CSE 548: Analysis of Algorithms

Lecture 4
 (Divide-and-Conquer Algorithms: Polynomial Multiplication)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2015

Coefficient Representation of Polynomials

$$
\begin{aligned}
A(x) & =\sum_{j=0}^{n-1} a_{j} x^{j} \\
& =a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
\end{aligned}
$$

$A(x)$ is a polynomial of degree bound n represented as a vector $a=\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ of coefficients.

The degree of $A(x)$ is k provided it is the largest integer such that a_{k} is nonzero. Clearly, $0 \leq k \leq n-1$.

Evaluating $\boldsymbol{A}(\boldsymbol{x})$ at a given point:
Takes $\Theta(n)$ time using Horner's rule:

$$
\begin{aligned}
A\left(x_{0}\right) & =a_{0}+a_{1} x_{0}+a_{2}\left(x_{0}\right)^{2}+\cdots+a_{n-1}\left(x_{0}\right)^{n-1} \\
& =a_{0}+x_{0}\left(a_{1}+x_{0}\left(a_{2}+\cdots+x_{0}\left(a_{n-2}+x_{0}\left(a_{n-1}\right)\right) \cdots\right)\right)
\end{aligned}
$$

Coefficient Representation of Polynomials

Adding Two Polynomials:
Adding two polynomials of degree bound n takes $\Theta(n)$ time.

$$
C(x)=A(x)+B(x)
$$

where, $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$ and $B(x)=\sum_{j=0}^{n-1} b_{j} x^{j}$.
Then $C(x)=\sum_{j=0}^{n-1} c_{j} x^{j}$, where, $c_{j}=a_{j}+b_{j}$ for $0 \leq j \leq n-1$.

Coefficient Representation of Polynomials

Multiplying Two Polynomials:

The product of two polynomials of degree bound n is another polynomial of degree bound $2 n-1$.

$$
C(x)=A(x) B(x)
$$

where, $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$ and $B(x)=\sum_{j=0}^{n-1} b_{j} x^{j}$.
Then $C(x)=\sum_{j=0}^{2 n-2} c_{j} x^{j}$, where, $c_{j}=\sum_{k=0}^{j} a_{k} b_{j-k}$ for $0 \leq j \leq 2 n-2$.
The coefficient vector $c=\left(c_{0}, c_{1}, \cdots, c_{2 n-2}\right)$, denoted by $c=a \otimes b$, is also called the convolution of vectors $a=\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ and $b=\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)$.
Clearly, straightforward evaluation of c takes $\Theta\left(n^{2}\right)$ time.

Convolution

$$
\begin{aligned}
b_{3} x^{3} & +\boxed{a_{0}}+\boxed{b_{1} x}+\boxed{a_{1} x}+\boxed{a_{2} x^{2}}+\boxed{a_{3} x^{3}} \\
& +\boxed{b_{0}} \\
&
\end{aligned}
$$

Convolution

Convolution

Convolution

Convolution

Convolution

Convolution

Coefficient Representation of Polynomials

Multiplying Two Polynomials:

We can use Karatsuba's algorithm (assume n to be a power of 2):

$$
\begin{aligned}
& A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}=\sum_{j=0}^{\frac{n}{2}-1} a_{j} x^{j}+x^{\frac{n}{2}} \sum_{j=0}^{\frac{n}{2}-1} a_{\frac{n}{2}+j} x^{j}=A_{1}(x)+x^{\frac{n}{2}} A_{2}(x) \\
& B(x)=\sum_{j=0}^{n-1} b_{j} x^{j}=\sum_{j=0}^{\frac{n}{2}-1} b_{j} x^{j}+x^{\frac{n}{2}} \sum_{j=0}^{\frac{n}{2}-1} b_{\frac{n}{2}+j} x^{j}=B_{1}(x)+x^{\frac{n}{2}} B_{2}(x)
\end{aligned}
$$

