## CSE 548: Analysis of Algorithms

## Lecture 5 <br> ( Divide-and-Conquer Algorithms: Polynomial Multiplication (Continued ) )

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2015

## Faster Polynomial Multiplication? (in Coefficient Form)

ordinary


## Point-Value Form $\Rightarrow$ Coefficient Form

Given:
$\underbrace{\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_{n} & \left(\omega_{n}\right)^{2} & \cdots & \left(\omega_{n}\right)^{n-1} \\ 1 & \omega_{n}^{2} & \left(\omega_{n}^{2}\right)^{2} & \cdots & \left(\omega_{n}^{2}\right)^{n-1} \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ 1 & \omega_{n}^{n-1} & \left(\omega_{n}^{n-1}\right)^{2} & \cdots & \left(\omega_{n}^{n-1}\right)^{n-1}\end{array}\right]}_{V\left(\omega_{n}\right)} \underbrace{\left[\begin{array}{c}a_{0} \\ a_{1} \\ a_{2} \\ \cdot \\ \cdot \\ a_{n-1}\end{array}\right]}_{\vec{a}}=\underbrace{\left[\begin{array}{c}y_{0} \\ y_{1} \\ y_{2} \\ \cdot \\ \cdot \\ y_{n-1}\end{array}\right]}_{\overrightarrow{\bar{y}}}$

Vandermonde Matrix

$$
\Rightarrow V\left(\omega_{n}\right) \cdot \bar{a}=\bar{y}
$$

We want to solve: $\bar{a}=\left[V\left(\omega_{n}\right)\right]^{-1} \cdot \bar{y}$
It turns out that: $\left[V\left(\omega_{n}\right)\right]^{-1}=\frac{1}{n} V\left(\frac{1}{\omega_{n}}\right)$
That means $\left[V\left(\omega_{n}\right)\right]^{-1}$ looks almost similar to $V\left(\omega_{n}\right)$ !

## Point-Value Form $\Rightarrow$ Coefficient Form

Show that: $\left[V\left(\omega_{n}\right)\right]^{-1}=\frac{1}{n} V\left(\frac{1}{\omega_{n}}\right)$
Let $U\left(\omega_{n}\right)=\frac{1}{n} V\left(\frac{1}{\omega_{n}}\right)$
We want to show that $U\left(\omega_{n}\right) V\left(\omega_{n}\right)=I_{n}$,
where $I_{n}$ is the $n \times n$ identity matrix.
Observe that for $0 \leq j, k \leq n-1$, the $(j, k)^{t h}$ entries are:

$$
\left[V\left(\omega_{n}\right)\right]_{j k}=\omega_{n}^{j k} \quad \text { and } \quad\left[U\left(\omega_{n}\right)\right]_{j k}=\frac{1}{n} \omega_{n}^{-j k}
$$

Then entry $(p, q)$ of $U\left(\omega_{n}\right) V\left(\omega_{n}\right)$,

$$
\left[U\left(\omega_{n}\right) V\left(\omega_{n}\right)\right]_{p q}=\sum_{k=0}^{n-1}\left[U\left(\omega_{n}\right)\right]_{p k}\left[V\left(\omega_{n}\right)\right]_{k q}=\frac{1}{n} \sum_{k=0}^{n-1} \omega_{n}^{k(q-p)}
$$

## Point-Value Form $\Rightarrow$ Coefficient Form

$$
\left[U\left(\omega_{n}\right) V\left(\omega_{n}\right)\right]_{p q}=\frac{1}{n} \sum_{k=0}^{n-1} \omega_{n}^{k(q-p)}
$$

CASE $p=q$ :

$$
\left[U\left(\omega_{n}\right) V\left(\omega_{n}\right)\right]_{p q}=\frac{1}{n} \sum_{k=0}^{n-1} \omega_{n}^{0}=\frac{1}{n} \sum_{k=0}^{n-1} 1=\frac{1}{n} \times n=1
$$

CASE $p \neq q$ :

$$
\begin{aligned}
{\left[U\left(\omega_{n}\right) V\left(\omega_{n}\right)\right]_{p q} } & =\frac{1}{n} \sum_{k=0}^{n-1}\left(\omega_{n}^{q-p}\right)^{k}=\frac{1}{n} \times \frac{\left(\omega_{n}^{q-p}\right)^{n}-1}{\omega_{n}^{q-p}-1} \\
& =\frac{1}{n} \times \frac{\left(\omega_{n}^{n}\right)^{q-p}-1}{\omega_{n}^{q-p}-1}=\frac{1}{n} \times \frac{(1)^{q-p}-1}{\omega_{n}^{q-p}-1}=0
\end{aligned}
$$

