Homework #4

Task 1. [100 Points] Copying Files

Suppose you have *m* files f_1, f_2, \ldots, f_m stored on a storage device \mathcal{D}_{in} , and you want to copy as many of them as possible to a hard disk \mathcal{D}_{out} of size *n* (in bytes). You either copy an entire file or completely skip it. Partial copies are not allowed.

- (a) [35 Points] Figure 1 shows an algorithm COPY-FROM-HARD-DISK that copies the files from \mathcal{D}_{in} to \mathcal{D}_{out} assuming that \mathcal{D}_{in} allows both reads and writes. Prove that COPY-FROM-HARD-DISK achieves an approximation ratio of 2, i.e., if an optimal algorithm can copy n_{opt} bytes of files to \mathcal{D}_{out} , COPY-FROM-HARD-DISK copies at least $\frac{1}{2}n_{opt}$ bytes.
- (b) [10 Points] Give an example for which COPY-FROM-HARD-DISK, indeed, approaches an approximation ratio of 2 as n gets large.

COPY-FROM-HARD-DISK(f_1, f_2, \ldots, f_m, n)

(Inputs are *m* files f_1, f_2, \ldots, f_m stored on a standard hard disk \mathcal{D}_{in} that allows both reads and writes. This function copies as many of those files as it can to another hard disk \mathcal{D}_{out} of size *n* (in bytes).)

1. Sort the given files on \mathcal{D}_{in} in nonincreasing order of size. Let f'_1, f'_2, \ldots, f'_m be the resulting sorted sequence. 2. $n' \leftarrow n$

3. for $i \leftarrow 1$ to m do 4. if $size(f'_i) \le n'$ then 5. $copy f'_i$ to \mathcal{D}_{out} 6. $n' \leftarrow n' - size(f'_i)$

{check file size in bytes}

Figure 1: Copy files from a disk that allows both reads and writes.

(c) [**35 Points**] Figure 2 shows an algorithm COPY-FROM-CD-ROM that copies the files from \mathcal{D}_{in} to \mathcal{D}_{out} assuming that \mathcal{D}_{in} allows only reads (and no writes). Observe that you can no longer sort the files on \mathcal{D}_{in} as it does not allow writes. Prove that COPY-FROM-CD-ROM achieves an approximation ratio of 2, i.e., if an optimal algorithm can copy n_{opt} bytes of files to \mathcal{D}_{out} , COPY-FROM-CD-ROM copies at least $\frac{1}{2}n_{opt}$ bytes.

COPY-FROM-CD-ROM($f_1, f_2, ..., f_m, n$) (Inputs are m files $f_1, f_2, ..., f_m$ stored on a CD drive \mathcal{D}_{in} that allows only reads (and no writes). This function copies as many of those files as it can to another hard disk \mathcal{D}_{out} of size n (in bytes).) 1. $n' \leftarrow n$ 2. for $k \leftarrow 1$ to $\lceil \log_2 n \rceil$ do 3. for $i \leftarrow 1$ to m do 4. if size(f_i) $\geq \frac{n}{2^k}$ and size(f_i) $\leq n'$ then {check file size in bytes} 5. copy f_i to \mathcal{D}_{out} 6. $n' \leftarrow n' - size(f_i)$

Figure 2: Copy files from a CD ROM.

(d) [20 Points] Argue that the COPY-FROM-CD-ROM algorithm in Figure 2 runs in $\mathcal{O}(m \log n + n)$ time. Devise an algorithm that runs in $\mathcal{O}(m + n)$ time but still achieves the same approximation ratio.

Task 2. [80 Points] Derangement Numbers

Consider the sequence of the first $k \ge 1$ consecutive positive integers: $1, 2, 3, \ldots, k$. The *Derange*ment Number D_k is the number ways one can permutate those k integers such that for each $i \in [1, k]$, in none of the resulting permutations integer i appears at location i.

Starting from D_1 the first 10 derangement numbers are as follows: 0, 1, 2, 9, 44, 265, 1854, 14833, 133496 and 1334961. As an example, all $D_4 = 9$ derangements of $\langle 1, 2, 3, 4 \rangle$ are shown below:

Derangement numbers can be computed from the following recurrence:

$$D_{k} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{if } k = 1, \\ (k-1) D_{k-1} + (k-1) D_{k-2} & \text{otherwise.} \end{cases}$$

Describe a parallel algorithm that computes the first n derangement numbers in $\mathcal{O}\left(\frac{n}{p} + \log n\right)$ parallel time using $\Theta(n)$ space, where p is the number of processing elements¹.

¹Please assume that the span of a *parallel for* loop is $\mathcal{O}(()1+k)$, where k is the maximum span of a single iteration of the loop.