CSE 548: Analysis of Algorithms

Lecture 31
 (Analyzing I/O and Cache Performance)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2015

Iterative Matrix-Multiply Variants

double $Z[n][n], X[n][n], Y[n][n] ;$

$I-J-K$

```
for(int i= 0;i<n; i++ )
    for (int j= 0; j<n; j++ )
        for (int k=0;k<n; k++ )
        Z[i][j] += X[i][ k] * Y[k][j];
```


$J-I-K$

```
for (int j=0; j<n; j++ )
    for (int i=0;i<n;i++)
        for (int k}=0;k<n;k++
        Z[i][j] += X[i][ k] * Y[k][j];
```

 \(K-I-J\)
 for (int \(k=0 ; k<n ; k++\))
 for (int \(i=0 ; i<n ; i++\))
 for (int \(j=0 ; j<n ; j++\))
 \(Z[i][j]+=X[i][k] * Y[k][j]\);

Performance of Iterative Matrix-Multiply Variants

Processor: 2.7 GHz Intel Xeon E5-2680 (used only one core)
Caches \& RAM: private 32KB L1, private 256KB L2, shared 20MB L3, 32 GB RAM
Optimizations: none (icc 13.0 with -OO)
$n=1000$

Running Times

L1 Cache Misses

L2 Cache Misses

$n=2000$
Running Times

L2 Cache Misses

$n=3000$
Running Times

Memory: Fast, Large \& Cheap!

For efficient computation we need

- fast processors
- fast and large (but not so expensive) memory

But memory cannot be cheap, large and fast at the same time, because of

- finite signal speed
- lack of space to put enough connecting wires

A reasonable compromise is to use a memory hierarchy.

The Memory Hierarchy

A memory hierarchy is

- almost as fast as its fastest level
- almost as large as its largest level
- inexpensive

The Memory Hierarchy

To perform well on a memory hierarchy algorithms must have high locality in their memory access patterns.

Locality of Reference

Spatial Locality: When a block of data is brought into the cache it should contain as much useful data as possible.

Temporal Locality: Once a data point is in the cache as much useful work as possible should be done on it before evicting it from the cache.

CPU-bound vs. Memory-bound Algorithms

The Op-Space Ratio: Ratio of the number of operations performed by an algorithm to the amount of space (input + output) it uses. Intuitively, this gives an upper bound on the average number of operations performed for every memory location accessed.

CPU-bound Algorithm:

- high op-space ratio
- more time spent in computing than transferring data
- a faster CPU results in a faster running time

Memory-bound Algorithm:

- low op-space ratio
- more time spent in transferring data than computing
- a faster memory system leads to a faster running time

The Two-level I/O Model

The two-level I/O model [Aggarwal \& Vitter, CACM'88] consists of:

- an internal memory of size M
- an arbitrarily large external memory partitioned into blocks of size B.

I/O complexity of an algorithm

= number of blocks transferred between these two levels
Basic I/O complexities: $\operatorname{scan}(N)=\Theta\left(\frac{N}{B}\right)$ and $\operatorname{sort}(N)=\Theta\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$
Algorithms often crucially depend on the knowledge of M and B
\Rightarrow algorithms do not adapt well when M or B changes

The Ideal-Cache Model

The ideal-cache model [Frigo et al., FOCS'99] is an extension of the I/O model with the following constraint: algorithms are not allowed to use knowledge of M and B.

Consequences of this extension

- algorithms can simultaneously adapt to all levels of a multilevel memory hierarchy
- algorithms become more flexible and portable

Algorithms for this model are known as cache-oblivious algorithms.

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
\square Optimal offline cache replacement policy
\square Exactly two levels of memory
\square Automatic replacement \& full associativity

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
\square Optimal offline cache replacement policy

- LRU \& FIFO allow for a constant factor approximation of optimal [Sleator \& Tarjan, JACM'85]
\square Exactly two levels of memory
\square Automatic replacement \& full associativity

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
\square Optimal offline cache replacement policy

- Exactly two levels of memory
- can be effectively removed by making several reasonable assumptions about the memory hierarchy [Frigo et al., FOCS'99]
\square Automatic replacement \& full associativity

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:
\square Optimal offline cache replacement policy
\square Exactly two levels of memory

- Automatic replacement \& full associativity
- in practice, cache replacement is automatic (by OS or hardware)
- fully associative LRU caches can be simulated in software with only a constant factor loss in expected performance [Frigo et al., FOCS'99]

