CSE 613: Parallel Programming

Lecture 2 (Analytical Modeling of Parallel Algorithms)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2015

Parallel Execution Time & Overhead



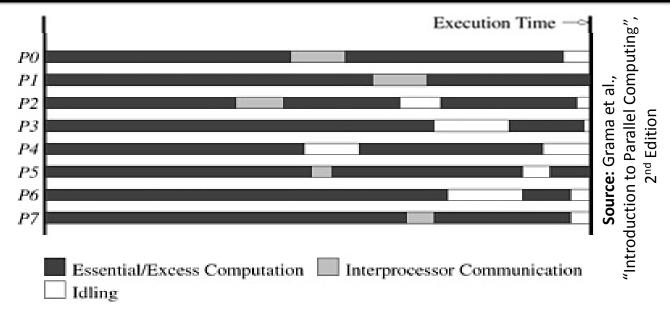
Parallel running time on p processing elements,

$$T_P = t_{end} - t_{start}$$
,

where, t_{start} = starting time of the processing element that starts first

 t_{end} = termination time of the processing element that finishes last

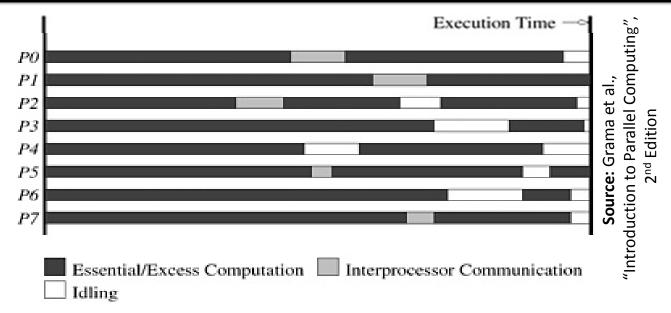
Parallel Execution Time & Overhead



Sources of overhead (w.r.t. serial execution)

- Interprocess interaction
 - Interact and communicate data (e.g., intermediate results)
- Idling
 - Due to load imbalance, synchronization, presence of serial computation, etc.
- Excess computation
 - Fastest serial algorithm may be difficult/impossible to parallelize

Parallel Execution Time & Overhead



Overhead function or total parallel overhead,

$$T_O = pT_p - T,$$

where, p = number of processing elements

T = time spent doing useful work

(often execution time of the fastest serial algorithm)

Speedup

Let T_p = running time using p identical processing elements

Speedup,
$$S_p = \frac{T_1}{T_p}$$

Theoretically, $S_p \le p$ (why?)

Perfect or *linear* or *ideal* speedup if $S_p = p$

Speedup

Consider adding n numbers using n identical processing elements.

Serial runtime, $T_1 = \Theta(n)$

Parallel runtime, $T_n = \Theta(\log n)$

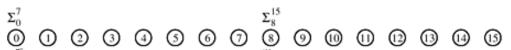
Speedup,
$$S_n = \frac{T_1}{T_n} = \Theta\left(\frac{n}{\log n}\right)$$

Speedup not ideal.

(a) Initial data distribution and the first communication step

(b) Second communication step

(c) Third communication step



(d) Fourth communication step

$$\Sigma_0^{15}$$
 0 0 3 4 5 6 7 8 9 10 11 12 13 14 15

(e) Accumulation of the sum at processing element 0 after the final communication

Superlinear Speedup

Theoretically, $S_p \leq p$

Reasons for superlinear speedup

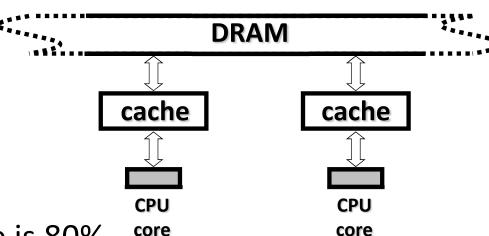
- Cache effects
- Exploratory decomposition

Superlinear Speedup (Cache Effects)

Let cache access latency = 2 ns

DRAM access latency = 100 ns

Suppose we want solve a problem instance that executes *k* FLOPs.



With 1 Core: Suppose cache hit rate is 80%.

If the computation performs 1 FLOP/memory access, then each FLOP will take $2 \times 0.8 + 100 \times 0.2 = 21.6$ ns to execute.

With 2 Cores: Cache hit rate will improve. (why?)

Suppose cache hit rate is now 90%.

Then each FLOP will take $2 \times 0.9 + 100 \times 0.1 = 11.8$ ns to execute.