Then $C(x)=A(x) B(x)$

$$
=A_{1}(x) B_{1}(x)+x^{\frac{n}{2}}\left[A_{1}(x) B_{2}(x)+A_{2}(x) B_{1}(x)\right]+x^{n} A_{2}(x) B_{2}(x)
$$

But $A_{1}(x) B_{2}(x)+A_{2}(x) B_{1}(x)$

$$
=\left[A_{1}(x)+A_{2}(x)\right]\left[B_{1}(x)+B_{2}(x)\right]-A_{1}(x) B_{1}(x)-A_{2}(x) B_{2}(x)
$$

3 recursive multiplications of polynomials of degree bound $\frac{n}{2}$.
Similar recurrence as in Karatsuba's integer multiplication algorithm leading to a complexity of $\mathrm{O}\left(n^{\log _{2} 3}\right)=\mathrm{O}\left(n^{1.59}\right)$.

Point-Value Representation of Polynomials

A point-value representation of a polynomial $A(x)$ is a set of n pointvalue pairs $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$ such that all x_{k} are distinct and $y_{k}=A\left(x_{k}\right)$ for $0 \leq k \leq n-1$.

A polynomial has many point-value representations.

Adding Two Polynomials:

Suppose we have point-value representations of two polynomials of degree bound n using the same set of n points.

$$
\begin{gathered}
A:\left\{\left(x_{0}, y_{0}^{a}\right),\left(x_{1}, y_{1}^{a}\right), \ldots,\left(x_{n-1}, y_{n-1}^{a}\right)\right\} \\
B:\left\{\left(x_{0}, y_{0}^{b}\right),\left(x_{1}, y_{1}^{b}\right), \ldots,\left(x_{n-1}, y_{n-1}^{b}\right)\right\} \\
\text { If } C(x)=A(x)+B(x) \text { then } \\
C:\left\{\left(x_{0}, y_{0}^{a}+y_{0}^{b}\right),\left(x_{1}, y_{1}^{a}+y_{1}^{b}\right), \ldots,\left(x_{n-1}, y_{n-1}^{a}+y_{n-1}^{b}\right)\right\}
\end{gathered}
$$

Thus polynomial addition takes $\Theta(n)$ time.

Point-Value Representation of Polynomials

Multiplying Two Polynomials:

Suppose we have extended (why?) point-value representations of two polynomials of degree bound n using the same set of $2 n$ points.

$$
\begin{aligned}
& A:\left\{\left(x_{0}, y_{0}^{a}\right),\left(x_{1}, y_{1}^{a}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}^{a}\right)\right\} \\
& B:\left\{\left(x_{0}, y_{0}^{b}\right),\left(x_{1}, y_{1}^{b}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}^{b}\right)\right\}
\end{aligned}
$$

If $C(x)=A(x) B(x)$ then

$$
C:\left\{\left(x_{0}, y_{0}^{a} y_{0}^{b}\right),\left(x_{1}, y_{1}^{a} y_{1}^{b}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}^{a} y_{2 n-1}^{b}\right)\right\}
$$

Thus polynomial multiplication also takes only $\Theta(n)$ time! (compare this with the $\Theta\left(n^{2}\right)$ time needed in the coefficient form)

Faster Polynomial Multiplication? (in Coefficient Form)

ordinary

Faster Polynomial Multiplication? (in Coefficient Form)

Coefficient Representation \Rightarrow Point-Value Representation:
We select any set of n distinct points $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$, and evaluate $A\left(x_{k}\right)$ for $0 \leq k \leq n-1$.

Using Horner's rule this approach takes $\Theta\left(n^{2}\right)$ time.

Point-Value Representation \Rightarrow Coefficient Representation:
We can interpolate using Lagrange's formula:

$$
A(x)=\sum_{k=0}^{n-1} \frac{\prod_{j \neq k}\left(x-x_{j}\right)}{\prod_{j \neq k}\left(x_{k}-x_{j}\right)} y_{k}
$$

This again takes $\Theta\left(n^{2}\right)$ time.
In both cases we need to do much better!