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement \& full associativity

Often makes the following assumption, too:

- $M=\Omega\left(B^{2}\right)$, i.e., the cache is tall

The Ideal-Cache Model: Assumptions

The model makes the following assumptions:

- Optimal offline cache replacement policy
- Exactly two levels of memory
- Automatic replacement \& full associativity

Often makes the following assumption, too:
$\square M=\Omega\left(B^{2}\right)$, i.e., the cache is tall

- most practical caches are tall

The Ideal-Cache Model: I/O Bounds

Cache-oblivious vs. cache-aware bounds:
\square Basic I/O bounds (same as the cache-aware bounds):

$$
\begin{aligned}
& -\quad \operatorname{scan}(N)=\Theta\left(\frac{N}{B}\right) \\
& -\quad \operatorname{sort}(N)=\Theta\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)
\end{aligned}
$$

\square Most cache-oblivious results match the I/O bounds of their cache-aware counterparts
\square There are few exceptions; e.g., no cache-oblivious solution to the permutation problem can match cacheaware I/O bounds [Brodal \& Fagerberg, STOC’03]

Some Known Cache Aware / Oblivious Results

Problem	Cache-Aware Results	Cache-Oblivious Results
Array Scanning (scan(N))	$o\left(\frac{N}{B}\right)$	$O\left(\frac{N}{B}\right)$
Sorting (sort(N))	$O\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$	$O\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$
Selection	$O(\operatorname{scan}(N))$	$O(\operatorname{scan}(N))$
B-Trees [Am] (Insert, Delete)	$o\left(\log _{B} \frac{N}{B}\right)$	$O\left(\log _{B} \frac{N}{B}\right)$
Priority Queue [Am] (Insert, Weak Delete, Delete-Min)	$O\left(\frac{1}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$	$O\left(\frac{1}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$
Matrix Multiplication	$o\left(\frac{N^{3}}{B \sqrt{M}}\right)$	$o\left(\frac{N^{3}}{\boldsymbol{B} \sqrt{M}}\right)$
Sequence Alignment	$o\left(\frac{N^{2}}{B M}\right)$	$o\left(\frac{N^{2}}{B M}\right)$
Single Source Shortest Paths	$O\left(\left(V+\frac{E}{B}\right) \cdot \log _{2} \frac{V}{B}\right)$	$O\left(\left(V+\frac{E}{B}\right) \cdot \log _{2} \frac{V}{B}\right)$
Minimum Spanning Forest	$O\left(\min \left(\operatorname{sort}(E) \log _{2} \log _{2} V, V+\operatorname{sort}(E)\right)\right)$	$O\left(\min \left(\operatorname{sort}(E) \log _{2} \log _{2} \frac{V B}{E}, V+\operatorname{sort}(E)\right)\right)$

Table 1: $N=\#$ elements, $V=\#$ vertices, $E=\#$ edges, Am = Amortized.

Matrix
 Multiplication

Iterative Matrix Multiplication

$$
z_{i j}=\sum_{k=1}^{n} x_{i k} y_{k j}
$$

\boldsymbol{z}_{11}	z_{12}	\cdots	$\boldsymbol{z}_{1 n}$
\boldsymbol{z}_{21}	\boldsymbol{z}_{22}	\cdots	$\boldsymbol{z}_{2 n}$
\vdots	\vdots	\ddots	\vdots
$\boldsymbol{z}_{n 1}$	$\boldsymbol{z}_{n 2}$	\cdots	$\boldsymbol{z}_{n n}$

\boldsymbol{x}_{21} \& \boldsymbol{x}_{22} \& \cdots \& \boldsymbol{x}_{2 n}

\vdots \& \vdots \& \ddots \& \vdots

\boldsymbol{x}_{n 1} \& \boldsymbol{x}_{n 2} \& \cdots \& \boldsymbol{x}_{n n}\end{array} \quad \times \quad $$
\begin{array}{|cccc|}\boldsymbol{y}_{11} & \boldsymbol{y}_{12} & \cdots & \boldsymbol{y}_{1 n} \\
\boldsymbol{y}_{21} & \boldsymbol{y}_{22} & \cdots & \boldsymbol{y}_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\boldsymbol{y}_{n 1} & \boldsymbol{y}_{n 2} & \cdots & \boldsymbol{y}_{n n} \\
\hline\end{array}
$$\right.\)