Since now each core will execute only k / 2 FLOPs,

Speedup,
$$S_2 = \frac{k \times 21.6}{(k/2) \times 11.8} \approx 3.66 > 2$$

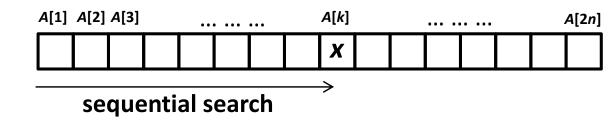
Superlinear Speedup (Due to Exploratory Decomposition)

Consider searching an array of 2*n* unordered elements for a specific element *x*.

Suppose x is located at array location k > n and k is odd.

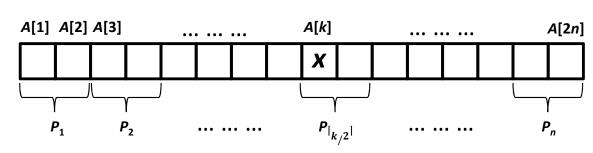
Serial runtime, $T_1 = k$

Parallel running time with n processing elements, $T_n = 1$



Speedup,
$$S_n = \frac{T_1}{T_n} = k > n$$

Speedup is superlinear!



parallel search

Parallelism & Span Law

We defined, T_p = runtime on p identical processing elements

Then span, T_{∞} = runtime on an infinite number of identical processing elements

Parallelism,
$$P = \frac{T_1}{T_{\infty}}$$

Parallelism is an upper bound on speedup, i.e., $S_p \leq P$ (why?)

$$\frac{\mathsf{Span Law}}{T_p \geq T_{\infty}}$$

Work Law

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is given by T_1

On a Parallel Computer: is given by pT_p

Work Law

$$T_p \ge \frac{T_1}{p}$$

Work Optimality

Let T_S = runtime of the optimal or the fastest known serial algorithm

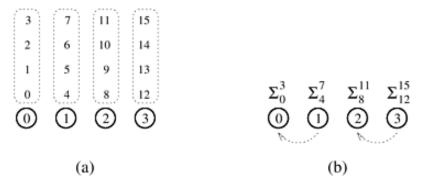
A parallel algorithm is cost-optimal or work-optimal provided

$$pT_p = \Theta(T_s)$$

Our algorithm for adding n numbers using n identical processing elements is clearly not work optimal.

Adding n Numbers Work-Optimality

We reduce the number of processing elements which in turn increases the granularity of the subproblem assigned to each processing element.



Suppose we use p processing elements.

First each processing element locally adds its $\frac{n}{p}$ numbers in time $\Theta\left(\frac{n}{p}\right)$.

Source: Grama et al., "Introduction to Parallel Computing", 2nd Edition

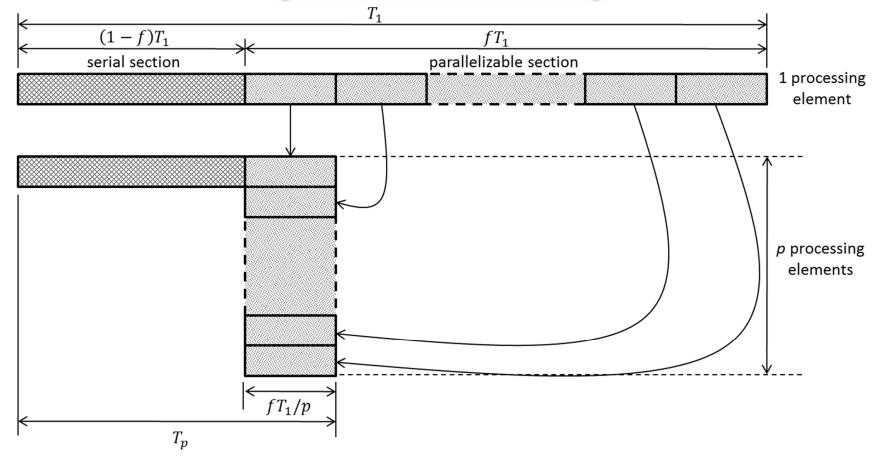
Then p processing elements adds these p partial sums in time $\Theta(\log p)$.

Thus
$$T_p = \Theta\left(\frac{n}{p} + \log p\right)$$
, and $T_s = \Theta(n)$.

So the algorithm is work-optimal provided $n = \Omega(p \log p)$.

Scaling Laws

Scaling of Parallel Algorithms (Amdahl's Law)



Suppose only a fraction f of a computation can be parallelized.

