CSE 548: Analysis of Algorithms

Lectures 14-15 (Amortized Analysis)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2015

A Binary Counter

counter value	counter	\#bit flips	\#bit resets $(1 \rightarrow 0)$	\#bit sets $(0 \rightarrow 1)$
0	0 0 0 0 0 0 0 0 0			
1	0 0 0 0 0 0 0 1	1	0	1
2	0 0 0 0 0 0 1 0 0	2	1	1
3	0 0 0 0 0 0 1 1 0	1	0	1
4	0 0 0 0 0 1 0 0 0	3	2	1
5	0 0 0 0 0 1 0 1 0	1	0	1
6	0 0 0 0 0 1 1 0 0	2	1	1
7	0 0 0 0 0 1 1 1 0	1	0	1
8	0 0 0 0 1 0 0 0 0	4	3	1
9	0 0 0 0 1 0 0 1 0	1	0	1
10	0 0 0 0 1 0 1 0 0	2	1	1
11	0 0 0 0 1 0 1 1 0	1	0	1
12	0 0 0 0 1 1 0 0 0	3	2	1
13	0 0 0 0 1 1 0 1 0	1	0	1
14	0 0 0 0 1 1 1 0 0	2	1	1
15	0 0 0 0 1 1 1 1 0	1	0	1
16	0 0 0 1 0 0 0 0	5	4	1

A Binary Counter

Consider a k-bit counter initialized to 0 (i.e., all bits are 0 's).
Suppose we increment the counter n times. and cost of an increment = \#bits flipped

Question: What is the worst-case total cost of n increments?
Worst-case cost of a single increment:

$$
\begin{aligned}
& \text { \#bit sets }(0 \rightarrow 1), \quad b_{1} \leq 1 \\
& \text { \#bit resets }(1 \rightarrow 0), b_{0} \leq k-b_{1} \\
& \text { \#bit flips } \quad=b_{1}+b_{0} \leq k
\end{aligned}
$$

Worst-case cost of \boldsymbol{n} increments:

$$
\text { \#bit flips } \quad \leq n k
$$

This turns out to be a very loose upper bound!

Aggregate Analysis

A better upper bound can be obtained as follows.
Each increment sets ($0 \rightarrow 1$) at most one bit, i.e., $b_{1} \leq 1$
So, total number of bits set by n increments, $B_{1}=b_{1} n \leq n$
Since at most n bits are set, there cannot be more than n bit resets
$(1 \rightarrow 0)$, i.e., $B_{0} \leq B_{1} \leq n$
So, total number of bit flips $=B_{1}+B_{0} \leq n+n=2 n$
Thus worst-case cost of a sequence of n increments, $T(n) \leq 2 n$
Hence, in the worst case, average cost of an increment $=\frac{T(n)}{n} \leq 2$
This worst-case average cost is called the amortized cost of an increment in a sequence of n increments.

A Binary Counter

counter value	counter	\#bit flips	\#bit resets $(1 \rightarrow 0)$	\#bit sets $(0 \rightarrow 1)$	total \#bit flips
0	0 0 0 0 0 0 0 0 0				
1	0 0 0 0 0 0 0 1	1	0	1	1
2	0 0 0 0 0 0 1 0	2	1	1	3
3	0 0 0 0 0 0 1 1 0	1	0	1	4
4	0 0 0 0 0 1 0 0	3	2	1	7
5	0 0 0 0 0 1 0 1 0	1	0	1	8
6	0 0 0 0 0 1 1 0 0	2	1	1	10
7	0 0 0 0 0 1 1 1 0	1	0	1	11
8	0 0 0 0 1 0 0 0 0	4	3	1	15
9	0 0 0 0 1 0 0 1 0	1	0	1	16
10	0 0 0 0 1 0 1 0 0	2	1	1	18
11	0 0 0 0 1 0 1 1 0	1	0	1	19
12	0 0 0 0 1 1 0 0 0	3	2	1	22
13	0 0 0 0 1 1 0 1 0	1	0	1	23
14	0 0 0 0 1 1 1 0 0	2	1	1	25
15	0 0 0 0 1 1 1 1 0	1	0	1	26
16	0 0 0 1 0 0 0 0	5	4	1	31

