Homework \#2

(Due: Apr 2)

Task 1. [70 Points] Crisscrossed

There are $n>0$ locations on each side of a river running straight from north to south. Suppose the locations on the west side of the river are numbered from w_{1} to w_{n}, and those on the east side from e_{1} to e_{n} as they are encountered from north to south. For $1 \leq i, j \leq n$, each w_{i} is connected to exactly one e_{j} using a straight bridge over the river, and vice versa. Thus there are exactly n bridges, and for $1 \leq k \leq n$, each bridge b_{k} is given by its two endpoints (w_{i}, e_{j}). We say that two bridges $b_{k}=\left(w_{i}, e_{j}\right)$ and $b_{k^{\prime}}=\left(w_{i^{\prime}}, e_{j^{\prime}}\right)$ with $k \neq k^{\prime}$ cross provided either $\left(i<i^{\prime}\right) \wedge\left(j>j^{\prime}\right)$ or $\left(i>i^{\prime}\right) \wedge\left(j<j^{\prime}\right)$ holds. In the example shown in Figure 1 bridge (w_{1}, e_{3}) crosses bridge $\left(w_{2}, e_{1}\right)$, but it does not cross bridge $\left(w_{3}, e_{5}\right)$. That example has 8 bridge crossings in total.

Given $n>0$ bridges $b_{1}, b_{2}, \ldots, b_{n}$, function Print-Crossings prints all crossings between bridges in the input.

This task asks you to compute the number of times the print instruction in line 6 of PrintCrossings is executed averaged over all possible inputs of size n (i.e., all possible ways n bridges can be constructed).

Figure 1: A river running straight from north to south with 8 specific locations on each side. A bridge connects a location on the west bank to a location on the east bank. Every location is connected by exactly one bridge. So there are exactly 8 bridges. Also there are 8 bridge crossings.
Print-Crossings $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$
(Inputs are n bridges $b_{k}, 1 \leq k \leq n$. Each b_{k} is given by its two end points $\left(w_{i}, e_{j}\right), 1 \leq i, j \leq n$. For every pair of bridges $b_{k}=\left(w_{i}, e_{j}\right)$ and $b_{k^{\prime}}=\left(w_{i^{\prime}}, e_{j^{\prime}}\right)$ the following holds: $k \neq k^{\prime} \Longrightarrow \quad\left(i \neq i^{\prime}\right) \wedge\left(j \neq j^{\prime}\right)$. We say that two bridges $b_{k}=\left(w_{i}, e_{j}\right)$ and $b_{k^{\prime}}=\left(w_{i^{\prime}}, e_{j^{\prime}}\right)$ with $k \neq k^{\prime}$ cross provided either $\left(i<i^{\prime}\right) \wedge\left(j>j^{\prime}\right)$ or $\left(i>i^{\prime}\right) \wedge\left(j<j^{\prime}\right)$ holds. This function prints all such crossings in the input.)

$$
\begin{aligned}
& \text { for } k \leftarrow 1 \text { to } n \text { do } \\
& \qquad \begin{array}{l}
\left(w_{i}, e_{j}\right) \leftarrow b_{k} \\
\text { for } k^{\prime} \leftarrow 1 \text { to } k-1 \text { do } \\
\quad\left(w_{i^{\prime}}, e_{j^{\prime}}\right) \leftarrow b_{k^{\prime}} \\
\quad \text { if }\left(i<i^{\prime}\right) \wedge\left(j>j^{\prime}\right) \text { or }\left(i>i^{\prime}\right) \wedge\left(j<j^{\prime}\right) \text { then } \\
\quad \text { print } k, k^{\prime} \quad\left\{\text { bridges } b_{k} \text { and } b_{k^{\prime}} \text { cross }\right\}
\end{array} \\
& \text { return }
\end{aligned}
$$

for $k \leftarrow 1$ to n do
$\left(w_{i}, e_{j}\right) \leftarrow b_{k}$
for $k^{\prime} \leftarrow 1$ to $k-1$ do
$\left(w_{i^{\prime}}, e_{j^{\prime}}\right) \leftarrow b_{k^{\prime}}$
if $\left(i<i^{\prime}\right) \wedge\left(j>j^{\prime}\right)$ or $\left(i>i^{\prime}\right) \wedge\left(j<j^{\prime}\right)$ then
print $k, k^{\prime} \quad\left\{\right.$ bridges b_{k} and $b_{k^{\prime}}$ cross $\}$
return

Figure 2: Print all bridge crossings.

