
CSE548, AMS542: Analysis of Algorithms, Spring 2015 Date: Mar 18

Homework #2
(Due: Apr 2)

Task 1. [70 Points] Crisscrossed

There are n > 0 locations on each side of a river running straight from north to south. Suppose
the locations on the west side of the river are numbered from w1 to wn, and those on the east side
from e1 to en as they are encountered from north to south. For 1 ≤ i, j ≤ n, each wi is connected
to exactly one ej using a straight bridge over the river, and vice versa. Thus there are exactly n
bridges, and for 1 ≤ k ≤ n, each bridge bk is given by its two endpoints (wi, ej). We say that two
bridges bk = (wi, ej) and bk′ = (wi′ , ej′) with k 6= k′ cross provided either (i < i′) ∧ (j > j′) or
(i > i′) ∧ (j < j′) holds. In the example shown in Figure 1 bridge (w1, e3) crosses bridge (w2, e1),
but it does not cross bridge (w3, e5). That example has 8 bridge crossings in total.

Given n > 0 bridges b1, b2, . . . , bn, function Print-Crossings prints all crossings between bridges
in the input.

This task asks you to compute the number of times the print instruction in line 6 of Print-
Crossings is executed averaged over all possible inputs of size n (i.e., all possible ways n bridges
can be constructed).

Figure 1: A river running straight from
north to south with 8 specific locations on
each side. A bridge connects a location on
the west bank to a location on the east
bank. Every location is connected by ex-
actly one bridge. So there are exactly 8
bridges. Also there are 8 bridge crossings.

Print-Crossings(b1, b2, . . . , bn)

(Inputs are n bridges bk, 1 ≤ k ≤ n. Each bk is given by
its two end points (wi, ej), 1 ≤ i, j ≤ n. For every pair of
bridges bk = (wi, ej) and bk′ = (wi′ , ej′) the following holds:
k 6= k′ =⇒ (i 6= i′) ∧ (j 6= j′). We say that two bridges
bk = (wi, ej) and bk′ = (wi′ , ej′) with k 6= k′ cross provided
either (i < i′) ∧ (j > j′) or (i > i′) ∧ (j < j′) holds. This
function prints all such crossings in the input.)

1. for k ← 1 to n do

2. (wi, ej)← bk

3. for k′ ← 1 to k − 1 do

4. (wi′ , ej′)← bk′

5. if (i < i′) ∧ (j > j′) or (i > i′) ∧ (j < j′) then

6. print k, k′ {bridges bk and bk′ cross}
7. return

Figure 2: Print all bridge crossings.

Let sn,k = number of inputs of size n for which line 6 is executed exactly k times, and also let
fn,k =

sn,k

n! be the fraction of all possible inputs if size n each of which results in precisely k

1

executions of line 6. Then clearly, our required average An and its variance Vn are given by the
following expressions.

An =
∑
k

kfn,k and Vn =
∑
k

k2fn,k −A2
n

(a) [15 Points] Prove that for n > 0, sn,k can be described using the following recurrence
relation.

sn,k =

0 if k < 0 ∨ k >

(
n
2

)
,

1 if k = 0 ∨ k =
(
n
2

)
,∑n−1

i=0 sn−1,k−i otherwise.

(b) [15 Points] Consider the following generating function for sn,k’s with n > 0.

Sn(z) = sn,0 + sn,1z + sn,2z
2 + . . . + sn,kz

k + . . . + sn,(n2)
z(n2)

Use results from part (a) to show that for n > 0,

Sn(z) =

{
1 if n = 1,(
1 + z + z2 + . . . + zn−1

)
Sn−1(z) otherwise.

(c) [10 Points] Solve the recurrence from part (b) to show that Sn(z) = 1
(1−z)n

∏n
k=1

(
1− zk

)
.

(d) [30 Points] Let Fn(z) = 1
n!Sn(z). Use your results from part (c) to show that

An = F ′n(1) =
1

2

(
n

2

)

and Vn = F ′′n (1) + F ′n(1)−
(
F ′n(1)

)2
=

2n + 5

36

(
n

2

)
.

Task 2. [110 Points] The Sheap

A Scanning Heap or Sheap is a priority queue that supports Insert, Delete and Extract-Min op-
erations. An Insert(x, kx) operation inserts the item x with key kx into the queue assuming that
x does not already exist in the queue. A Delete(x) operation deletes item x from the queue if it
exists, and an Extract-Min() operation retrieves and deletes an item with the minimum key from
the queue. We assume for simplicity that all keys in the data structure are distinct.

A sheap on N items consists of r = 1 + dlog2Ne levels. For 0 ≤ i ≤ r− 1, level i consists of a data
buffer Di and an operations buffer Oi. Each item in Di is of the form (x, kx), where x is the item
id and kx is its key. Each operation in Oi is augmented with a time stamp indicating the time of
its insertion into the data structure.

2

At any time, the following invariants are maintained.

Invariant 1

(a) Each Di (0 ≤ i < r) contains at most 2i items.

Invariant 2

(a) Key of every item in Di (0 ≤ i < r − 1) is no larger than the key of any item in Di+1.

(b) All operations applicable to Di (0 ≤ i < r−1) that are not yet applied, reside in O0, O1, . . . , Oi.

Invariant 3

(a) Items in each Di are kept sorted in ascending order by item id.

(b) Operations in O0 are kept sorted in ascending order by time stamp.

(c) For 0 < i < r, operations in each Oi are divided into (a constant number of) segments with
updates in each segment sorted in ascending order by item id and time stamp.

