Homework \#3
 (Due: Apr 28)

```
Det-Compatible-Representatives( }\langle\mp@subsup{S}{1}{},\mp@subsup{S}{2}{},\ldots,\mp@subsup{S}{m}{}\rangle,n,f
(Inputs are m(\geq2) sets }\mp@subsup{S}{1}{},\mp@subsup{S}{2}{},\ldots,\mp@subsup{S}{m}{}\mathrm{ of size n( }\geq1)\mathrm{ each, and a function f. Function f( s1, s2, _., sm)
with si}\mp@subsup{s}{i}{}\mp@subsup{S}{i}{}\mathrm{ for 1 }\leqi\leqm\mathrm{ , returns True provided }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\ldots,\mp@subsup{s}{m}{}\mathrm{ are compatible, and FALSE otherwise. This
algorithm (i.e., Det-Compatible-REPresentatives) returns a set of compatible representatives (with one
representative from each Si}\mp@subsup{S}{i}{}\mathrm{ ) as soon as it finds one, and returns NULL provided no such set exists.)
for each }\mp@subsup{s}{1}{}\in\mp@subsup{S}{1}{}\mathrm{ do
        for each }\mp@subsup{s}{2}{}\in\mp@subsup{S}{2}{}\mathrm{ do
        for each }\mp@subsup{s}{m}{}\in\mp@subsup{S}{m}{}\mathrm{ do
            if f( st, s2, \ldots, sm )= TruE then return }\langle\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\ldots,\mp@subsup{s}{m}{}
    return NULL
```


Task 1. [50 Points] Compatible Representatives

In this task you are given $m(\geq 2)$ sets $S_{1}, S_{2}, \ldots, S_{m}$ of size $n(\geq 1)$ each, and you are required to identify one representative s_{i} from each set $S_{i}(1 \leq i \leq m)$ such that $s_{1}, s_{2}, \ldots, s_{m}$ are compatible as a group. Compatibility is determined by calling a given function f with $s_{1}, s_{2}, \ldots, s_{m}$ as input parameters. Function f returns True provided the group is compatible, and False otherwise. Suppose one can form a total of k compatible groups from the sets, where $0 \leq k \leq n^{m}$. You need to identify only one of them.
(a) [10 Points] Consider the deterministic algorithm Det-Compatible-Representatives given in the figure above, Argue that the algorithm runs in $\mathcal{O}\left(\left(n^{m}-k\right) t\right)$ time, where t is the worst-case time needed by a single execution of f.
(b) [40 Points] Design a randomized algorithm Rand-Compatible-Representatives that returns a compatible group in $\mathcal{O}\left(\left(\frac{n^{m}}{k}\right)(m+t) \ln n\right)$ time w.h.p. in n. Observe that Rand-Compatible-Representatives can be considerably faster than Det-Compatible-Representatives, e.g., if $t=m=4$ and $k=n^{3}$ then Det-Compatible-Representatives runs in $\mathcal{O}\left(n^{4}\right)$ time (worst-case) while Rand-Compatible-Representatives runs in $\mathcal{O}(n \ln n)$ time (w.h.p.).

Task 2. [90 Points] Faster Randomized Min-Cut

Consider the randomized min-cut algorithm we saw in the class that returns a min-cut with probability $\geq 1-\frac{1}{e}$. Given a connected undirected multigraph with n vertices, the strategy is to run the following algorithm $\frac{n^{2}}{2}$ times and return the smallest cut identified by those runs. Each run uses an algorithm that starts with the original n-vertex graph and performs a sequence of $n-2$ edge contractions. Each contraction is performed on an edge chosen uniformly at random from the current set of edges. A contraction step contracts the two endpoints of the given edge into a
single vertex and removes all edges between them, but retains all other edges (and thus leading to a multigraph). After $n-2$ contraction steps only 2 vertices remain, and all edges between those two vertices are returned as a potential min-cut.
(a) [$\mathbf{1 0}$ Points] Argue that each contraction step can be implemented to run in $\mathcal{O}(n)$ time, and thus the randomized min-cut algorithm described above takes $\mathcal{O}\left(n^{4}\right)$ time to return a min-cut with probability $\geq 1-\frac{1}{e}$.

There is a deterministic min-cut algorithm that can return a min-cut (with certainty) in $\mathcal{O}\left(n^{3}\right)$ worst-case time. So the randomized algorithm described above runs much slower than the deterministic algorithm and also does not always produce a correct solution! In order to speed up the randomized algorithm we can use the following hybrid approach. Starting with the n-vertex graph we keep performing random edge contractions until we are able to reduce the number of vertices in the graph to r for some predetermined $r<n$. We then apply the deterministic algorithm on that r-vertex graph to find a min-cut.
(b) [30 Points] Show that a single run of the hybrid algorithm executes in $\mathcal{O}\left(n^{2}+r^{3}\right)$ time, and produces a min-cut with probability at least $\binom{r}{2} /\binom{n}{2}$.
(c) [$\mathbf{3 0}$ Points] Show that multiple independent runs of the hybrid algorithm from part (b) can produce a min-cut in $\mathcal{O}\left(\frac{n^{4}}{r^{2}}+n^{2} r\right)$ time with probability at least $1-\frac{1}{e}$.
(d) [5 Points] What value of r produces the best running time for the algorithm in part (c)?
(e) [15 Points] Use the algorithm from part (c) with the value of r from part (d) to design a Monte-Carlo algorithm that runs asymptotically faster than the best deterministic algorithm (i.e., faster than $\Theta\left(n^{3}\right)$) and can produce a min-cut w.h.p. in n.

Task 3. [60 Points] Cluster of Multicores

The following problems involve load-balancing on a cluster of multicore machines.
(a) [20 Points] Suppose you have bought $n(\gg 1)$ multicore machines for n remote users. Whenever a user has a job he/she chooses a machine uniformly at random and submits the job to that machine. A user can submit and run only one job at a time. Assuming that all n machines can run in parallel, and a k-core machine can execute k jobs in parallel (i.e., one job per core), show that w.h.p. in n each job can start running as soon as it is submitted provided each machine has at least $\frac{2 \ln n}{\ln \ln n}$ cores.
(b) [20 Points] Consider the setting in part (a), but suppose now you have $2 n \ln n$ remote users. Show that in this case w.h.p. in n each job can start running as soon as it is submitted provided each machine has at least $6 \ln n$ cores.
(c) [20 Points] Consider the setting in part (b). Show that if all users submit jobs simultaneously then w.h.p. in n no machine will remain idle.