Let $s_{n, k}=$ number of inputs of size n for which line 6 is executed exactly k times, and also let $f_{n, k}=\frac{s_{n, k}}{n!}$ be the fraction of all possible inputs if size n each of which results in precisely k
executions of line 6. Then clearly, our required average A_{n} and its variance V_{n} are given by the following expressions.

$$
A_{n}=\sum_{k} k f_{n, k} \quad \text { and } \quad V_{n}=\sum_{k} k^{2} f_{n, k}-A_{n}^{2}
$$

(a) [15 Points] Prove that for $n>0, s_{n, k}$ can be described using the following recurrence relation.

$$
s_{n, k}=\left\{\begin{array}{lr}
0 & \text { if } k<0 \vee k>\binom{n}{2}, \\
1 & \text { if } k=0 \vee k=\binom{n}{2}, \\
\sum_{i=0}^{n-1} s_{n-1, k-i} & \text { otherwise } .
\end{array}\right.
$$

(b) [15 Points] Consider the following generating function for $s_{n, k}$'s with $n>0$.

$$
S_{n}(z)=s_{n, 0}+s_{n, 1} z+s_{n, 2} z^{2}+\ldots+s_{n, k} z^{k}+\ldots+s_{n,\binom{n}{2}} z^{\binom{n}{2}}
$$

Use results from part (a) to show that for $n>0$,

$$
S_{n}(z)=\left\{\begin{array}{lr}
1 & \text { if } n=1 \\
\left(1+z+z^{2}+\ldots+z^{n-1}\right) S_{n-1}(z) & \text { otherwise }
\end{array}\right.
$$

(c) [10 Points] Solve the recurrence from part (b) to show that $S_{n}(z)=\frac{1}{(1-z)^{n}} \prod_{k=1}^{n}\left(1-z^{k}\right)$.
(d) [30 Points] Let $F_{n}(z)=\frac{1}{n!} S_{n}(z)$. Use your results from part (c) to show that

$$
\begin{gathered}
A_{n}=F_{n}^{\prime}(1)=\frac{1}{2}\binom{n}{2} \\
\text { and } V_{n}=F_{n}^{\prime \prime}(1)+F_{n}^{\prime}(1)-\left(F_{n}^{\prime}(1)\right)^{2}=\frac{2 n+5}{36}\binom{n}{2} .
\end{gathered}
$$

Task 2. [110 Points] The Sheap

A Scanning Heap or Sheap is a priority queue that supports Insert, Delete and Extract-Min operations. An $\operatorname{Insert}\left(x, k_{x}\right)$ operation inserts the item x with key k_{x} into the queue assuming that x does not already exist in the queue. A Delete (x) operation deletes item x from the queue if it exists, and an Extract-Min() operation retrieves and deletes an item with the minimum key from the queue. We assume for simplicity that all keys in the data structure are distinct.
A sheap on N items consists of $r=1+\left\lceil\log _{2} N\right\rceil$ levels. For $0 \leq i \leq r-1$, level i consists of a data buffer D_{i} and an operations buffer O_{i}. Each item in D_{i} is of the form $\left(x, k_{x}\right)$, where x is the item id and k_{x} is its key. Each operation in O_{i} is augmented with a time stamp indicating the time of its insertion into the data structure.

At any time, the following invariants are maintained.
InvaRIANT 1
(a) Each $D_{i}(0 \leq i<r)$ contains at most 2^{i} items.