Iter-MM (X, Y, Z, n)

1. for $i \leftarrow 1$ to n do
2. for $j \leftarrow 1$ to n do
3. for $k \leftarrow 1$ to n do
4.

$$
z_{i j} \leftarrow z_{i j}+x_{i k} \times y_{k j}
$$

Iterative Matrix Multiplication

$$
\begin{array}{ll}
\text { Iter-MM }(X, Y, Z, n) \\
\text { 1. } & \text { for } i \leftarrow 1 \text { to } n \text { do } \\
\text { 2. } & \text { for } j \leftarrow 1 \text { to } n \text { do } \\
\text { 3. } & \text { for } k \leftarrow 1 \text { to } n \text { do } \\
\text { 4. } & z_{i j} \leftarrow z_{i j}+x_{i k} \times y_{k j}
\end{array}
$$

store in row-major order			
\boldsymbol{y}_{11} \boldsymbol{y}_{12} \cdots $\boldsymbol{y}_{1 n}$ \boldsymbol{y}_{21} \boldsymbol{y}_{22} \cdots $\boldsymbol{y}_{2 n}$ \vdots \vdots \ddots \vdots $\boldsymbol{y}_{n 1}$ $y_{n 2}$ \cdots $\boldsymbol{y}_{n n}$			

Each iteration of the for loop in line 3 incurs $O(n)$ cache misses.
I/O-complexity of Iter-MM, $\mathrm{Q}(n)=\mathrm{O}\left(n^{3}\right)$

Iterative Matrix Multiplication

$$
\begin{aligned}
& \text { Iter-MM }(X, Y, Z, n) \\
& \begin{array}{ll}
\text { 1. for } i \leftarrow 1 \text { to } n \text { do } \\
\text { 2. } & \text { for } j \leftarrow 1 \text { to } n \text { do } \\
\text { 3. } & \text { for } k \leftarrow 1 \text { to } n \text { do } \\
\text { 4. } & z_{i j} \leftarrow z_{i j}+x_{i k} \times y_{k j}
\end{array}
\end{aligned}
$$

store in

row-major order \begin{tabular}{|cccc}
\hline \boldsymbol{z}_{11} \& \mathbf{z}_{12} \& \cdots \& $\boldsymbol{z}_{1 n}$

\boldsymbol{z}_{21} \& \boldsymbol{z}_{22} \& \cdots \& $\boldsymbol{z}_{2 n}$

\vdots \& \vdots \& \ddots \& \vdots

$\boldsymbol{z}_{n 1}$ \& $\boldsymbol{z}_{n 2}$ \& \cdots \& $\boldsymbol{z}_{n n}$

$=$

\hline \boldsymbol{x}_{11} \& \boldsymbol{x}_{12} \& \cdots \& $\boldsymbol{x}_{1 n}$

X_{21} \& \boldsymbol{X}_{22} \& \cdots \& $\boldsymbol{x}_{2 n}$

\vdots \& \vdots \& \ddots \& \vdots

$\boldsymbol{x}_{n 1}$ \& $\boldsymbol{x}_{n 2}$ \& \cdots \& $\boldsymbol{x}_{n n}$

\hline
\end{tabular}

store in column-major order

\boldsymbol{y}_{11}	\boldsymbol{y}_{12}	\cdots	$\boldsymbol{y}_{1 n}$
\boldsymbol{y}_{21}	\boldsymbol{y}_{22}	\cdots	$\boldsymbol{y}_{2 n}$
\vdots	\vdots	\ddots	\vdots
$\boldsymbol{y}_{n 1}$	$y_{n 2}$	\cdots	$\boldsymbol{y}_{n n}$

Each iteration of the for loop in line 3 incurs $O\left(1+\frac{n}{B}\right)$ cache misses.
I/O-complexity of Iter-MM, $Q(n)=O\left(n^{2}\left(1+\frac{n}{B}\right)\right)=O\left(\frac{n^{3}}{B}+n^{2}\right)$

Block Matrix Multiplication

Block-MM (X, Y, Z, n)

1. for $i \leftarrow 1$ to n / m do
2. for $j \leftarrow 1$ to n / m do
3. for $k \leftarrow 1$ to n / m do
4. Iter-MM $\left(X_{i k}, Y_{k j}, Z_{i j}\right)$