Coefficient Form \Rightarrow Point-Value Form

A polynomial of degree bound $n: A(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$
A set of n distinct points: $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$
Compute point-value form: $\left\{\left(x_{0}, A\left(x_{0}\right)\right),\left(x_{1}, A\left(x_{1}\right)\right), \ldots,\left(x_{n-1}, A\left(x_{n-1}\right)\right)\right\}$
Using matrix notation: $\left[\begin{array}{c}A\left(x_{0}\right) \\ A\left(x_{1}\right) \\ \cdot \\ \cdot \\ \cdot \\ A\left(x_{n-1}\right)\end{array}\right]=\left[\begin{array}{ccccc}1 & x_{0} & \left(x_{0}\right)^{2} & \cdots & \left(x_{0}\right)^{n-1} \\ 1 & x_{1} & \left(x_{1}\right)^{2} & \cdots & \left(x_{1}\right)^{n-1} \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ 1 & x_{n-1} & \left(x_{n-1}\right)^{2} & \cdots & \left(x_{n-1}\right)^{n-1}\end{array}\right]\left[\begin{array}{c}a_{0} \\ a_{1} \\ \cdot \\ \cdot \\ \cdot \\ a_{n-1}\end{array}\right]$
We want to choose the set of points in a way that simplifies the multiplication.

In the rest of the lecture on this topic we will assume:
\boldsymbol{n} is a power of 2.

Coefficient Form \Rightarrow Point-Value Form

Let's choose $x_{n / 2+j}=-x_{j}$ for $0 \leq j \leq n / 2-1$. Then

$$
\left[\begin{array}{c}
A\left(x_{0}\right) \\
A\left(x_{1}\right) \\
\cdot \\
A\left(x_{n / 2-1}\right) \\
A\left(x_{n / 2+0}\right) \\
A\left(x_{n / 2+1}\right) \\
\cdot \\
A\left(x_{n / 2+(n / 2-1)}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{0} & \left(x_{0}\right)^{2} & \cdots & \left(x_{0}\right)^{n-1} \\
1 & x_{1} & \left(x_{1}\right)^{2} & \cdots & \left(x_{1}\right)^{n-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & x_{n / 2-1} & \left(x_{n / 2-1}\right)^{2} & \cdots & \left(x_{n / 2-1}\right)^{n-1} \\
1 & -x_{0} & \left(-x_{0}\right)^{2} & \cdots & \left(-x_{0}\right)^{n-1} \\
1 & -x_{1} & \left(-x_{1}\right)^{2} & \cdots & \left(-x_{1}\right)^{n-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & -x_{n / 2-1} & \left(-x_{n / 2-1}\right)^{2} & \cdots & \left(-x_{n / 2-1}\right)^{n-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
a_{n-1}
\end{array}\right]
$$

Observe that for $\left.0 \leq j \leq n / 2-1:\left(x_{n / 2}+\right)^{k}\right)^{k}= \begin{cases}\left(x_{j}\right)^{k}, & \text { if } k=\text { even, } \\ -\left(x_{j}\right)^{k}, & \text { if } k=\text { odd. }\end{cases}$
Thus we have just split the original $n \times n$ matrix into two almost similar $\frac{n}{2} \times n$ matrices!