INVARIANT 2

(a) Key of every item in $D_{i}(0 \leq i<r-1)$ is no larger than the key of any item in D_{i+1}.
(b) All operations applicable to $D_{i}(0 \leq i<r-1)$ that are not yet applied, reside in $O_{0}, O_{1}, \ldots, O_{i}$.

Invariant 3

(a) Items in each D_{i} are kept sorted in ascending order by item id.
(b) Operations in O_{0} are kept sorted in ascending order by time stamp.
(c) For $0<i<r$, operations in each O_{i} are divided into (a constant number of) segments with updates in each segment sorted in ascending order by item id and time stamp.

All buffers are initially empty.
The pseudocodes for all data structural operations are given in Figures 3 and 4.
A $\operatorname{Insert}\left(x, k_{x}\right)$ operation is performed by the INSERT function which inserts the entry $\left\langle\operatorname{Insert}, x, k_{x}, t\right\rangle$ into O_{0}, where t is the current time stamp. A Delete (x) operation is performed similarly by the Delete function which inserts the entry \langle Delete, $x, t\rangle$ into O_{0}. In both cases further processing is deferred to the next Extract-Min operation.
The Extract-Min function executes an Extract-Min operation by first calling the Find-Min function to find the item with the minimum key in the data structure, and then calling the Delete function to delete this item.

The Find-Min function first sorts the operations in O_{0} by item id (primary) and time stamp (secondary). Then it finds the shallowest data buffer D_{k} that is left non-empty after applying the operations in O_{k} (by calling ExEcute-Ops). The elements left in D_{k} are distributed to the shallowest data buffers by calling Redistribute.
When the ExECUTE-Ops function is called with parameter i, it applies the operations in O_{i} on the items of D_{i}, and empties O_{i} by moving the operations from O_{i} to O_{i+1}. It also moves any overflowing items from D_{i} to O_{i+1} as Insert operations.
Now your task is to answer the following questions.
(a) [15 Points] Prove that the Extract-Min function correctly returns the item with smallest key in the data structure at the time of its execution.
(b) [15 Points] Explain how to implement the Redistribute (i) function to run in $\Theta\left(\left|D_{i}\right|\right)$ time.
(c) [15 Points] For a sequence of N Insert, Delete and Extract-Min operations performed on a sheap, find the worst-case cost of each of those three types of operations.
(d) [15 Points] Prove that for $1 \leq i \leq r-1$, every empty O_{i} receives batches of operations at most a constant number of times before O_{i} is applied on D_{i} and emptied again.
(e) [50 Points] Show that a sheap supports each operation (i.e., Insert, Delete and ExtractMin) in $\mathcal{O}(\log N)$ amortized time, where N is the total number of operations performed on the sheap. Results from parts (b) and (d) will be useful in proving this part.

$\operatorname{Insert}\left(x, k_{x}\right)$

(Inserts an item x with key k_{x} into the data structure assuming that the data structure does not already contain x.)

1. append the operation to O_{0} augmented with current time stamp maintaining invariant $3(b)$

Delete (x)

(Delete the item x from the data structure.)

1. append the operation to O_{0} augmented with current time stamp maintaining invariant $3(b)$

Extract-Min()

(Extract the item with the smallest key from the data structure.)

