Homework #3

DET-COMPATIBLE-REPRESENTATIVES($\langle S_1, S_2, \ldots, S_m \rangle$, n, f) (Inputs are $m (\geq 2)$ sets S_1, S_2, \ldots, S_m of size $n (\geq 1)$ each, and a function f. Function $f(s_1, s_2, \ldots, s_m)$) with $s_i \in S_i$ for $1 \leq i \leq m$, returns TRUE provided s_1, s_2, \ldots, s_m are compatible, and FALSE otherwise. This algorithm (i.e., DET-COMPATIBLE-REPRESENTATIVES) returns a set of compatible representatives (with one representative from each S_i) as soon as it finds one, and returns NULL provided no such set exists.) 1. for each $s_1 \in S_1$ do 2. for each $s_2 \in S_2$ do 3. 4. for each $s_m \in S_m$ do 5. if $f(s_1, s_2, \ldots, s_m) =$ TRUE then return $\langle s_1, s_2, \ldots, s_m \rangle$ 6. return NULL

Task 1. [50 Points] Compatible Representatives

In this task you are given $m (\geq 2)$ sets S_1, S_2, \ldots, S_m of size $n (\geq 1)$ each, and you are required to identify one representative s_i from each set S_i $(1 \leq i \leq m)$ such that s_1, s_2, \ldots, s_m are compatible as a group. Compatibility is determined by calling a given function f with s_1, s_2, \ldots, s_m as input parameters. Function f returns TRUE provided the group is compatible, and FALSE otherwise. Suppose one can form a total of k compatible groups from the sets, where $0 \leq k \leq n^m$. You need to identify only one of them.

- (a) [10 Points] Consider the deterministic algorithm DET-COMPATIBLE-REPRESENTATIVES given in the figure above, Argue that the algorithm runs in $\mathcal{O}((n^m k)t)$ time, where t is the worst-case time needed by a single execution of f.
- (b) [40 Points] Design a randomized algorithm RAND-COMPATIBLE-REPRESENTATIVES that returns a compatible group in $\mathcal{O}\left(\left(\frac{n^m}{k}\right)(m+t)\ln n\right)$ time w.h.p. in *n*. Observe that RAND-COMPATIBLE-REPRESENTATIVES can be considerably faster than DET-COMPATIBLE-REPRESENTATIVES, e.g., if t = m = 4 and $k = n^3$ then DET-COMPATIBLE-REPRESENTATIVES runs in $\mathcal{O}\left(n^4\right)$ time (worst-case) while RAND-COMPATIBLE-REPRESENTATIVES runs in $\mathcal{O}(n\ln n)$ time (w.h.p.).

Task 2. [90 Points] Faster Randomized Min-Cut

Consider the randomized min-cut algorithm we saw in the class that returns a min-cut with probability $\geq 1 - \frac{1}{e}$. Given a connected undirected multigraph with n vertices, the strategy is to run the following algorithm $\frac{n^2}{2}$ times and return the smallest cut identified by those runs. Each run uses an algorithm that starts with the original *n*-vertex graph and performs a sequence of n - 2edge contractions. Each contraction is performed on an edge chosen uniformly at random from the current set of edges. A contraction step contracts the two endpoints of the given edge into a single vertex and removes all edges between them, but retains all other edges (and thus leading to a multigraph). After n-2 contraction steps only 2 vertices remain, and all edges between those two vertices are returned as a potential min-cut.

(a) [10 Points] Argue that each contraction step can be implemented to run in $\mathcal{O}(n)$ time, and thus the randomized min-cut algorithm described above takes $\mathcal{O}(n^4)$ time to return a min-cut with probability $\geq 1 - \frac{1}{e}$.

There is a deterministic min-cut algorithm that can return a min-cut (with certainty) in $\mathcal{O}(n^3)$ worst-case time. So the randomized algorithm described above runs much slower than the deterministic algorithm and also does not always produce a correct solution! In order to speed up the randomized algorithm we can use the following hybrid approach. Starting with the *n*-vertex graph we keep performing random edge contractions until we are able to reduce the number of vertices in the graph to *r* for some predetermined r < n. We then apply the deterministic algorithm on that *r*-vertex graph to find a min-cut.

- (b) [30 Points] Show that a single run of the hybrid algorithm executes in $\mathcal{O}(n^2 + r^3)$ time, and produces a min-cut with probability at least $\binom{r}{2}/\binom{n}{2}$.
- (c) [30 Points] Show that multiple independent runs of the hybrid algorithm from part (b) can produce a min-cut in $\mathcal{O}\left(\frac{n^4}{r^2} + n^2r\right)$ time with probability at least $1 \frac{1}{e}$.
- (d) [5 Points] What value of r produces the best running time for the algorithm in part (c)?
- (e) [15 Points] Use the algorithm from part (c) with the value of r from part (d) to design a Monte-Carlo algorithm that runs asymptotically faster than the best deterministic algorithm (i.e., faster than $\Theta(n^3)$) and can produce a min-cut w.h.p. in n.

Task 3. [60 Points] Cluster of Multicores

The following problems involve load-balancing on a cluster of multicore machines.

- (a) [20 Points] Suppose you have bought $n \gg 1$ multicore machines for n remote users. Whenever a user has a job he/she chooses a machine uniformly at random and submits the job to that machine. A user can submit and run only one job at a time. Assuming that all n machines can run in parallel, and a k-core machine can execute k jobs in parallel (i.e., one job per core), show that w.h.p. in n each job can start running as soon as it is submitted provided each machine has at least $\frac{2 \ln n}{\ln \ln n}$ cores.
- (b) [20 Points] Consider the setting in part (a), but suppose now you have $2n \ln n$ remote users. Show that in this case w.h.p. in n each job can start running as soon as it is submitted provided each machine has at least $6 \ln n$ cores.
- (c) [20 Points] Consider the setting in part (b). Show that if all users submit jobs simultaneously then w.h.p. in n no machine will remain idle.