Block Matrix Multiplication

$$
\begin{aligned}
& \text { Block-MM (} X, Y, Z, n) \\
& \text { 1. for } i \leftarrow 1 \text { to } n / m \text { do } \\
& \text { 2. for } j \leftarrow 1 \text { to } n / m \text { do } \\
& \text { 3. } \\
& \begin{array}{ll}
\text { 4. } & \text { for } k \leftarrow 1 \text { to } n / m \text { do } \\
\text { 4ter-MM }\left(X_{i k}, Y_{k j}, Z_{i j}\right)
\end{array}
\end{aligned}
$$

Choose $m=\sqrt{M / 3}$, so that $X_{i k}, Y_{k j}$ and $Z_{i j}$ just fit into the cache.
Then line 4 incurs $\Theta\left(m\left(1+\frac{m}{B}\right)\right)$ cache misses.
I/O-complexity of Block-MM [assuming a tall cache, i.e., $M=\Omega\left(B^{2}\right)$]

$$
=\Theta\left(\left(\frac{n}{m}\right)^{3}\left(m+\frac{m^{2}}{B}\right)\right)=\Theta\left(\frac{n^{3}}{m^{2}}+\frac{n^{3}}{B m}\right)=\Theta\left(\frac{n^{3}}{M}+\frac{n^{3}}{B \sqrt{M}}\right)=\Theta\left(\frac{n^{3}}{B \sqrt{M}}\right)
$$

(Optimal: Hong \& Kung, STOC’81)

Block Matrix Multiplication

Block-MM (X, Y, Z, n)

1. for $i \leftarrow 1$ to n / m do
2. for $j \leftarrow 1$ to n / m do
3. for $k \leftarrow 1$ to n / m do
4. Iter-MM ($\left.X_{i k}, Y_{k j}, Z_{i j}\right)$
 Optimal for any algorithm that performs the operations given by the following The definition of matrix multiplication: ses.
I/O $\quad \mathbf{z}_{i j}=\sum_{k=1}^{n} \boldsymbol{x}_{i k} \boldsymbol{y}_{k j} \quad$ cache, i.e., $\left.M=\Omega\left(B^{2}\right)\right]$
$=\Theta\left(\left(\frac{n}{m}\right)^{3}\left(m+\frac{m^{2}}{B}\right)\right)=\Theta\left(\frac{n}{m^{2}}+\cdots\left(\frac{n^{3}}{M m}+\frac{n^{3}}{B \sqrt{M}}\right)=\Theta\left(\frac{n^{3}}{B \sqrt{M}}\right)\right.$
(Optimal: Hong \& Kung, STOC'81)

Multiple Levels of Cache

n

Multiple Levels of Cache

Multiple Levels of Cache

Recursive Matrix Multiplication

Recursive Matrix Multiplication

$\operatorname{Rec}-M M(Z, X, Y)$

1. if $Z \equiv 1 \times 1$ matrix then $Z \leftarrow Z+X \cdot Y$
2. else
3. $\operatorname{Rec}-M M\left(Z_{11}, X_{11}, Y_{11}\right)$, $\operatorname{Rec}-M M\left(Z_{11}, X_{12}, Y_{21}\right)$
4. $\operatorname{Rec}-M M\left(Z_{12}, X_{12}, Y_{12}\right)$, $\operatorname{Rec}-M M\left(Z_{12}, X_{12}, Y_{22}\right)$
5. $\operatorname{Rec}-M M\left(Z_{21}, X_{21}, Y_{11}\right), \operatorname{Rec}-M M\left(Z_{21}, X_{22}, Y_{21}\right)$
6. $\operatorname{Rec}-M M\left(Z_{22}, X_{21}, Y_{12}\right), \operatorname{Rec}-M M\left(Z_{22}, X_{22}, Y_{22}\right)$

Recursive Matrix Multiplication

$\operatorname{Rec}-M M(Z, X, Y)$

1. if $Z \equiv 1 \times 1$ matrix then $Z \leftarrow Z+X \cdot Y$
2. else
3. $\operatorname{Rec}-M M\left(Z_{11}, X_{11}, Y_{11}\right)$, $\operatorname{Rec}-M M\left(Z_{11}, X_{12}, Y_{21}\right)$
4. $\operatorname{Rec}-M M\left(Z_{12}, X_{12}, Y_{12}\right)$, $\operatorname{Rec}-M M\left(Z_{12}, X_{12}, Y_{22}\right)$
5. $\operatorname{Rec}-M M\left(Z_{21}, X_{21}, Y_{11}\right), \operatorname{Rec}-M M\left(Z_{21}, X_{22}, Y_{21}\right)$
6. $\operatorname{Rec}-M M\left(Z_{22}, X_{21}, Y_{12}\right), \operatorname{Rec}-M M\left(Z_{22}, X_{22}, Y_{22}\right)$

