Final In-Class Exam (4:05 PM - 5:20 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.
- There are three (3) questions, worth 75 points in total. Please answer all of them in the spaces provided.
- There are 14 pages including four (4) blank pages and one (1) page of appendices. Please use the blank pages if you need additional space for your answers.
- The exam is open slides and open notes.

GOOD LUCK!

Question	Pages	Score	Maximum
1. Parallel DFT	2-5		30
2. Trapping the Median	7–9		30
3. Files on Compact Discs	12		15
Total			75

NAME:

QUESTION 1. [30 Points] Parallel DFT. Given the coefficient vector $\langle a_0, a_1, \ldots, a_{n-1} \rangle$ of a polynomial $P(x) = a_0 + a_1 x + a_2 x^2 + \ldots a_{n-1} x^{n-1}$, the PAR-REC-DFT function shown below (in Figure 1) computes another vector $\langle y_0, y_1, \ldots, y_{n-1} \rangle$, where $y_i = P((\omega_n)^i)$ and ω_n is the primitive *n*-th root of unity. The output vector $\langle y_0, y_1, \ldots, y_{n-1} \rangle$ is called the *Discrete Fourier Transform* (DFT) of the input vector $\langle a_0, a_1, \ldots, a_{n-1} \rangle$. We assume for simplicity that *n* is a power of 2.

PAR-REC-DFT($\langle a_0, a_1, \ldots, a_{n-1} \rangle$) (Input is the coefficient vector $\langle a_0, a_1, \ldots, a_{n-1} \rangle$ of a polynomial $P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$. The output is another vector $\langle y_0, y_1, \ldots, y_{n-1} \rangle$, where $y_i = P((\omega_n)^i)$ and ω_n is the primitive *n*-th root of unity. We assume for simplicity that n is a power of 2.) 1. if n = 1 then return $\langle a_0 \rangle$ 2. *else* 3. $\langle y_0^{even}, y_1^{even}, \dots, y_{\frac{n}{2}-1}^{even} \rangle \leftarrow spawn \text{ PAR-REC-DFT}(\langle a_0, a_2, \dots, a_{n-2} \rangle) \quad \{even \text{ numbered coefficients}\}$ $\langle y_0^{odd}, y_1^{odd}, \dots, y_{\frac{n}{2}-1}^{odd} \rangle \leftarrow$ PAR-REC-DFT($\langle a_1, a_3, \dots, a_{n-1} \rangle$) {odd numbered coefficients} 4. 5.sync6. $w_0 \leftarrow 1$ 7. parallel for $j \leftarrow 1$ to $\frac{n}{2} - 1$ do $\left\{i.e., w_j \leftarrow e^{\frac{2\pi i}{n}}, where \ i = \sqrt{-1}\right\}$ 8. $w_i \leftarrow n$ -th primitive root of unity $\langle s_0, s_1, \dots, s_{\frac{n}{2}-1} \rangle \leftarrow \text{PREFIX-SUM}(\langle w_0, w_1, \dots, w_{\frac{n}{2}-1} \rangle, \times) \quad \{ \text{prefix sum using the product operator} \}$ 9. $\{compute \ y \ from \ y^{even} \ and \ y^{odd}\}$ parallel for $i \leftarrow 0$ to $\frac{n}{2} - 1$ do 10. $y_j \leftarrow y_j^{even} + s_j y_j^{odd}$ 11. $y_{\frac{n}{2}+j} \leftarrow y_j^{even} - s_j y_j^{odd}$ 12.13.*return* $\langle y_0, y_1, \ldots, y_{n-1} \rangle$

Figure 1: A parallel recursive divide-and-conquer algorithm for computing the Discrete Fourier Transform (DFT) of a 1D array (vector).

1(a) [10 Points] Write down a recurrence relation describing the work done (i.e., T_1) by PAR-REC-DFT, and solve it.

1(b) [10 Points] Write down a recurrence relation describing the span (i.e., T_{∞}) of PAR-REC-DFT, and solve it. Please assume that the span of a *parallel for* loop with n iterations is $\mathcal{O}(\log n + k)$, where k is the maximum span of a single iteration. 1(c) [10 Points] Find the parallel running time (i.e., T_p) and parallelism of PAR-REC-DFT.

QUESTION 2. [30 Points] Trapping the Median. Given an array A[1:n] of n distinct numbers as input, the function TRAP-MEDIAN shown below (in Figure 2) returns another array A'[1:n'] containing n' distinct numbers from A such that w.h.p. in $n, n' = \mathcal{O}\left(n^{\frac{3}{4}}\right)$ and A' still includes the median of A. We assume for simplicity that n is an odd positive integer.

