Homework \#4
 (Due: May 10)

Task 1. [100 Points] Copying Files

Suppose you have m files $f_{1}, f_{2}, \ldots, f_{m}$ stored on a storage device $\mathcal{D}_{i n}$, and you want to copy as many of them as possible to a hard disk $\mathcal{D}_{\text {out }}$ of size n (in bytes). You either copy an entire file or completely skip it. Partial copies are not allowed.
(a) [35 Points] Figure 1 shows an algorithm Copy-from-Hard-Disk that copies the files from $\mathcal{D}_{\text {in }}$ to $\mathcal{D}_{\text {out }}$ assuming that $\mathcal{D}_{\text {in }}$ allows both reads and writes. Prove that Copy-From-HARD-DISK achieves an approximation ratio of 2, i.e., if an optimal algorithm can copy $n_{\text {opt }}$ bytes of files to $\mathcal{D}_{\text {out }}$, Copy-From-Hard-Disk copies at least $\frac{1}{2} n_{\text {opt }}$ bytes.
(b) [10 Points] Give an example for which Copy-From-HARd-Disk, indeed, approaches an approximation ratio of 2 as n gets large.

```
Copy-from-Hard-Disk \(\left(f_{1}, f_{2}, \ldots, f_{m}, n\right)\)
(Inputs are \(m\) files \(f_{1}, f_{2}, \ldots, f_{m}\) stored on a standard hard disk \(\mathcal{D}_{i n}\) that allows both reads and writes. This function
copies as many of those files as it can to another hard disk \(\mathcal{D}_{\text {out }}\) of size \(n\) (in bytes).)
Sort the given files on \(\mathcal{D}_{i n}\) in nonincreasing order of size. Let \(f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{m}^{\prime}\) be the resulting sorted sequence.
\(n^{\prime} \leftarrow n\)
for \(i \leftarrow 1\) to \(m\) do
    if size( \(\left.f_{i}^{\prime}\right) \leq n^{\prime}\) then \(\quad\) \{check file size in bytes\}
        copy \(f_{i}^{\prime}\) to \(\mathcal{D}_{\text {out }}\)
        \(n^{\prime} \leftarrow n^{\prime}-\operatorname{size}\left(f_{i}^{\prime}\right)\)
```

Figure 1: Copy files from a disk that allows both reads and writes.
(c) [35 Points] Figure 2 shows an algorithm Copy-From-CD-ROM that copies the files from $\mathcal{D}_{\text {in }}$ to $\mathcal{D}_{\text {out }}$ assuming that $\mathcal{D}_{\text {in }}$ allows only reads (and no writes). Observe that you can no longer sort the files on $\mathcal{D}_{\text {in }}$ as it does not allow writes. Prove that Copy-From-CD-ROM achieves an approximation ratio of 2 , i.e., if an optimal algorithm can copy $n_{\text {opt }}$ bytes of files to $\mathcal{D}_{\text {out }}$, Copy-From-CD-ROM copies at least $\frac{1}{2} n_{\text {opt }}$ bytes.

```
\(\operatorname{COPY}-\) FROM-CD-ROM \(\left(f_{1}, f_{2}, \ldots, f_{m}, n\right)\)
(Inputs are \(m\) files \(f_{1}, f_{2}, \ldots, f_{m}\) stored on a CD drive \(\mathcal{D}_{i n}\) that allows only reads (and no writes). This function
copies as many of those files as it can to another hard disk \(\mathcal{D}_{\text {out }}\) of size \(n\) (in bytes).)
    1. \(n^{\prime} \leftarrow n\)
2. for \(k \leftarrow 1\) to \(\left\lceil\log _{2} n\right\rceil\) do
    for \(i \leftarrow 1\) to \(m\) do
        if size \(\left(f_{i}\right) \geq \frac{n}{2^{k}}\) and size \(\left(f_{i}\right) \leq n^{\prime}\) then \(\quad\{\) check file size in bytes \(\}\)
            copy \(f_{i}\) to \(\mathcal{D}_{\text {out }}\)
            \(n^{\prime} \leftarrow n^{\prime}-\operatorname{size}\left(f_{i}\right)\)
```

Figure 2: Copy files from a CD ROM.
(d) [20 Points] Argue that the Copy-From-CD-ROM algorithm in Figure 2 runs in $\mathcal{O}(m \log n+n)$ time. Devise an algorithm that runs in $\mathcal{O}(m+n)$ time but still achieves the same approximation ratio.

Task 2. [80 Points] Derangement Numbers

Consider the sequence of the first $k \geq 1$ consecutive positive integers: $1,2,3, \ldots, k$. The Derangement Number D_{k} is the number ways one can permutate those k integers such that for each $i \in[1, k]$, in none of the resulting permutations integer i appears at location i.
Starting from D_{1} the first 10 derangement numbers are as follows: $0,1,2,9,44,265,1854,14833$, 133496 and 1334961. As an example, all $D_{4}=9$ derangements of $\langle 1,2,3,4\rangle$ are shown below:

$$
\left[\begin{array}{llll}
2 & 1 & 4 & 3 \\
2 & 3 & 4 & 1 \\
2 & 4 & 1 & 3 \\
3 & 1 & 4 & 2 \\
3 & 4 & 1 & 2 \\
3 & 4 & 2 & 1 \\
4 & 1 & 2 & 3 \\
4 & 3 & 1 & 2 \\
4 & 3 & 2 & 1
\end{array}\right]
$$

Derangement numbers can be computed from the following recurrence:

$$
D_{k}=\left\{\begin{array}{lr}
1 & \text { if } k=0 \\
0 & \text { if } k=1 \\
(k-1) D_{k-1}+(k-1) D_{k-2} & \text { otherwise }
\end{array}\right.
$$

Describe a parallel algorithm that computes the first n derangement numbers in $\mathcal{O}\left(\frac{n}{p}+\log n\right)$ parallel time using $\Theta(n)$ space, where p is the number of processing elements ${ }^{1}$.

[^0]
[^0]: ${ }^{1}$ Please assume that the span of a parallel for loop is $\mathcal{O}(() 1+k)$, where k is the maximum span of a single iteration of the loop.