I/O-complexity (for $n>M$), $Q(n)= \begin{cases}0\left(n+\frac{n^{2}}{B}\right), & \text { if } n^{2} \leq \alpha M \\ 8 Q\left(\frac{n}{2}\right)+0(1), & \text { otherwise }\end{cases}$

$$
=0\left(\frac{n^{3}}{M}+\frac{n^{3}}{B \sqrt{M}}\right)=0\left(\frac{n^{3}}{B \sqrt{M}}\right), \text { when } M=\Omega\left(B^{2}\right)
$$

I/O-complexity (for all n) $=0\left(\frac{n^{3}}{B \sqrt{M}}+\frac{n^{2}}{B}+1\right) \quad$ (why?)

Recursive Matrix Multiplication with Z-Morton Layout

Source: wikipedia

Recursive Matrix Multiplication with Z-Morton Layout

$\operatorname{Rec}-M M(Z, X, Y)$

1. if $Z \equiv 1 \times 1$ matrix then $Z \leftarrow Z+X \cdot Y$
2. else
3. $\operatorname{Rec}-M M\left(Z_{11}, X_{11}, Y_{11}\right), \operatorname{Rec}-M M\left(Z_{11}, X_{12}, Y_{21}\right)$
4. $\operatorname{Rec}-M M\left(Z_{12}, X_{12}, Y_{12}\right)$, $\operatorname{Rec}-M M\left(Z_{12}, X_{12}, Y_{22}\right)$
5. $\operatorname{Rec}-M M\left(Z_{21}, X_{21}, Y_{11}\right), \operatorname{Rec}-M M\left(Z_{21}, X_{22}, Y_{21}\right)$
6. $\operatorname{Rec}-M M\left(Z_{22}, X_{21}, Y_{12}\right), \operatorname{Rec}-M M\left(Z_{22}, X_{22}, Y_{22}\right)$

I/O-complexity (for $n>M), Q(n)= \begin{cases}0\left(1+\frac{n^{2}}{B}\right), & \text { if } n^{2} \leq \alpha M \\ 8 Q\left(\frac{n}{2}\right)+O(1), & \text { otherwise }\end{cases}$

$$
=0\left(\frac{n^{3}}{M \sqrt{M}}+\frac{n^{3}}{B \sqrt{M}}\right)=0\left(\frac{n^{3}}{B \sqrt{M}}\right), \text { when } M=\Omega(B)
$$

I/O-complexity (for all n) $=0\left(\frac{n^{3}}{B \sqrt{M}}+\frac{n^{2}}{B}+1\right)$

Recursive Matrix Multiplication with Z-Morton Layout

Source: wikipedia

Searching (Static B-Trees)

A Static Search Tree

\square A perfectly balanced binary search tree
\square Static: no insertions or deletions
\square Height of the tree, $h=\Theta\left(\log _{2} n\right)$

A Static Search Tree

- A perfectly balanced binary search tree
\square Static: no insertions or deletions
Height of the tree, $h=\Theta\left(\log _{2} n\right)$
A search path visits $\mathrm{O}(h)$ nodes, and incurs $\mathrm{O}(h)=\mathrm{O}\left(\log _{2} n\right) \mathrm{I} / \mathrm{Os}$

I/O-Efficient Static B-Trees

- Each node stores B keys, and has degree $B+1$
- Height of the tree, $h=\Theta\left(\log _{B} n\right)$

I/O-Efficient Static B-Trees

- Each node stores B keys, and has degree $B+1$
- Height of the tree, $h=\Theta\left(\log _{B} n\right)$
[A search path visits $O(h)$ nodes, and incurs $O(h)=O\left(\log _{B} n\right)$ I/Os

Cache-Oblivious Static B-Trees?

van Emde Boas Layout

van Emde Boas Layout

| A | B_{1} | B_{2} | \ldots |
| :--- | :--- | :--- | :--- | :--- |

If the tree contains n nodes, each subtree contains $\Theta\left(2^{h / 2}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$.

