Final In-Class Exam

(4:05 PM - 5:20 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.
- There are three (3) questions, worth 75 points in total. Please answer all of them in the spaces provided.
- There are 14 pages including four (4) blank pages and one (1) page of appendices. Please use the blank pages if you need additional space for your answers.
- The exam is open slides and open notes.

Good Luck!

Question	Pages	Score	Maximum
1. Parallel DFT	$2-5$		30
2. Trapping the Median	$7-9$		30
3. Files on Compact Discs	12		15
Total			75

Name: \qquad

Question 1. [30 Points] Parallel DFT. Given the coefficient vector $\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle$ of a polynomial $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{n-1} x^{n-1}$, the PAR-REC-DFT function shown below (in Figure 1) computes another vector $\left\langle y_{0}, y_{1}, \ldots, y_{n-1}\right\rangle$, where $y_{i}=P\left(\left(\omega_{n}\right)^{i}\right)$ and ω_{n} is the primitive n-th root of unity. The output vector $\left\langle y_{0}, y_{1}, \ldots, y_{n-1}\right\rangle$ is called the Discrete Fourier Transform (DFT) of the input vector $\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle$. We assume for simplicity that n is a power of 2 .

```
PAR-REC-DFT \(\left(\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle\right)\)
(Input is the coefficient vector \(\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle\) of a polynomial \(P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{n-1} x^{n-1}\). The
output is another vector \(\left\langle y_{0}, y_{1}, \ldots, y_{n-1}\right\rangle\), where \(y_{i}=P\left(\left(\omega_{n}\right)^{i}\right)\) and \(\omega_{n}\) is the primitive \(n\)-th root of unity. We
assume for simplicity that \(n\) is a power of 2 .)
1. if \(n=1\) then return \(\left\langle a_{0}\right\rangle\)
2. else
3. \(\left\langle y_{0}^{\text {even }}, y_{1}^{\text {even }}, \ldots, y_{\frac{n}{2}-1}^{\text {even }}\right\rangle \leftarrow\) spawn PAR-REC-DFT \(\left(\left\langle a_{0}, a_{2}, \ldots, a_{n-2}\right\rangle\right) \quad\) \{even numbered coefficients \(\}\)
4. \(\left\langle y_{0}^{\text {odd }}, y_{1}^{\text {odd }}, \ldots, y_{\frac{n}{2}-1}^{\text {odd }}\right\rangle \leftarrow \quad\) PaR-REC-DFT \(\left(\left\langle a_{1}, a_{3}, \ldots, a_{n-1}\right\rangle\right) \quad\) \{odd numbered coefficients \(\}\)
5. sync
6. \(\quad w_{0} \leftarrow 1\)
7. parallel for \(j \leftarrow 1\) to \(\frac{n}{2}-1\) do
8. \(w_{j} \leftarrow n\)-th primitive root of unity
\(\left\{\right.\) i.e., \(w_{j} \leftarrow e^{\frac{2 \pi i}{n}}\), where \(\left.i=\sqrt{-1}\right\}\)
\(\left\langle s_{0}, s_{1}, \ldots, s_{\frac{n}{2}-1}\right\rangle \leftarrow \operatorname{Prefix}-\operatorname{SUM}\left(\left\langle w_{0}, w_{1}, \ldots, w_{\frac{n}{2}-1}\right\rangle, \times\right) \quad\{\) prefix sum using the product operator \(\}\)
parallel for \(i \leftarrow 0\) to \(\frac{n}{2}-1\) do \(\quad\left\{\right.\) compute \(y\) from \(y^{\text {even }}\) and \(\left.y^{\text {odd }}\right\}\)
        \(y_{j} \leftarrow y_{j}^{\text {even }}+s_{j} y_{j}^{\text {odd }}\)
        \(y_{\frac{n}{2}+j} \leftarrow y_{j}^{\text {even }}-s_{j} y_{j}^{\text {odd }}\)
    return \(\left\langle y_{0}, y_{1}, \ldots, y_{n-1}\right\rangle\)
```

Figure 1: A parallel recursive divide-and-conquer algorithm for computing the Discrete Fourier Transform (DFT) of a 1D array (vector).

1(a) [$\mathbf{1 0}$ Points] Write down a recurrence relation describing the work done (i.e., T_{1}) by PAR-Rec-DFT, and solve it.

1(b) [10 Points] Write down a recurrence relation describing the span (i.e., T_{∞}) of Par-RECDFT, and solve it. Please assume that the span of a parallel for loop with n iterations is $\mathcal{O}(\log n+k)$, where k is the maximum span of a single iteration.
$1(c)$ [10 Points] Find the parallel running time (i.e., T_{p}) and parallelism of Par-REC-DFT.

Use this page if you need additional space for your answers.

