Similarly for Y.)
            . if n=1 then }Y\leftarrowX\quad{\mathrm{ {ase case: the rotation of a 1×1 matrix is the matrix itself}
    else {divide }X\mathrm{ and }Y\mathrm{ into quadrants, and generate the rotation of }X\mathrm{ recursively.}
3. Rec-Matrix-Rotate( , , ) {fill out}
4. Rec-Matrix-Rotate( , , ) {fill out}
5. Rec-Matrix-Rotate( , , ) {fil out}
6. Rec-Matrix-Rotate( , , ) {fill out}
```

Figure 4: Recursive matrix rotation.
$3(c)$ [5 Points] Is the cache complexity result of part $4(b)$ optimal? Why or why not?

Use this page if you need additional space for your answers.

Appendix I: Some Elementary Probability Results

Given an event $A, \operatorname{Pr}[A]$ denotes the probability of occurrence of A. By \bar{A} we denote the opposite or complement of event A. Then $\operatorname{Pr}[\bar{A}]$ denotes the probability of event A not occurring. Clearly,

$$
0 \leq \operatorname{Pr}[A], \operatorname{Pr}[\bar{A}] \leq 1 \text { and } \operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A] .
$$

Given two events A and B,

- $A \cap B$ is the event of both A and B occurring, and
- $A \cup B$ is the event of at least one of A and B occurring.

Then the corresponding complements are as follows:

$$
\overline{A \cap B}=\bar{A} \cup \bar{B} \text { and } \overline{A \cup B}=\bar{A} \cap \bar{B} .
$$

If A and B are mutually exclusive (i.e., both cannot occur simultanesouly ${ }^{3}$), then $\operatorname{Pr}[A \cap B]=0$. You might find the following relationship useful:

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B] .
$$

Observe that if A and B are mutually exclusive, the relationship given above reduces to:

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B] .
$$

[^2]
Appendix II: Useful Tail Bounds

Markov's Inequality. Let X be a random variable that assumes only nonnegative values. Then for all $\delta>0, \operatorname{Pr}[X \geq \delta] \leq \frac{E[X]}{\delta}$.

Chebyshev's Inequality. Let X be a random variable with a finite mean $E[X]$ and a finite variance $\operatorname{Var}[X]$. Then for any $\delta>0, \operatorname{Pr}[|X-E[X]| \geq \delta] \leq \frac{\operatorname{Var}[X]}{\delta^{2}}$.

Chernoff Bounds. Let X_{1}, \ldots, X_{n} be independent Poisson trials, that is, each X_{i} is a 0-1 random variable with $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$ for some p_{i}. Let $X=\sum_{i=1}^{n} X_{i}$ and $\mu=E[X]$. Following bounds hold: Lower Tail:

- for $0<\delta<1, \operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}$
- for $0<\delta<1, \operatorname{Pr}[X \leq(1-\delta) \mu] \leq e^{-\frac{\mu \delta^{2}}{2}}$
- for $0<\gamma<\mu, \operatorname{Pr}[X \leq \mu-\gamma] \leq e^{-\frac{\gamma^{2}}{2 \mu}}$

Upper Tail:

- for any $\delta>0, \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$
- for $0<\delta<1, \operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\frac{\mu \delta^{2}}{3}}$
- for $0<\gamma<\mu, \operatorname{Pr}[X \geq \mu+\gamma] \leq e^{-\frac{\gamma^{2}}{3 \mu}}$

Appendix III: The Master Theorem

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

where, $\frac{n}{b}$ is interpreted to mean either $\left\lfloor\frac{n}{b}\right\rfloor$ or $\left\lceil\frac{n}{b}\right\rceil$. Then $T(n)$ has the following bounds:
Case 1: If $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
Case 2: If $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ for some constant $k \geq 0$, then $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$.
Case 3: If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

[^0]: ${ }^{1}$ assuming the span of a parallel for loop with n iterations to be $\mathcal{O}(\log n+k)$, where k is the maximum span of a single iteration

[^1]: ${ }^{2}$ for simplicity, we have used ' $<$ ' instead of ' \leq ' in the definition of ϵ-approximation

[^2]: ${ }^{3}$ e.g., if A is the event $(x<5)$ and B is the event $(x>5)$ then both A and B cannot be true (i.e., cannot occur) at the same time