van Emde Boas Layout

| A | B_{1} | B_{2} | \ldots |
| :--- | :--- | :--- | :--- | :--- |

Recursive Subdivision
If the tree contains n nodes, each subtree contains $\Theta\left(2^{h / 2}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$.

van Emde Boas Layout

A	B_{1}	B_{2}	$\ldots \ldots \ldots \ldots \ldots \ldots$	B_{k}

Recursive Subdivision
If the tree contains n nodes, each subtree contains $\Theta\left(2^{h / 2}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$.

van Emde Boas Layout

A	B_{1}	B_{2}	$\ldots \ldots \ldots \ldots \ldots$	B_{k}

Recursive Subdivision
If the tree contains n nodes, each subtree contains $\Theta\left(2^{h / 2}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$.

van Emde Boas Layout

\boldsymbol{A}	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\ldots \ldots$.	$\boldsymbol{B}_{\boldsymbol{k}}$

Recursive Subdivision
If the tree contains n nodes, each subtree contains $\Theta\left(2^{h / 2}\right)=\Theta(\sqrt{n})$ nodes, and $k=\Theta(\sqrt{n})$.

1/O-Complexity of a Search

1/O-Complexity of a Search

$\square p=$ number of \triangle 's visited by a search path
\square Then $p \geq \frac{\log n}{\log B}=\log _{B} n$, and $p \leq \frac{\log n}{\frac{1}{2} \log B}=2 \log _{B} n$
\square The number of blocks transferred is $\leq 2 \times 2 \log _{B} n=4 \log _{B} n$

Sorting (Mergesort)

Merge Sort

Merge-Sort $(A, p, r) \quad\{$ sort the elements in $A[p \ldots r]\}$

1. if $p<r$ then
2. $\quad q \leftarrow\lfloor(p+r) / 2\rfloor$
3. Merge-Sort ($A, p, q)$
4. Merge-Sort ($A, q+1, r)$
5. Merge ($A, p, q, r)$

Merging k Sorted Sequences

- $k \geq 2$ sorted sequences $S_{1}, S_{2}, \ldots, S_{k}$ stored in external memory
- $\left|S_{i}\right|=n_{i}$ for $1 \leq i \leq k$
- $n=n_{1}+n_{2}+\cdots+n_{k}$ is the length of the merged sequence S
- S (initially empty) will be stored in external memory
- Cache must be large enough to store
- one block from each S_{i}
- one block from S

Thus $M \geq(k+1) B$

Merging k Sorted Sequences

- Let \mathcal{B}_{i} be the cache block associated with S_{i}, and let \mathcal{B} be the block associated with S (initially all empty)
- Whenever a \mathcal{B}_{i} is empty fill it up with the next block from S_{i}
- Keep transferring the next smallest element among all \mathcal{B}_{i} s to \mathcal{B}
- Whenever \mathcal{B} becomes full, empty it by appending it to S
- In the Ideal Cache Model the block emptying and replacements will happen automatically \Rightarrow cache-oblivious merging

I/O Complexity

- Reading S_{i} : \#block transfers $\leq 2+\frac{n_{i}}{B}$
- Writing S : \#block transfers $\leq 1+\frac{n}{B}$
- Total \#block transfers $\leq 1+\frac{n}{B}+\sum_{1 \leq i \leq k}\left(2+\frac{n_{i}}{B}\right)=0\left(k+\frac{n}{B}\right)$

Cache-Oblivious 2-Way Merge Sort

```
Merge-Sort (A,p,r) { sort the elements in A[p ...r]}
```

1. if $p<r$ then
2. $q \leftarrow\lfloor(p+r) / 2\rfloor$
3. Merge-Sort ($A, p, q)$
4. Merge-Sort ($A, q+1, r)$
5. Merge ($A, p, q, r)$

I/O Complexity: $Q(n)= \begin{cases}\mathrm{O}\left(1+\frac{n}{B}\right), & \text { if } n \leq M, \\ 2 Q\left(\frac{n}{2}\right)+\mathrm{O}\left(1+\frac{n}{B}\right), & \text { otherwise } .\end{cases}$

$$
=\mathrm{O}\left(\frac{n}{B} \log \frac{n}{M}\right)
$$

How to improve this bound?