Question 2. [30 Points] Trapping the Median. Given an array $A[1: n]$ of n distinct numbers as input, the function Trap-Median shown below (in Figure 2) returns another array $A^{\prime}\left[1: n^{\prime}\right]$ containing n^{\prime} distinct numbers from A such that w.h.p. in $n, n^{\prime}=\mathcal{O}\left(n^{\frac{3}{4}}\right)$ and A^{\prime} still includes the median of A. We assume for simplicity that n is an odd positive integer.

```
Trap-Median( A, n )
(Input is an array }A[1:n]\mathrm{ of n distinct numbers, where n is an odd positive integer. Output is an array }\mp@subsup{A}{}{\prime}[1:\mp@subsup{n}{}{\prime}
containing }\mp@subsup{n}{}{\prime}\mathrm{ distinct numbers from }A\mathrm{ such that w.h.p. in n, n' = O}(\mp@subsup{n}{}{\frac{3}{4}})\mathrm{ and }\mp@subsup{A}{}{\prime}\mathrm{ contains the median of A.)
    1. choose each entry of }A\mathrm{ with probability }\mp@subsup{n}{}{-\frac{1}{4}}\mathrm{ independent of others, and collect them in an array }
    2. }m\leftarrow|B
    3. if \lfloor\frac{m}{2}-\sqrt{}{n}\rfloor>0 and \lceil\frac{m}{2}+\sqrt{}{n}\rceil\leqm\mathrm{ then}
    4. sort }B\mathrm{ using an optimal sorting algorithm
    5. }\quadx\leftarrowB[\lfloor\frac{m}{2}-\sqrt{}{n}\rfloor],\quady\leftarrowB[\lceil\frac{m}{2}+\sqrt{}{n}\rceil
    6. }\quad\mp@subsup{r}{x}{}\leftarrow\mathrm{ number of items in }A\mathrm{ with value }\leq
    7. }\quad\mp@subsup{r}{y}{}\leftarrow\mathrm{ number of items in }A\mathrm{ with value }\leq
    8. if r
    9. }\quad\mp@subsup{n}{}{\prime}\leftarrow\mathrm{ number of items in }A\mathrm{ with value between }x\mathrm{ and }y\quad{\mathrm{ count each z in A with }x<z<y
    10. allocate an array }\mp@subsup{A}{}{\prime}[1:\mp@subsup{n}{}{\prime}
    11. scan }A\mathrm{ again, and copy each number z}\in(x,y) from A to A',
            return A'
        else return NIL
        else return NIL
```

Figure 2: Trap the median of n numbers in a set of size asymptotically smaller than n.
2(a) [12 Points] Prove that $n^{\frac{3}{4}}-n^{\frac{7}{16}}<m<n^{\frac{3}{4}}+n^{\frac{7}{16}}$ holds w.h.p. in n (in Step 2).

2(b) [12 Points] Show that $r_{x}<\frac{n+1}{2}<r_{y}$ holds w.h.p. in n (in Step 8). You may assume that $m=\Theta\left(n^{\frac{3}{4}}\right)$ holds w.h.p. in n (from part 2(a)).

2(c) [6 Points] Show that the running time of Trap-Median is $\mathcal{O}(n)$ w.h.p. in n. You may use the results you proved in parts $2(a)$ and $2(b)$, if needed.

Use this page if you need additional space for your answers.

Use this page if you need additional space for your answers.

Question 3. [15 Points] Files on Compact Discs. I have $m>0$ files and a set S of $n>1$ compact discs (CDs). I have copied each file to exactly two of the CDs in S. Different files may be copied to different CD pairs. Now given that for each file I know the two CDs I copied them to, I want to find a subset $S^{\prime} \subseteq S$ such that each file is contained in at least one CD of S^{\prime}, and $\left|S^{\prime}\right|$ is as small as possible.

3(a) [15 Points] Give a polynomial-time 2-approximation algorithm for solving this problem. In other words, the size of the subset returned by your algorithm must not be more than 2 times larger than the size of the subset returned by an optimal algorithm.

Use this page if you need additional space for your answers.

Appendix I: Useful Tail Bounds

Markov's Inequality. Let X be a random variable that assumes only nonnegative values. Then for all $\delta>0, \operatorname{Pr}[X \geq \delta] \leq \frac{E[X]}{\delta}$.

Chebyshev's Inequality. Let X be a random variable with a finite mean $E[X]$ and a finite variance $\operatorname{Var}[X]$. Then for any $\delta>0, \operatorname{Pr}[|X-E[X]| \geq \delta] \leq \frac{\operatorname{Var}[X]}{\delta^{2}}$.

Chernoff Bounds. Let X_{1}, \ldots, X_{n} be independent Poisson trials, that is, each X_{i} is a 0-1 random variable with $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$ for some p_{i}. Let $X=\sum_{i=1}^{n} X_{i}$ and $\mu=E[X]$. Following bounds hold: Lower Tail:

- for $0<\delta<1, \operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}$
- for $0<\delta<1, \operatorname{Pr}[X \leq(1-\delta) \mu] \leq e^{-\frac{\mu \delta^{2}}{2}}$
- for $0<\gamma<\mu, \operatorname{Pr}[X \leq \mu-\gamma] \leq e^{-\frac{\gamma^{2}}{2 \mu}}$

Upper Tail:

- for any $\delta>0, \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$
- for $0<\delta<1, \operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\frac{\mu \delta^{2}}{3}}$
- for $0<\gamma<\mu, \operatorname{Pr}[X \geq \mu+\gamma] \leq e^{-\frac{\gamma^{2}}{3 \mu}}$

Appendix II: The Master Theorem

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1 \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise }
\end{array}\right.
$$

where, $\frac{n}{b}$ is interpreted to mean either $\left\lfloor\frac{n}{b}\right\rfloor$ or $\left\lceil\frac{n}{b}\right\rceil$. Then $T(n)$ has the following bounds:
Case 1: If $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
Case 2: If $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ for some constant $k \geq 0$, then $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$.
Case 3: If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