1. sort the operations in O_{0} in increasing order of item id (primary) and time stamp (secondary)
$i \leftarrow-1$
repeat
2. $\quad i \leftarrow i+1$
3. Execute-Ops $(i) \quad\left\{\right.$ apply the operations in O_{i} on the items in $\left.D_{i}\right\}$
4. until $\left(\left|D_{i}\right|>0\right) \vee(i=r-1)$
5. if $\left|D_{i}\right|=0$ then $\quad\{$ the data structure has become empty\}
6. $\left(x, k_{x}\right) \leftarrow(-,+\infty), r \leftarrow 1 \quad$ \{will return $+\infty$ as the minimum key\}
7. else $\quad\left\{D_{i}\right.$ has the item with the smallest key in the entire data structure $\}$
8. $\left(x, k_{x}\right) \leftarrow$ the item with the smallest key in D_{i}
9. remove $\left(x, k_{x}\right)$ from $D_{i} \quad\left\{D_{i}\right.$ now has at most $2^{i}-1$ items $\}$
10. Redistribute (i) \{redistribute the items in D_{i} to the shallowest possible data buffers\}
11. $D_{i} \leftarrow \emptyset \quad\left\{D_{i}\right.$ has become empty\}
12. return $\left(x, k_{x}\right)$

Figure 3: Sheap operations.

Execute-Ops(i)

(Applies the operations in O_{i} on the items in D_{i}, move remaining operations from O_{i} to O_{i+1} if $i<r-1$, and after executing the operations moves overflowing items from D_{i} to O_{i+1} as Inserts.
Preconditions: All invariants hold, and for $0 \leq j<i$, all O_{j} are empty.
Postconditions: All invariants hold, and for $0 \leq j<i+1$, all O_{j} are empty.)

1. merge the segments of O_{i}

$$
\text { if }\left(\left|D_{i}\right|=0\right) \wedge(i<r-1) \text { then } \quad\left\{\text { if } i \text { is not the last level and } D_{i} \text { is empty }\right\}
$$

empty O_{i} by moving the contents of O_{i} as a new segment of O_{i+1}
else
if $i=r-1$ then $k \leftarrow+\infty$
else $k \leftarrow$ largest key in D_{i}
scan D_{i} and O_{i} simultaneously, and for each $o p \in O_{i}$ do: $\quad\left\{\right.$ apply the operations in O_{i} on $\left.D_{i}\right\}$
if op $=\operatorname{Delete}(x)$ then remove any item $\left(x, k_{x}\right)$ from D_{i}, if exists
if op $=\operatorname{Insert}\left(x, k_{x}\right) \wedge k_{x} \leq k$ then copy $\left(x, k_{x}\right)$ to D_{i}
if $i<r-1$ then $\quad\left\{\right.$ move appropriate operations from O_{i} to $\left.O_{i+1}\right\}$
copy each operation in O_{i} that was not applied in steps 7-9 to O_{i+1}
if $\left|D_{i}\right|>2^{i}$ then $\quad\{$ restore invariant $1(a)$, if violated $\}$
if $i=r-1$ then $r \leftarrow r+1$
keep the 2^{i} items with the smallest 2^{i} keys in D_{i},
and move each remaining item $\left(x, k_{x}\right)$ to O_{i+1} as $\operatorname{Insert}\left(x, k_{x}\right)$
15. $\quad O_{i} \leftarrow \emptyset$

Redistribute (i)

(Distributes the elements in D_{i} to the shallowest data buffers maintaining invariants $1(a), 2(a)$ and $3(a)$. Let D^{\prime} denote the input D_{i}.
Preconditions: All invariants hold. All D_{j} and O_{j} with $0 \leq j \leq k$ are empty, where k is the smallest integer such that $2^{k+1}-1 \geq\left|D^{\prime}\right|$. No key value in the data structure is smaller than any key value in D^{\prime}.
Postconditions: All invariants hold. All operations buffers remain unchanged, but $\bigcup_{j=0}^{k} D_{j}=D^{\prime}$.)

1. copy all items in D_{i} to an initially empty temporary buffer D^{\prime} leaving D_{i} empty
2. $j \leftarrow$ largest integer such that $2^{j}-1<\left|D^{\prime}\right|$
3. while $j \geq 0$ do
4. move $\left|D^{\prime}\right|-2^{j}+1$ items with the largest $\left|D^{\prime}\right|-2^{j}+1$ keys from D^{\prime} to D_{j} maintaining invariant $3(a)$
5. $\quad j \leftarrow j-1$

Figure 4: Sheap helper functions.