Coefficient Form \Rightarrow Point-Value Form

How and how much do we save?

$$
\begin{aligned}
A(x) & =\sum_{l=0}^{n-1} a_{l} x^{l}=\sum_{l=0}^{n / 2-1} a_{2 l} x^{2 l}+\sum_{l=0}^{n / 2-1} a_{2 l+1} x^{2 l+1} \\
& =\sum_{l=0}^{n / 2-1} a_{2 l}\left(x^{2}\right)^{l}+x \sum_{l=0}^{n / 2-1} a_{2 l+1}\left(x^{2}\right)^{l}=A_{\text {even }}\left(x^{2}\right)+x A_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

where, $A_{\text {even }}(x)=\sum_{l=0}^{n / 2-1} a_{2 l} x^{l}$ and $A_{\text {odd }}(x)=\sum_{l=0}^{n / 2-1} a_{2 l+1} x^{l}$.
Observe that for $0 \leq j \leq n / 2-1: \quad A\left(x_{j}\right)=A_{\text {even }}\left(x_{j}^{2}\right)+x_{j} A_{\text {odd }}\left(x_{j}^{2}\right)$

$$
A\left(x_{n / 2+j}\right)=A\left(-x_{j}\right)=A_{\text {even }}\left(x_{j}^{2}\right)-x_{j} A_{\text {odd }}\left(x_{j}^{2}\right)
$$

So in order to evaluate $A\left(x_{j}\right)$ for all $0 \leq j \leq n-1$, we need:
$n / 2$ evaluations of $A_{\text {even }}$ and $n / 2$ evaluations of $A_{\text {odd }}$ n multiplications
$n / 2$ additions and $n / 2$ subtractions
Thus we save about half the computation!

Coefficient Form \Rightarrow Point-Value Form

If we can recursively evaluate $A_{\text {even }}$ and $A_{o d d}$ using the same approach, we get the following recurrence relation for the running time of the algorithm:

$$
\begin{aligned}
T(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1 \\
2 T\left(\frac{n}{2}\right)+\Theta(n), & \text { otherwise }
\end{array}\right. \\
& =\Theta(n \log n)
\end{aligned}
$$

Our trick was to evaluate A at x (positive) and $-x$ (negative).
But inputs to $A_{\text {even }}$ and $A_{o d d}$ are always of the form x^{2} (positive)!
How can we apply the same trick?

Coefficient Form \Rightarrow Point-Value Form

Let us consider the evaluation of $A_{\text {even }}\left(x_{j}\right)$ for $0 \leq j \leq n / 2-1$:

$$
\left[\begin{array}{c}
A_{\text {even }}\left(x_{0}\right) \\
A_{\text {even }}\left(x_{1}\right) \\
\cdot \\
\cdot \\
\cdot \\
A_{\text {even }}\left(x_{n / 2-1}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & \left(x_{0}\right)^{2} & \left(x_{0}\right)^{4} & \cdots & \left(x_{0}\right)^{n-2} \\
1 & \left(x_{1}\right)^{2} & \left(x_{1}\right)^{4} & \cdots & \left(x_{1}\right)^{n-2} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & \left(x_{n / 2-1}\right)^{2} & \left(x_{n / 2-1}\right)^{4} & \cdots & \left(x_{n / 2-1}\right)^{n-2}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{2} \\
a_{4} \\
\cdot \\
\cdot \\
a_{n-2}
\end{array}\right]
$$

In order to apply the same trick on $A_{\text {even }}$ we must set:

$$
\left(x_{n / 4+j}\right)^{2}=-\left(x_{j}\right)^{2} \text { for } 0 \leq j \leq n / 4-1
$$

Coefficient Form \Rightarrow Point-Value Form

In $A_{\text {even }}$ we set: $x_{n / 4+j}^{2}=-x_{j}^{2}$ for $0 \leq j \leq n / 4-1$. Then