Cache-Oblivious k-Way Merge Sort

I/O Complexity: $Q(n)= \begin{cases}O\left(1+\frac{n}{B}\right), & \text { if } n \leq M, \\ k \cdot Q\left(\frac{n}{k}\right)+\mathrm{O}\left(k+\frac{n}{B}\right), & \text { otherwise. }\end{cases}$

$$
=\mathrm{O}\left(k \cdot \frac{n}{M}+\frac{n}{B} \log _{k} \frac{n}{M}\right)
$$

How large can k be?
Recall that for k-way merging, we must ensure

$$
M \geq(k+1) B \Rightarrow k \leq \frac{M}{B}-1
$$

Cache-Aware $\left(\frac{M}{B}-1\right)$-Way Merge Sort
I/O Complexity: $Q(n)= \begin{cases}\mathrm{O}\left(1+\frac{n}{B}\right), & \text { if } n \leq M, \\ k \cdot Q\left(\frac{n}{k}\right)+\mathrm{O}\left(k+\frac{n}{B}\right), & \text { otherwise. }\end{cases}$

$$
=\mathrm{O}\left(k \cdot \frac{n}{M}+\frac{n}{B} \log _{k} \frac{n}{M}\right)
$$

Using $k=\frac{M}{B}-1$, we get:

$$
Q(n)=\mathrm{O}\left(\left(\frac{M}{B}-1\right) \frac{n}{M}+\frac{n}{B} \log _{\frac{M}{B}}\left(\frac{n}{M}\right)\right)=\mathrm{O}\left(\frac{n}{B} \log _{\frac{M}{B}}\left(\frac{n}{M}\right)\right)
$$

Sorting (Funnelsort)

k-Merger (k-Funnel)

Memory layout of a k-merger:

R	L_{1}	B_{1}	L_{2}	B_{2}	$L_{\sqrt{k}}$	B

k-Merger (k-Funnel)

Space usage of a k-merger: $S(k)=\left\{\begin{array}{lc}\Theta(1), & \text { if } k \leq 2, \\ (\sqrt{k}+1) S(\sqrt{k})+\Theta\left(k^{2}\right), & \text { otherwise } .\end{array}\right.$ $=\Theta\left(k^{2}\right)$

A k-merger occupies $\Theta\left(k^{2}\right)$ contiguous locations.

k-Merger (k-Funnel)

Each invocation of a k-merger

- produces a sorted sequence of length k^{3}
- incurs $\mathrm{O}\left(1+k+\frac{k^{3}}{B}+\frac{k^{3}}{B} \log _{M}\left(\frac{k}{B}\right)\right)$ cache misses provided $M=\Omega\left(B^{2}\right)$

k-Merger (k-Funnel)

Cache-complexity:

$$
\begin{aligned}
Q^{\prime}(k) & = \begin{cases}O\left(1+k+\frac{k^{3}}{B}\right), & \text { if } k<\alpha \sqrt{M}, \\
\left(2 k^{\frac{3}{2}}+2 \sqrt{k}\right)_{Q^{\prime}}(\sqrt{k})+\Theta\left(k^{2}\right), & \text { otherwise. }\end{cases} \\
& =\mathrm{O}\left(\frac{k^{3}}{B} \log _{M}\left(\frac{k}{B}\right)\right), \quad \text { provided } M=\Omega\left(B^{2}\right)
\end{aligned}
$$

k-Merger (k-Funnel)

Memory layout of a k-merger:

R	L_{1}	B_{1}	L_{2}	B_{2}

Cache-complexity:

$$
\begin{aligned}
Q^{\prime}(k) & = \begin{cases}\mathrm{O}\left(1+k+\frac{k^{3}}{B}\right), & \text { if } k<\alpha \sqrt{M} \\
\left(2 k^{\frac{3}{2}}+2 \sqrt{k}\right)\end{cases} \\
& =\mathrm{O}\left(\frac{k^{3}}{B} \log _{M}\left(\frac{k}{B}\right)\right), \quad \text { provided } M=\Omega\left(B^{2}\right)
\end{aligned}
$$

$$
k<\alpha \sqrt{M}: Q^{\prime}(k)=\mathrm{O}\left(1+k+\frac{k^{3}}{B}\right)
$$