Hence $U\left(\omega_{n}\right) V\left(\omega_{n}\right)=I_{n}$

## Point-Value Form $\Rightarrow$ Coefficient Form

We need to compute the following matrix-vector product:

$$
\underbrace{\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\cdot \\
\cdot \\
a_{n-1}
\end{array}\right]}_{\bar{a}}=\frac{1}{n} \times \underbrace{\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \frac{1}{\omega_{n}} & \left(\frac{1}{\omega_{n}}\right)^{2} & \cdots & \left(\frac{1}{\omega_{n}}\right)^{n-1} \\
1 & \frac{1}{\omega_{n}^{2}} & \left(\frac{1}{\omega_{n}^{2}}\right)^{2} & \cdots & \left(\frac{1}{\omega_{n}^{2}}\right)^{n-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot \\
1 & \frac{1}{\omega_{n}^{n-1}}\left(\frac{1}{\omega_{n}^{n-1}}\right)^{2} & \cdots & \left(\frac{1}{\omega_{n}^{n-1}}\right)^{n-1}
\end{array}\right]\left[\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{n-1}
\end{array}\right]}_{\left[V\left(\omega_{n}\right)\right]^{-1}}
$$

This inverse problem is almost similar to the forward problem, and can be solved in $\Theta(n \log n)$ time using the same algorithm as the forward FFT with only minor modifications!

## Faster Polynomial Multiplication? (in Coefficient Form )



Two polynomials of degree bound $n$ given in the coefficient form can be multiplied in $\Theta(n \log n)$ time!

## Some Applications of Fourier Transform and FFT

- Signal processing
- Image processing
- Noise reduction
- Data compression
- Solving partial differential equation
- Multiplication of large integers
- Polynomial multiplication
- Molecular docking


## Some Applications of Fourier Transform and FFT



Any periodic signal can be represented as a sum of a series of sinusoidal ( sine \& cosine ) waves. [ 1807 ]

## Spatial ( Time ) Domain $\Leftrightarrow$ Frequency Domain

## Frequency Domain



Source: The Scientist and Engineer's Guide to Digital Signal Processing by Steven W. Smith

## Spatial ( Time ) Domain $\Leftrightarrow$ Frequency Domain

$$
s_{6}(x)
$$



Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

## Spatial ( Time ) Domain $\Leftrightarrow$ Frequency Domain

$$
s_{6}(x)
$$



## $a_{n} \cos (n x)+b_{n} \sin (n x)$

Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

[^0]
## Spatial ( Time ) Domain $\Leftrightarrow$ Frequency Domain



Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

[^1]
## Spatial ( Time ) Domain $\Leftrightarrow$ Frequency Domain


$S(f)$

Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

[^2]
## Spatial ( Time) Domain $\Leftrightarrow$ Frequency Domain



Function $s(x)$ (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. The Fourier transform, $S(f)$ (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies and their amplitudes.

## Spatial ( Time ) Domain $\Leftrightarrow$ Frequency Domain (Fourier Transforms )

Let $s(t)$ be a signal specified in the time domain.

The strength of $s(t)$ at frequency $f$ is given by:

$$
S(f)=\int_{-\infty}^{\infty} s(t) \cdot e^{-2 \pi i f t} d t
$$

Evaluating this integral for all values of $f$ gives the frequency domain function.

Now $s(t)$ can be retrieved by summing up the signal strengths at all possible frequencies:

$$
s(t)=\int_{-\infty}^{\infty} S(f) \cdot e^{2 \pi i f t} d f
$$

## Why do the Transforms Work?

Let's try to get a little intuition behind why the transforms work.
We will look at a very simple example.
Suppose: $s(t)=\cos (2 \pi h \cdot t)$

$$
\begin{aligned}
& \frac{1}{T} \int_{-T}^{T} s(t) \cdot e^{-2 \pi i f t} d t=\left\{\begin{array}{cc}
1+\frac{\sin (4 \pi f T)}{4 \pi f T}, & \text { if } f=h \\
\frac{\sin (2 \pi(h-f) T)}{2 \pi(h-f) T}+\frac{\sin (2 \pi(h+f) T)}{2 \pi(h+f) T}, & \text { otherwise. }
\end{array}\right. \\
& \Rightarrow \lim _{T \rightarrow \infty}\left(\frac{1}{T} \int_{-T}^{T} s(t) \cdot e^{-2 \pi i f t} d t\right)= \begin{cases}1, & \text { if } f=h \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

So, the transform can detect if $f=h$ !