All buffers are initially empty.

The pseudocodes for all data structural operations are given in Figures 3 and 4.

A Insert(x, kx) operation is performed by the Insert function which inserts the entry 〈 Insert, x, kx, t 〉
into O0, where t is the current time stamp. A Delete(x) operation is performed similarly by the
Delete function which inserts the entry 〈 Delete, x, t 〉 into O0. In both cases further processing
is deferred to the next Extract-Min operation.

The Extract-Min function executes an Extract-Min operation by first calling the Find-Min
function to find the item with the minimum key in the data structure, and then calling the Delete
function to delete this item.

The Find-Min function first sorts the operations in O0 by item id (primary) and time stamp
(secondary). Then it finds the shallowest data buffer Dk that is left non-empty after applying
the operations in Ok (by calling Execute-Ops). The elements left in Dk are distributed to the
shallowest data buffers by calling Redistribute.

When the Execute-Ops function is called with parameter i, it applies the operations in Oi on
the items of Di, and empties Oi by moving the operations from Oi to Oi+1. It also moves any
overflowing items from Di to Oi+1 as Insert operations.

Now your task is to answer the following questions.

(a) [15 Points] Prove that the Extract-Min function correctly returns the item with smallest
key in the data structure at the time of its execution.

(b) [15 Points] Explain how to implement the Redistribute(i) function to run in Θ (|Di|)
time.

(c) [15 Points] For a sequence of N Insert, Delete and Extract-Min operations performed on
a sheap, find the worst-case cost of each of those three types of operations.

3

(d) [15 Points] Prove that for 1 ≤ i ≤ r − 1, every empty Oi receives batches of operations at
most a constant number of times before Oi is applied on Di and emptied again.

(e) [50 Points] Show that a sheap supports each operation (i.e., Insert, Delete and Extract-
Min) in O (logN) amortized time, where N is the total number of operations performed on
the sheap. Results from parts (b) and (d) will be useful in proving this part.

Insert(x, kx)

(Inserts an item x with key kx into the data structure assuming that the data structure does not already contain x.)

1. append the operation to O0 augmented with current time stamp maintaining invariant 3(b)

Delete(x)

(Delete the item x from the data structure.)

1. append the operation to O0 augmented with current time stamp maintaining invariant 3(b)

Extract-Min()

(Extract the item with the smallest key from the data structure.)

1. sort the operations in O0 in increasing order of item id (primary) and time stamp (secondary)

2. i← −1

3. repeat

4. i← i + 1

5. Execute-Ops(i) {apply the operations in Oi on the items in Di}
6. until (|Di| > 0) ∨ (i = r − 1)

7. if |Di| = 0 then {the data structure has become empty}
8. (x, kx)← (,+∞), r ← 1 {will return +∞ as the minimum key}
9. else {Di has the item with the smallest key in the entire data structure}

10. (x, kx)← the item with the smallest key in Di

11. remove (x, kx) from Di

{
Di now has at most 2i − 1 items

}
12. Redistribute(i) {redistribute the items in Di to the shallowest possible data buffers}
13. Di ← ∅ {Di has become empty}
14. return (x, kx)

Figure 3: Sheap operations.

4

Execute-Ops(i)

(Applies the operations in Oi on the items in Di, move remaining operations from Oi to Oi+1 if i < r − 1, and after
executing the operations moves overflowing items from Di to Oi+1 as Inserts.

Preconditions: All invariants hold, and for 0 ≤ j < i, all Oj are empty.

Postconditions: All invariants hold, and for 0 ≤ j < i + 1, all Oj are empty.)

1. merge the segments of Oi

2. if (|Di| = 0) ∧ (i < r − 1) then {if i is not the last level and Di is empty}
3. empty Oi by moving the contents of Oi as a new segment of Oi+1

4. else

5. if i = r − 1 then k ← +∞
6. else k ← largest key in Di

7. scan Di and Oi simultaneously, and for each op ∈ Oi do: {apply the operations in Oi on Di}
8. if op = Delete(x) then remove any item (x, kx) from Di, if exists

9. if op = Insert(x, kx) ∧ kx ≤ k then copy (x, kx) to Di

10. if i < r − 1 then {move appropriate operations from Oi to Oi+1}
11. copy each operation in Oi that was not applied in steps 7–9 to Oi+1

12. if |Di| > 2i then {restore invariant 1(a), if violated}
13. if i = r − 1 then r ← r + 1

14. keep the 2i items with the smallest 2i keys in Di,

and move each remaining item (x, kx) to Oi+1 as Insert(x, kx)

15. Oi ← ∅

Redistribute(i)

(Distributes the elements in Di to the shallowest data buffers maintaining invariants 1(a), 2(a) and 3(a). Let D′

denote the input Di.

Preconditions: All invariants hold. All Dj and Oj with 0 ≤ j ≤ k are empty, where k is the smallest integer such
that 2k+1 − 1 ≥ |D′|. No key value in the data structure is smaller than any key value in D′.

Postconditions: All invariants hold. All operations buffers remain unchanged, but
⋃k

j=0Dj = D′.)

1. copy all items in Di to an initially empty temporary buffer D′ leaving Di empty

2. j ← largest integer such that 2j − 1 < |D′|
3. while j ≥ 0 do

4. move |D′| − 2j + 1 items with the largest |D′| − 2j + 1 keys from D′ to Dj maintaining invariant 3(a)

5. j ← j − 1

Figure 4: Sheap helper functions.

5