Amortized Analysis

- often obtains a tighter worst-case upper bound on the cost of a sequence of operations on a data structure by reasoning about the interactions among those operations
- the actual cost of any given operation may be very high, but that operation may change the state of the data structure in such a way that similar high-cost operations cannot appear for a while
- tries to show that there must be enough low-cost operations in the sequence to average out the impact of high-cost operations
- unlike average case analysis proves a worst-case upper bound on the total cost of the sequence of operations
- unlike expected case analysis no probabilities are involved

Accounting Method (Banker's View)

Consider a k-bit counter initialized to 0 (i.e., all bits are 0 's).
Worst-case cost of a single increment:

$$
\begin{array}{lrl}
\text { \#bit sets }(0 \rightarrow 1), & b_{1} & \leq 1 \\
\text { \#bit resets }(1 \rightarrow 0), & b_{0} & \leq k-b_{1} \\
\text { \#bit flips } & & =b_{1}+b_{0} \leq k
\end{array}
$$

Thus each increment is paying for the bit it sets (fair).
But also paying for resetting bits set by prior increments (unfair)!
A fairer cost accounting for each increment:
(1) Pay for the bit it sets.
(2) Pay in advance for resetting this bit (by some other increment)
in the future. Store this advanced payment as a credit associated with that bit position.
(3) When resetting a bit use the credit stored in that bit position.

Accounting Method (Banker's View)

Accounting Method (Banker's View)

Total credits remaining after n increments, $\Delta_{n}=\sum_{i=1}^{n} \hat{c}_{i}-\sum_{i=1}^{n} c_{i}$
We must make sure that for all $n, \Delta_{n} \geq 0$

$$
\Rightarrow \sum_{i=1}^{n} \hat{c}_{i} \geq \sum_{i=1}^{n} c_{i}
$$

This will ensure that the total amortized cost is always an upper bound on the total actual cost.

Potential Method (Physicist's View)

Banker's View: Store prepaid work as credit with specific objects in the data structure.

Physicist's View: Represent total remaining credit in the data structure as a single potential function.

Suppose: state of the initial data structure $=D_{0}$ state of the data structure after the i-th operation $=D_{i}$ potential associated with D_{i} is $=\Phi\left(D_{i}\right)$

Then amortized cost of the i-th operation,
$\hat{c}_{i}=$ actual cost + potential change due to that operation

$$
=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
$$

Potential Method (Physicist's View)

Then amortized cost of the i-th operation, $\hat{c}_{i}=$ actual cost + potential change due to that operation

$$
=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
$$

$$
\sum_{i=1}^{n} \hat{c}_{i}=\sum_{i=1}^{n}\left(c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right)=\sum_{i=1}^{n} c_{i}+\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right)
$$

Since we do not know n in advance, if we make sure that for all n, $\Phi\left(D_{n}\right) \geq \Phi\left(D_{0}\right)$, we ensure that always $\sum_{i=1}^{n} \hat{c}_{i} \geq \sum_{i=1}^{n} c_{i}$.

In other words, in that case, the total amortized cost will always be an upper bound on the total actual cost.

One way of achieving that is to find a Φ such that $\Phi\left(D_{0}\right)=0$ and for all $n, \Phi\left(D_{n}\right) \geq 0$.

Potential Method (Physicist's View)

For the binary counter,
$\Phi\left(D_{i}\right)=$ number of set bits (i.e., 1 bits) after the i-th operation

| counter |
| :---: | :---: | :---: |
| value |\quad| actual |
| :---: |
| $\operatorname{cost}\left(c_{i}\right)$ |$\quad \Phi\left(D_{i}\right)$| amortized |
| :--- |
| $\operatorname{cost}\left(\hat{c}_{i}\right)$ |$\quad \sum c_{i} \leq \sum \hat{c}_{i}$

0		Σ_{0}^{-}									
1		$1 \int 1$	- 2 (overcharged)	1	\leq	2					
2	(0\|0	0	0	0	0	10	$2 \quad \int_{1}$	- 2	3	\leq	4
3		$1)_{2}$	- 2 (overcharged)	4	\leq	6					
4		$3 \quad \int_{1}$	- 2 (undercharged)	7	\leq	8					
5		$1 \int_{2}$	- 2 (overcharged)	8	\leq	10					
6	0 0 0 0 0 1 1	$2)$	- 2	10	\leq	12					
7	0 0 0 0 0 1 1	$1 \int_{3}$	- 2 (overcharged)	11	\leq	14					
8		$4 \quad \int_{1}$	- 2 (undercharged)	15	\leq	16					