## Noise Reduction



Source: http://www.mediacy.com/index.aspx?page=AH_FFTExample

## Data Compression

- Discrete Cosine Transforms (DCT ) are used for lossy data compression ( e.g., MP3, JPEG, MPEG )
- DCT is a Fourier-related transform similar to DFT (Discrete Fourier Transform ) but uses only real data ( uses cosine waves only instead of both cosine and sine waves )
- Forward DCT transforms data from spatial to frequency domain
- Each frequency component is represented using a fewer number of bits (i.e., truncated / quantized)
- Low amplitude high frequency components are also removed
- Inverse DCT then transforms the data back to spatial domain
- The resulting image compresses better


## Data Compression

Transformation to frequency domain using cosine transforms work in the same way as the Fourier transform.

Suppose: $s(t)=\cos (2 \pi h \cdot t)$

$$
\begin{aligned}
& \frac{1}{T} \int_{-T}^{T} s(t) \cdot \cos (2 \pi f t) d t=\left\{\begin{array}{cc}
1+\frac{\sin (4 \pi f T)}{4 \pi f T}, & \text { if } f=h, \\
\frac{\sin (2 \pi(h-f) T)}{2 \pi(h-f) T}+\frac{\sin (2 \pi(h+f) T)}{2 \pi(h+f) T}, & \text { otherwise. }
\end{array}\right. \\
& \Rightarrow \lim _{T \rightarrow \infty}\left(\frac{1}{T} \int_{-T}^{T} s(t) \cdot \cos (2 \pi f t) d t\right)= \begin{cases}1, & \text { if } f=h, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

So, this transform can also detect if $f=h$.

## Protein-Protein Docking

Knowledge of complexes is used in

- Drug design - Structure function analysis
- Studying molecular assemblies - Protein interactions
$\square$ Protein-Protein Docking: Given two proteins, find the best relative transformation and conformations to obtain a stable complex.

$\square$ Docking is a hard problem
- Search space is huge (6D for rigid proteins )
- Protein flexibility adds to the difficulty


## Shape Complementarity

[Wang'91, Katchalski-Katzir et al.'92, Chen et al.'03]
Molecule A

a possible docking solution
To maximize skin-skin overlaps and minimize core-core overlaps

- assign positive real weights to skin atoms
- assign positive imaginary weights to core atoms

Let $A^{\prime}$ denote molecule $A$ with the pseudo skin atoms.
For $P \in\left\{A^{\prime}, B\right\}$ with $M_{P}$ atoms, affinity function: $f_{P}(x)=\sum_{k=1}^{M_{P}} w_{k} \cdot g_{k}(x)$ Here $g_{k}(x)$ is a Gaussian representation of atom $k$, and $w_{k}$ its weight.

## Shape Complementarity

[Wang'91, Katchalski-Katzir et al.'92, Chen et al.'03]
Molecule A

a possible docking solution
Let $A^{\prime}$ denote molecule $A$ with the pseudo skin atoms.
For $P \in\left\{A^{\prime}, B\right\}$ with $M_{P}$ atoms, affinity function:

$$
f_{P}(x)=\sum_{k=1}^{M_{P}} w_{k} \cdot g_{k}(x)
$$

For rotation $r$ and translation $t$ of molecule $B$ (i.e., $B_{t, r}$ ), the interaction score, $F_{A, B}(t, r)=\int_{x} f_{A^{\prime}}(x) f_{B_{t, r}}(x) d x$

## Shape Complementarity

[Wang'91, Katchalski-Katzir et al.'92, Chen et al.'03]
Molecule A

a possible docking solution
For rotation $r$ and translation $t$ of molecule $B$ (i.e., $B_{t, r}$ ), the interaction score, $F_{A, B}(t, r)=\int_{x} f_{A^{\prime}}(x) f_{B_{t, r}}(x) d x$
$\operatorname{Re}\left(F_{A, B}(t, r)\right)=$ skin-skin overlap score - core-core overlap score $\operatorname{Im}\left(F_{A, B}(t, r)\right)=$ skin-core overlap score

## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



Docking: Rotational \& Translational Search


Docking: Rotational \& Translational Search


## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



Docking: Rotational \& Translational Search


## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Docking: Rotational \& Translational Search



## Translational Search using FFT



$$
\forall z \in \Omega=[-n, n]^{3}, \quad h(z)=\int_{x \in \Omega} f_{A^{\prime}}(x) f_{B_{r}}(z-x) d x
$$


[^0]:    Source: http://en.wikipedia.org/wiki/Fourier series\#mediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)

[^1]:    Source: http://en.wikipedia.org/wiki/Fourier series\#mediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)

[^2]:    Source: http://en.wikipedia.org/wiki/Fourier series\#mediaviewer/File:Fourier series and transform.gif (uploaded by Bob K.)