$$
\left[\begin{array}{c}
A_{\text {even }}\left(x_{0}\right) \\
A_{\text {even }}\left(x_{1}\right) \\
\cdot \\
A_{\text {even }}\left(x_{n / 4-1}\right) \\
A_{\text {even }}\left(x_{n / 4+0}\right) \\
A_{\text {even }}\left(x_{n / 4+1}\right) \\
\cdot \\
A_{\text {even }}\left(x_{n / 4+(n / 4-1)}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{0}^{2} & \left(x_{0}^{2}\right)^{2} & \cdots & \left(x_{0}^{2}\right)^{\frac{n}{2}-1} \\
1 & x_{1}^{2} & \left(x_{1}^{2}\right)^{2} & \cdots & \left(x_{1}^{2}\right)^{\frac{n}{2}-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & x_{n / 4-1}^{2} & \left(x_{n / 4-1}^{2}\right)^{2} & \cdots & \left(x_{n / 4-1}^{2}\right)^{\frac{n}{2}-1} \\
1 & -x_{0}^{2} & \left(-x_{0}^{2}\right)^{2} & \cdots & \left(-x_{0}^{2}\right)^{\frac{n}{2}-1} \\
1 & -x_{1}^{2} & \left(-x_{1}^{2}\right)^{2} & \cdots & \left(-x_{1}^{2}\right)^{\frac{n}{2}-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & -x_{n / 4-1}^{2} & \left(-x_{n / 2-1}^{2}\right)^{2} & \cdots & \left(-x_{n / 4-1}^{2}\right)^{\frac{n}{2}-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{2} \\
a_{4} \\
\cdot \\
\cdot \\
\cdot \\
a_{n-2}
\end{array}\right]
$$

This means setting $x_{n / 4+j}=i x_{j}$, where $i=\sqrt{-1}$ (imaginary)!
This also allows us to apply the same trick on $A_{\text {odd }}$.

Coefficient Form \Rightarrow Point-Value Form

We can apply the trick once if we set:

$$
x_{n / 2+j}=-x_{j} \text { for } 0 \leq j \leq n / 2-1
$$

We can apply the trick (recursively) 2 times if we also set:

$$
\left(x_{n / 2^{2}+j}\right)^{2}=-\left(x_{j}\right)^{2} \text { for } 0 \leq j \leq n / 2^{2}-1
$$

We can apply the trick (recursively) 3 times if we also set:

$$
\left(x_{n / 2^{3}+j}\right)^{2^{2}}=-\left(x_{j}\right)^{2^{2}} \text { for } 0 \leq j \leq n / 2^{3}-1
$$

We can apply the trick (recursively) k times if we also set:

$$
\left(x_{n / 2^{k}+j}\right)^{2^{k-1}}=-\left(x_{j}\right)^{2^{k-1}} \text { for } 0 \leq j \leq n / 2^{k}-1
$$

Coefficient Form \Rightarrow Point-Value Form

Consider the $t^{\text {th }}$ primitive root of unity:

$$
\omega_{t}=e^{\frac{2 \pi i}{t}}=\cos \frac{2 \pi}{t}+i \cdot \sin \frac{2 \pi}{t} \quad(i=\sqrt{-1})
$$

Then

$$
\begin{array}{r}
x_{n / 2+j}=-x_{j} \Rightarrow x_{n / 2^{1}+j}=\omega_{2^{1}} \cdot x_{j} \\
\left(x_{n / 2^{2}+j}\right)^{2}=-\left(x_{j}\right)^{2} \Rightarrow x_{n / 2^{2}+j}=\omega_{2^{2}} \cdot x_{j} \\
\left(x_{n / 2^{3}+j}\right)^{2^{2}}=-\left(x_{j}\right)^{2^{2}} \Rightarrow x_{n / 2^{3}+j}=\omega_{2^{3}} \cdot x_{j} \\
\left(x_{n / 2^{k}+j}\right)^{2^{k-1}}=-\left(x_{j}\right)^{2^{k-1}} \Rightarrow x_{n / 2^{k}+j}=\omega_{2^{k}} \cdot x_{j}
\end{array}
$$

Coefficient Form \Rightarrow Point-Value Form

If $n=2^{k}$ we would like to apply the trick k times recursively. What values should we choose for $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$?