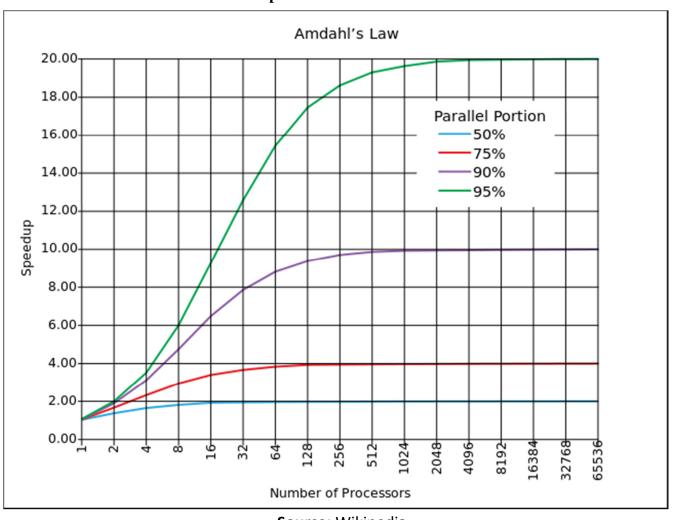
Then parallel running time,
$$T_p \ge (1-f)T_1 + f\frac{T_1}{p}$$

Speedup, $S_p = \frac{T_1}{T_p} \le \frac{p}{f + (1-f)p} = \frac{1}{(1-f) + \frac{f}{p}} \le \frac{1}{1-f}$

Scaling of Parallel Algorithms (Amdahl's Law)

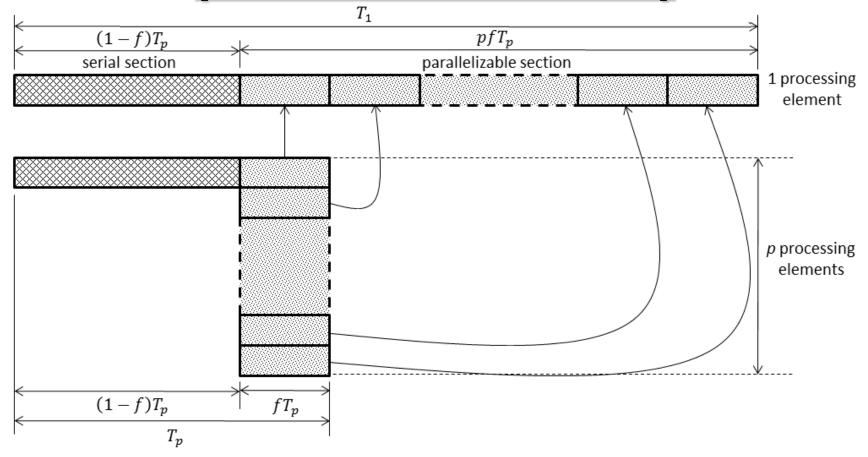
Suppose only a fraction f of a computation can be parallelized.

Speedup,
$$S_p = \frac{T_1}{T_p} \le \frac{1}{(1-f) + \frac{f}{p}} \le \frac{1}{1-f}$$



Source: Wikipedia

<u>Scaling of Parallel Algorithms</u> (<u>Gustafson-Barsis' Law</u>)



Suppose only a fraction f of a computation was parallelized.

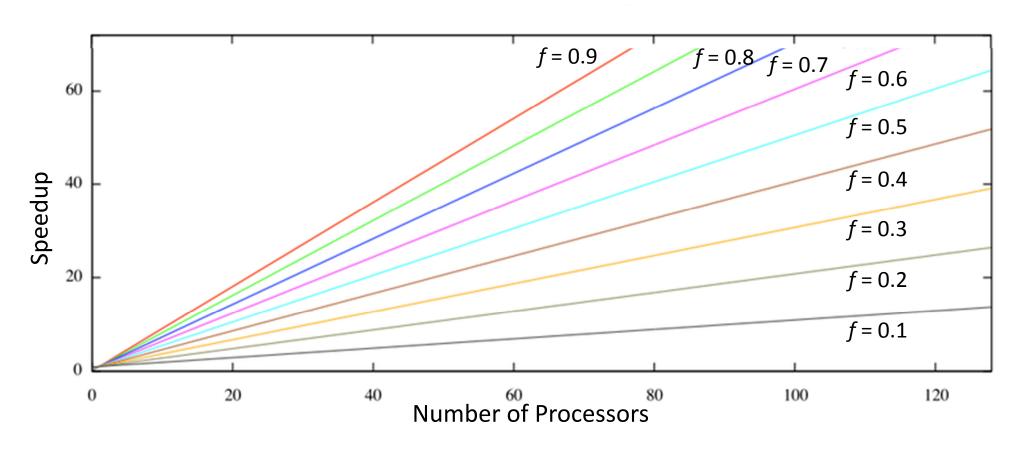
Then serial running time, $T_1 = (1 - f)T_p + pfT_p$

