
CSE548, AMS542: Analysis of Algorithms, Spring 2014 Date: Apr 28

Homework #4
( Due: May 12 )

(a) (b) (c) (d)

Figure 1: Three possible triangulations of a convex polygon. The triangulation in (c) is the best as
it has the smallest weight.

Task 1. [ 200 Points ] Optimal Polygon Triangulation. Let P be a convex polygon defined
by a sequence of n vertices 〈v1, v2, . . . , vn〉. Since P is convex, for every pair of distinct vertices vi
and vj (1 ≤ i, j ≤ n), the straight line joining the two vertices will lie completely inside the polygon.
By len(vi, vj) we denote the length of the straight line joining vi and vj . Figure 1(a) shows an
example convex polygon containing 5 vertices with len(v1, v2) = 13, len(v2, v3) = 5, len(v3, v4) = 4,
len(v4, v5) = 5 and len(v5, v1) = 13.

We define a weight function w for triangles formed by the vertices of P . If vi, vk and vj are three
distinct vertices of P , we define w(i, k, j) = len(vi, vk) + len(vk, vj) + len(vj , vi). For example, in
Figure 1(b), w(1, 2, 3) = len(v1, v2) + len(v2, v3) + len(v3, v1) = 13 + 5 + 2

√
65 = 18 + 2

√
65. If the

vertices are not distinct (e.g., at least two of them are the same), we define w(i, k, j) = 0. Other
weight functions are also possible.

The optimal polygon triangulation problem asks for decomposing a given convex polygon into non-
overlapping triangles such that the total weight of all those triangles is minimized. The triangles
must cover the entire polygon. For example, Figures 1(b), 1(c) and 1(d) show three possible
triangulations of the convex polygon shown in Figure 1(a). Figure 1(b) decomposes the polygon into
triangles 4v1v2v3, 4v1v3v4 and 4v1v4v5 with a total weight of w(1, 2, 3) +w(1, 3, 4) +w(1, 4, 5) =
(13 + 5 + 2

√
65) + (2

√
65 + 4 + 2

√
65) + (13 + 5 + 2

√
65) = 60 + 8

√
65 ≈ 100.5. Among the

three triangulations the one in Figure 1(c) has the smallest weight which is, indeed, an optimal
triangulation of the given polygon.
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Let t[1 : n, 1 : n] be an n × n matrix in which entry t[i, j] stores the total weight of an optimal
triangulation of the convex polygon formed by the sequence 〈vi, vi+1, . . . , vj〉, where 1 ≤ i < j ≤ n.
Then the total weight of an optimal triangulation of P is given by t[1, n] which can be computed
using the following recurrence relation:

t[i, j] =


∞ if 1 ≤ i = j ≤ n,
0 if 1 ≤ i = j − 1 < n,
mini≤k≤j {t[i, k] + t[k, j] + w(i, k, j)} if 1 ≤ i < j − 1 < n.

(1)

Iterative-Triangulation( t, n )

(Input is an n × n matrix t[1 : n, 1 : n] with t[i, j] = 0 for 1 ≤ i = j − 1 < n and t[i, j] = ∞ otherwise (i.e.,
i 6= j − 1). This function updates all t[i, j] with 1 ≤ i < j − 1 < n based on Recurrence 1.)

1. for i← n− 1 downto 1 do

2. for j ← i+ 2 to n do

3. for k ← i to j do

4. t[i, j]← min { t[i, j], t[i, k] + t[k, j] + w(i, k, j) }

Figure 2: Iterative implementation of Recurrence 1.

(a) [ 20 Points ] An iterative algorithm for computing Recurrence 1 using three nested for loops
is given in Figure 2. Explain how you would correctly parallelize this algorithm using only
parallel for loops. Compute its work, span and parallelism on an input matrix of size n× n.

(b) [ 50 Points ] Consider the recursive divide-and-conquer algorithm given in Figure 3 for solv-
ing Recurrence 1. Explain how you would correctly parallelize this algorithm using spawn and
sync . Compute its work, span and parallelism on an input matrix of size n × n (assuming
n to be a power of 2). You are not allowed to use any extra space.