Example: For $n=2^{3}$ we need to choose $\left\{x_{0}, x_{1}, \ldots, x_{7}\right\}$.
Choose: $x_{0}=1$

$$
\begin{aligned}
& k=3: x_{1}=\omega_{2^{3}} \cdot x_{0} \quad=\omega_{8}^{1} \\
& k=2: x_{2}=\omega_{2^{2}} \cdot x_{0}=\omega_{8}^{2} \\
& x_{3}=\omega_{2^{2}} \cdot x_{1}=\omega_{8}^{3} \\
& k=1: x_{4}=\omega_{2^{1}} \cdot x_{0}=\omega_{8}^{4} \\
& x_{5}=\omega_{2^{1}} \cdot x_{1}=\omega_{8}^{5} \\
& x_{6}=\omega_{2^{1}} \cdot x_{2}=\omega_{8}^{6} \\
& x_{7}=\omega_{2^{1}} \cdot x_{3}=\omega_{8}^{7}
\end{aligned}
$$

complex $8^{\text {th }}$ roots of unity

Coefficient Form \Rightarrow Point-Value Form

For a polynomial of degree bound $n=2^{k}$, we need to apply the trick recursively at most $\log n=k$ times.
We choose $x_{0}=1=\omega_{n}^{0}$ and set $x_{j}=\omega_{n}^{j}$ for $1 \leq j \leq n-1$.
Then we compute the following product:

$$
\left[\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{n-1}
\end{array}\right]=\left[\begin{array}{c}
A(1) \\
A\left(\omega_{n}\right) \\
A\left(\omega_{n}^{2}\right) \\
\cdot \\
\cdot \\
A\left(\omega_{n}^{n-1}\right)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{n} & \left(\omega_{n}\right)^{2} & \cdots & \left(\omega_{n}\right)^{n-1} \\
1 & \omega_{n}^{2} & \left(\omega_{n}^{2}\right)^{2} & \cdots & \left(\omega_{n}^{2}\right)^{n-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
1 & \omega_{n}^{n-1} & \left(\omega_{n}^{n-1}\right)^{2} & \cdots & \left(\omega_{n}^{n-1}\right)^{n-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\cdot \\
\cdot \\
a_{n-1}
\end{array}\right]
$$

The vector $y=\left(y_{0}, y_{1}, \cdots, y_{n-1}\right)$ is called the discrete Fourier transform (DFT) of ($a_{0}, a_{1}, \cdots, a_{n-1}$).
This method of computing DFT is called the fast Fourier transform (FFT) method.

Coefficient Form \Rightarrow Point-Value Form

$\operatorname{Rec}-\operatorname{FFT}\left(\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\right) \quad\left\{n=2^{k}\right.$ for integer $\left.k \geq 0\right\}$

1. if $n=1$ then
2. return $\left(a_{0}\right)$
3. $\omega_{n} \leftarrow e^{2 \pi i / n}$
4. $\omega \leftarrow 1$
5. $y^{\text {even }} \leftarrow \operatorname{Rec}-\operatorname{FFT}\left(\left(a_{0}, a_{2}, \ldots, a_{n-2}\right)\right)$
6. $\mathrm{y}^{\text {odd }} \leftarrow \operatorname{Rec}-\operatorname{FFT}\left(\left(a_{1}, a_{3}, \ldots, a_{n-1}\right)\right)$
7. for $j \leftarrow 0$ to $n / 2-1$ do
8. $y_{j} \leftarrow y_{j}{ }^{\text {even }}+\omega y_{j}^{\text {odd }}$
9. $\quad y_{n / 2+j} \leftarrow y_{j}^{\text {even }}-\omega y_{j}^{\text {odd }}$
10. $\omega \leftarrow \omega \omega_{n}$
11. return y

Running time:

$$
\begin{aligned}
T(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1 \\
2 T\left(\frac{n}{2}\right)+\Theta(n), & \text { otherwise } .
\end{array}\right. \\
& =\Theta(n \log n)
\end{aligned}
$$

Faster Polynomial Multiplication? (in Coefficient Form)

ordinary

Next Lecture will Cover Interpolation