Speedup,
$$S_p = \frac{T_1}{T_p} = \frac{(1-f)T_p + pfT_p}{T_p} = 1 + (p-1)f$$

<u>Scaling of Parallel Algorithms</u> (<u>Gustafson-Barsis' Law</u>)

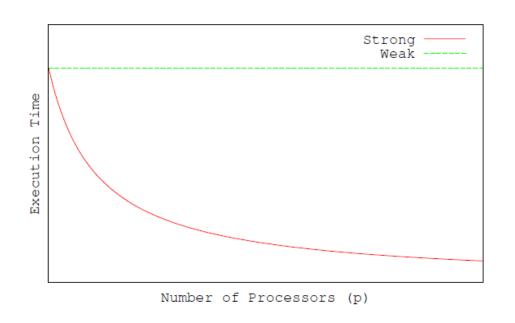
Suppose only a fraction f of a computation was parallelized.

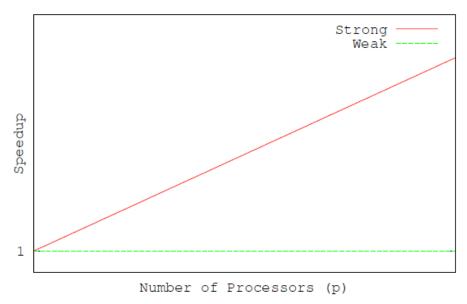
Speedup,
$$S_p = \frac{T}{T_p} \le \frac{T_1}{T_p} = \frac{(1-f)T_p + pfT_p}{T_p} = 1 + (p-1)f$$



Source: Wikipedia

Strong Scaling vs. Weak Scaling





Strong Scaling

How T_p (or S_p) varies with p when the problem size is fixed.

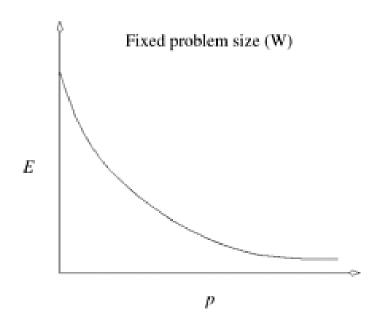
Weak Scaling

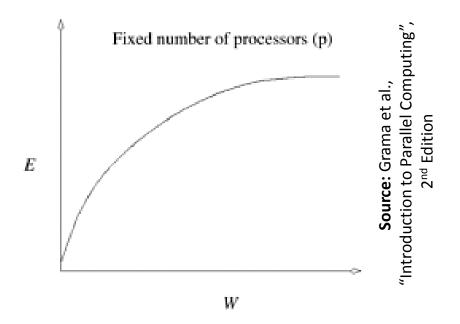
How T_p (or S_p) varies with p when the problem size per processing element is fixed.

Source: Martha Kim, Columbia University

Scalable Parallel Algorithms

Efficiency,
$$E_p = \frac{S_p}{p} = \frac{T_1}{pT_p}$$





A parallel algorithm is called *scalable* if its efficiency can be maintained at a fixed value by simultaneously increasing the number of processing elements and the problem size.

Scalability reflects a parallel algorithm's ability to utilize increasing processing elements effectively.

Scalable Parallel Algorithms

In order to keep E_p fixed at a constant k, we need

$$E_p = k \Rightarrow \frac{T_1}{pT_p} = k \Rightarrow T_1 = kpT_p$$

For the algorithm that adds *n* numbers using *p* processing elements:

$$T_1 = n$$
 and $T_p = \frac{n}{p} + 2\log p$

So in order to keep E_p fixed at k, we must have:

$$n = kp\left(\frac{n}{p} + 2\log p\right) \Rightarrow n = \frac{2k}{1-k}p\log p$$

n	p = 1	p = 4	p = 8	<i>p</i> = 16	p = 32
64	1.0	0.80	0.57	0.33	0.17
192	1.0	0.92	0.80	0.60	0.38
320	1.0	0.95	0.87	0.71	0.50
512	1.0	0.97	0.91	0.80	0.62

Fig: Efficiency for adding *n* numbers using *p* processing elements

Source: Grama et al., "Introduction to Parallel Computing", 2nd Edition