- Let r_{i} be \#items extracted the i-th input queue. Then $\sum_{i=1}^{k} r_{i}=\mathrm{O}\left(k^{3}\right)$.
- Since $k<\alpha \sqrt{M}$ and $M=\Omega\left(B^{2}\right)$, at least $\frac{M}{B}=\Omega(k)$ cache blocks are available for the input buffers.
- Hence, \#cache-misses for accessing the input queues (assuming circular buffers) $=\sum_{i=1}^{k} \mathrm{O}\left(1+\frac{r_{i}}{B}\right)=\mathrm{O}\left(k+\frac{k^{3}}{B}\right)$

k-Merger (k-Funnel)

Memory layout of a k-merger:

| R | L_{1} | B_{1} | L_{2} | B_{2} |
| :--- | :--- | :--- | :--- | :--- | :--- |

Cache-complexity:

$$
\begin{aligned}
Q^{\prime}(k) & = \begin{cases}\mathrm{O}\left(1+k+\frac{k^{3}}{B}\right), & \text { if } k<\alpha \sqrt{M} \\
\left(2 k^{\frac{3}{2}}+2 \sqrt{k}\right) Q^{\prime}(\sqrt{k})+\Theta\left(k^{2}\right), & \text { otherwise }\end{cases} \\
& =\mathrm{O}\left(\frac{k^{3}}{B} \log _{M}\left(\frac{k}{B}\right)\right), \quad \text { provided } M=\Omega\left(B^{2}\right)
\end{aligned}
$$

$$
k<\alpha \sqrt{M}: Q^{\prime}(k)=\mathrm{O}\left(1+k+\frac{k^{3}}{B}\right)
$$

- \#cache-misses for accessing the input queues $=\mathrm{O}\left(k+\frac{k^{3}}{B}\right)$
- \#cache-misses for writing the output queue $=\mathrm{O}\left(1+\frac{k^{3}}{B}\right)$
- \#cache-misses for touching the internal data structures $=\mathrm{O}\left(1+\frac{k^{2}}{B}\right)$
- Hence, total \#cache-misses $=\mathrm{O}\left(1+k+\frac{k^{3}}{B}\right)$

k-Merger (k-Funnel)

$k \geq \alpha \sqrt{M}: Q^{\prime(k)}=\left(2 k^{\frac{3}{2}}+2 \sqrt{k}\right) Q^{\prime}(\sqrt{k})+\Theta\left(k^{2}\right)$

- Each call to R outputs $k^{\frac{3}{2}}$ items. So, \#times merger R is called $=\frac{k^{3}}{k^{\frac{3}{2}}}=k^{\frac{3}{2}}$
- Each call to an L_{i} puts $k^{\frac{3}{2}}$ items into B_{i}. Since k^{3} items are output, and the buffer space is $\sqrt{k} \times 2 k^{\frac{3}{2}}=2 k^{2}$, \#times the L_{i} 's are called $\leq k^{\frac{3}{2}}+2 \sqrt{k}$
- Before each call to R, the merger must check each L_{i} for emptiness, and thus incurring $\mathrm{O}(\sqrt{k})$ cache-misses. So, \#such cache-misses $=k^{\frac{3}{2}} \times \mathrm{O}(\sqrt{k})=\mathrm{O}\left(k^{2}\right)$

Funnelsort

- Split the input sequence A of length n into $n^{\frac{1}{3}}$ contiguous subsequences $A_{1}, A_{2}, \ldots, A_{n^{\frac{1}{3}}}$ of length $n^{\frac{2}{3}}$ each
- Recursively sort each subsequence
- Merge the $n^{\frac{1}{3}}$ sorted subsequences using a $n^{\frac{1}{3}}$-merger

Cache-complexity:

$$
\begin{aligned}
Q(n) & = \begin{cases}\mathrm{O}\left(1+\frac{n}{B}\right), & \text { if } n \leq M, \\
n^{\frac{1}{3}} Q\left(n^{\frac{2}{3}}\right)+Q^{\prime}\left(n^{\frac{1}{3}}\right), & \text { otherwise } .\end{cases} \\
& = \begin{cases}\mathrm{O}\left(1+\frac{n}{B}\right), & \text { if } n \leq M, \\
n^{\frac{1}{3}} Q\left(n^{\frac{2}{3}}\right)+\mathrm{O}\left(\frac{n}{B} \log _{M}\left(\frac{n}{B}\right)\right), & \text { otherwise } .\end{cases} \\
& =\mathrm{O}\left(1+\frac{n}{B} \log _{M} n\right)
\end{aligned}
$$