(c) [ 50 Points ] If you are allowed to use extra space for storing intermediate values of sub-
matrices of t in the parallel version of the algorithm given in Figure 3 (the same way we did
for recursive matrix multiplication), does that lead to a span that is asymptotically shorter
than the one you obtained in part (b)? Compute the work, span, parallelism and extra space
usage of this new algorithm on an input matrix of size n×n (assuming n to be a power of 2).

(d) [ 15 Points ] Is the parallel algorithm you obtained in part (a) scalable? If so, if you increase
p by a factor of 2, by what factor you must increase n so that its efficiency remains constant?
Answer the same questions for your parallel algorithms in parts (b) and (c).

(e) [ 15 Points ] Analyze the cache complexity of the serial iterative algorithm given in Figure
2 on an input matrix of size n× n.

(f) [ 50 Points ] Analyze the cache complexity of the serial recursive algorithm given in Figure
3 on an input matrix of size n× n (assuming n to be a power of 2).
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Aopt−tri( X )

(X points to an m×m square submatrix of the n× n input matrix t such that the top-left to bottom-right diagonal of X lies on
the top-left to bottom-right diagonal of t. Both n and m are assumed to be powers of 2. Initial call to the function is Aopt−tri(t).)

1. if X is not a 1× 1 matrix then

2. Aopt−tri( X11 )

3. Aopt−tri( X22 )

4. Bopt−tri( X12, X11, X22 )

Bopt−tri( X, U, V )

(X, U and V are m × m disjoint submatrices of the n × n
input matrix t such that X lies entirely above the top-left to
bottom-right diagonal of t, and the top-left to bottom-right
diagonals of U and V lie on that of t. Submatrix U lies to the
left of X, and both lie on the same rows of t. Submatrix V
lies below X, and both lie on the same columns of t. Both n
and m are assumed to be powers of 2.)

1. if X is a 1× 1 matrix then

2. Let X ≡ t[i, j], U ≡ t[i, k], V ≡ t[k, j]

3. t[i, j]← min { t[i, j], t[i, k] + t[k, j] + w(i, k, j) }

else

4. Bopt−tri( X21, U22, V11 )

5. Copt−tri( X11, U12, X21 )

6. Copt−tri( X22, X21, V12 )

7. Bopt−tri( X11, U11, V11 )

8. Bopt−tri( X22, U22, V22 )

9. Copt−tri( X12, U12, X22 )

10. Copt−tri( X12, X11, V12 )

11. Bopt−tri( X12, U11, V22 )

Copt−tri( X, U, V )

(X, U and V are m × m disjoint submatrices of the n × n
input matrix t each of which lies entirely above the top-left
to bottom-right diagonal of t. The submatrix U lies to the
left of submatrix X, and both lie on the same rows of t. The
submatrix V lies below submatrix X, and both lie on the same
columns of t. Both n and m are assumed to be powers of 2.)

1. if X is a 1× 1 matrix then

2. Let X ≡ t[i, j], U ≡ t[i, k], V ≡ t[k, j]

3. t[i, j]← min { t[i, j], t[i, k] + t[k, j] + w(i, k, j) }

else

4. Copt−tri( X11, U11, V11 )

5. Copt−tri( X12, U11, V12 )

6. Copt−tri( X21, U21, V11 )

7. Copt−tri( X22, U21, V12 )

8. Copt−tri( X11, U12, V21 )

9. Copt−tri( X12, U12, V22 )

10. Copt−tri( X21, U22, V21 )

11. Copt−tri( X22, U22, V22 )

Figure 3: Recursive divide-and-conquer algorithm for the optimal polygon triangulation problem defined
by recurrence 1. Initial call is Aopt−tri( t ) for an n × n input matrix t[1 : n, 1 : n] with t[i, j] = 0 for
1 ≤ i = j − 1 < n and t[i, j] = ∞ otherwise (i.e., i 6= j − 1). This function updates all t[i, j] for
1 ≤ i < j − 1 < n based on Recurrence 1. We assume that n is a power of 2.
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