
CSE548, AMS542: Analysis of Algorithms, Spring 2014 Date: Apr 14

Homework #3
( Due: Apr 28 )

Det-Compatible-Representatives( 〈S1, S2, . . . , Sm〉, n, f )

(Inputs are m (≥ 2) sets S1, S2, . . . , Sm of size n (≥ 1) each, and a function f . Function f( s1, s2, . . . , sm )
with si ∈ Si for 1 ≤ i ≤ m, returns True provided s1, s2, . . . , sm are compatible, and False otherwise. This
algorithm (i.e., Det-Compatible-Representatives) returns a set of compatible representatives (with one
representative from each Si) as soon as it finds one, and returns NULL provided no such set exists.)

1. for each s1 ∈ S1 do

2. for each s2 ∈ S2 do

3. . . . . . . . . . . . . . . .

4. for each sm ∈ Sm do

5. if f( s1, s2, . . . , sm ) = True then return 〈 s1, s2, . . . , sm 〉
6. return NULL

Task 1. [ 50 Points ] Compatible Representatives

In this task you are given m (≥ 2) sets S1, S2, . . . , Sm of size n (≥ 1) each, and you are required to
identify one representative si from each set Si (1 ≤ i ≤ m) such that s1, s2, . . . , sm are compatible
as a group. Compatibility is determined by calling a given function f with s1, s2, . . . , sm as input
parameters. Function f returns True provided the group is compatible, and False otherwise.
Suppose one can form a total of k compatible groups from the sets, where 0 ≤ k ≤ nm. You need
to identify only one of them.

(a) [ 10 Points ] Consider the deterministic algorithm Det-Compatible-Representatives
given in the figure above, Argue that the algorithm runs in O ((nm − k) t) time, where t is
the worst-case time needed by a single execution of f .

(b) [ 40 Points ] Design a randomized algorithm Rand-Compatible-Representatives that
returns a compatible group in O

((
nm

k

)
(m + t) lnn

)
time w.h.p. in n. Observe that Rand-

Compatible-Representatives can be considerably faster than Det-Compatible-Representatives,
e.g., if t = m = 4 and k = n3 then Det-Compatible-Representatives runs in O

(
n4

)
time

(worst-case) while Rand-Compatible-Representatives runs in O (n lnn) time (w.h.p.).

Task 2. [ 90 Points ] Faster Randomized Min-Cut

Consider the randomized min-cut algorithm we saw in the class that returns a min-cut with prob-
ability ≥ 1 − 1

e . Given a connected undirected multigraph with n vertices, the strategy is to run

the following algorithm n2

2 times and return the smallest cut identified by those runs. Each run
uses an algorithm that starts with the original n-vertex graph and performs a sequence of n − 2
edge contractions. Each contraction is performed on an edge chosen uniformly at random from
the current set of edges. A contraction step contracts the two endpoints of the given edge into a

1



single vertex and removes all edges between them, but retains all other edges (and thus leading to
a multigraph). After n − 2 contraction steps only 2 vertices remain, and all edges between those
two vertices are returned as a potential min-cut.

(a) [ 10 Points ] Argue that each contraction step can be implemented to run in O (n) time,
and thus the randomized min-cut algorithm described above takes O

(
n4

)
time to return a

min-cut with probability ≥ 1− 1
e .

There is a deterministic min-cut algorithm that can return a min-cut (with certainty) in O
(
n3

)
worst-case time. So the randomized algorithm described above runs much slower than the deter-
ministic algorithm and also does not always produce a correct solution! In order to speed up the
randomized algorithm we can use the following hybrid approach. Starting with the n-vertex graph
we keep performing random edge contractions until we are able to reduce the number of vertices in
the graph to r for some predetermined r < n. We then apply the deterministic algorithm on that
r-vertex graph to find a min-cut.

(b) [ 30 Points ] Show that a single run of the hybrid algorithm executes in O
(
n2 + r3

)
time,

and produces a min-cut with probability at least
(
r
2

)
/
(
n
2

)
.

(c) [ 30 Points ] Show that multiple independent runs of the hybrid algorithm from part (b)

can produce a min-cut in O
(
n4

r2
+ n2r

)
time with probability at least 1− 1

e .

(d) [ 5 Points ] What value of r produces the best running time for the algorithm in part (c)?

(e) [ 15 Points ] Use the algorithm from part (c) with the value of r from part (d) to design a
Monte-Carlo algorithm that runs asymptotically faster than the best deterministic algorithm
(i.e., faster than Θ

(
n3

)
) and can produce a min-cut w.h.p. in n.

Task 3. [ 60 Points ] Cluster of Multicores

The following problems involve load-balancing on a cluster of multicore machines.

(a) [ 20 Points ] Suppose you have bought n (� 1) multicore machines for n remote users.
Whenever a user has a job he/she chooses a machine uniformly at random and submits the
job to that machine. A user can submit and run only one job at a time. Assuming that all
n machines can run in parallel, and a k-core machine can execute k jobs in parallel (i.e., one
job per core), show that w.h.p. in n each job can start running as soon as it is submitted
provided each machine has at least 2 lnn

ln lnn cores.

(b) [ 20 Points ] Consider the setting in part (a), but suppose now you have 2n lnn remote
users. Show that in this case w.h.p. in n each job can start running as soon as it is submitted
provided each machine has at least 6 lnn cores.

(c) [ 20 Points ] Consider the setting in part (b). Show that if all users submit jobs simultane-
ously then w.h.p. in n no machine will remain idle.
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