TRAP-MEDIAN(A, n)

(Input is an array A[1:n] of n distinct numbers, where n is an odd positive integer. Output is an array A'[1:n']containing n' distinct numbers from A such that w.h.p. in $n, n' = \mathcal{O}\left(n^{\frac{3}{4}}\right)$ and A' contains the median of A.) 1. choose each entry of A with probability $n^{-\frac{1}{4}}$ independent of others, and collect them in an array B 2. $m \leftarrow |B|$ 3. if $\left|\frac{m}{2} - \sqrt{n}\right| > 0$ and $\left\lceil\frac{m}{2} + \sqrt{n}\right\rceil \leq m$ then sort B using an optimal sorting algorithm 4. $x \leftarrow B\left[\left|\frac{m}{2} - \sqrt{n}\right|\right], y \leftarrow B\left[\left[\frac{m}{2} + \sqrt{n}\right]\right]$ 5. $r_x \leftarrow$ number of items in A with value $\leq x$ 6. 7. $r_y \leftarrow$ number of items in A with value $\leq y$ if $r_x < \frac{n+1}{2} < r_y$ then $\{if x is smaller than the median of A, and y is larger than the median\}$ 8. $n' \leftarrow$ number of items in A with value between x and y $\{ count \ each \ z \ in \ A \ with \ x < z < y \}$ 9. allocate an array A'[1:n']10. scan A again, and copy each number $z \in (x, y)$ from A to A' 11. return A'12.else return NIL 13.14. else return NIL

Figure 2: Trap the median of n numbers in a set of size asymptotically smaller than n.

2(a) [**12 Points**] Prove that $n^{\frac{3}{4}} - n^{\frac{7}{16}} < m < n^{\frac{3}{4}} + n^{\frac{7}{16}}$ holds w.h.p. in n (in Step 2).

2(b) [**12 Points**] Show that $r_x < \frac{n+1}{2} < r_y$ holds w.h.p. in n (in Step 8). You may assume that $m = \Theta\left(n^{\frac{3}{4}}\right)$ holds w.h.p. in n (from part 2(a)).

2(c) [**6 Points**] Show that the running time of TRAP-MEDIAN is $\mathcal{O}(n)$ w.h.p. in n. You may use the results you proved in parts 2(a) and 2(b), if needed.

QUESTION 3. [15 Points] Files on Compact Discs. I have m > 0 files and a set S of n > 1 compact discs (CDs). I have copied each file to exactly two of the CDs in S. Different files may be copied to different CD pairs. Now given that for each file I know the two CDs I copied them to, I want to find a subset $S' \subseteq S$ such that each file is contained in at least one CD of S', and |S'| is as small as possible.

3(a) [15 Points] Give a polynomial-time 2-approximation algorithm for solving this problem. In other words, the size of the subset returned by your algorithm must not be more than 2 times larger than the size of the subset returned by an optimal algorithm.

APPENDIX I: USEFUL TAIL BOUNDS

Markov's Inequality. Let X be a random variable that assumes only nonnegative values. Then for all $\delta > 0$, $Pr[X \ge \delta] \le \frac{E[X]}{\delta}$.

Chebyshev's Inequality. Let X be a random variable with a finite mean E[X] and a finite variance Var[X]. Then for any $\delta > 0$, $Pr[|X - E[X]| \ge \delta] \le \frac{Var[X]}{\delta^2}$.

Chernoff Bounds. Let X_1, \ldots, X_n be independent Poisson trials, that is, each X_i is a 0-1 random variable with $Pr[X_i = 1] = p_i$ for some p_i . Let $X = \sum_{i=1}^n X_i$ and $\mu = E[X]$. Following bounds hold:

Lower Tail:

$$\begin{aligned} &-\text{ for } 0 < \delta < 1, \ Pr\left[X \le (1-\delta)\mu\right] \le \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu} \\ &-\text{ for } 0 < \delta < 1, \ Pr\left[X \le (1-\delta)\mu\right] \le e^{-\frac{\mu\delta^2}{2}} \\ &-\text{ for } 0 < \gamma < \mu, \ Pr\left[X \le \mu - \gamma\right] \le e^{-\frac{\gamma^2}{2\mu}} \end{aligned}$$

Upper Tail:

$$- \text{ for any } \delta > 0, \ \Pr\left[X \ge (1+\delta)\mu\right] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$$
$$- \text{ for } 0 < \delta < 1, \ \Pr\left[X \ge (1+\delta)\mu\right] \le e^{-\frac{\mu\delta^2}{3}}$$
$$- \text{ for } 0 < \gamma < \mu, \ \Pr\left[X \ge \mu + \gamma\right] \le e^{-\frac{\gamma^2}{3\mu}}$$

APPENDIX II: THE MASTER THEOREM

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \le 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise,} \end{cases}$$

where, $\frac{n}{b}$ is interpreted to mean either $\left\lfloor \frac{n}{b} \right\rfloor$ or $\left\lfloor \frac{n}{b} \right\rfloor$. Then T(n) has the following bounds:

Case 1: If $f(n) = \mathcal{O}\left(n^{\log_b a - \epsilon}\right)$ for some constant $\epsilon > 0$, then $T(n) = \Theta\left(n^{\log_b a}\right)$.

Case 2: If $f(n) = \Theta\left(n^{\log_b a} \log^k n\right)$ for some constant $k \ge 0$, then $T(n) = \Theta\left(n^{\log_b a} \log^{k+1} n\right)$.

Case 3: If $f(n) = \Omega(n^{\log_b a+\epsilon})$ for some constant $\epsilon > 0$, and $af(\frac{n}{b}) \leq cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.