# **CSE 613: Parallel Programming**

# Lecture 2 ( Analytical Modeling of Parallel Algorithms )

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2015

## Parallel Execution Time & Overhead



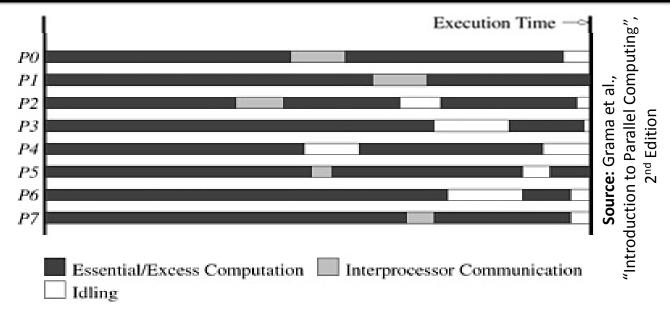
Parallel running time on p processing elements,

$$T_P = t_{end} - t_{start}$$
,

where,  $t_{start}$  = starting time of the processing element that starts first

 $t_{end}$  = termination time of the processing element that finishes last

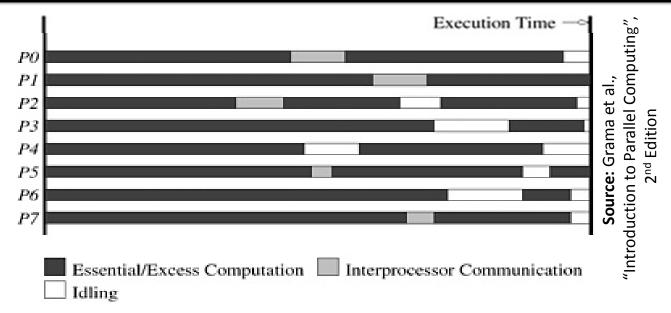
## Parallel Execution Time & Overhead



Sources of overhead (w.r.t. serial execution)

- Interprocess interaction
  - Interact and communicate data (e.g., intermediate results)
- Idling
  - Due to load imbalance, synchronization, presence of serial computation, etc.
- Excess computation
  - Fastest serial algorithm may be difficult/impossible to parallelize

## Parallel Execution Time & Overhead



Overhead function or total parallel overhead,

$$T_O = pT_p - T,$$

where, p = number of processing elements

T = time spent doing useful work

(often execution time of the fastest serial algorithm)

# **Speedup**

Let  $T_p$  = running time using p identical processing elements

Speedup, 
$$S_p = \frac{T_1}{T_p}$$

Theoretically,  $S_p \le p$  (why?)

*Perfect* or *linear* or *ideal* speedup if  $S_p = p$ 

# Speedup

Consider adding n numbers using n identical processing elements.

Serial runtime,  $T_1 = \Theta(n)$ 

Parallel runtime,  $T_n = \Theta(\log n)$ 

Speedup, 
$$S_n = \frac{T_1}{T_n} = \Theta\left(\frac{n}{\log n}\right)$$

Speedup not ideal.



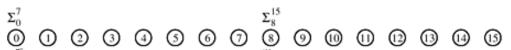
(a) Initial data distribution and the first communication step



(b) Second communication step



(c) Third communication step



(d) Fourth communication step

$$\Sigma_0^{15}$$
 0 0 3 4 5 6 7 8 9 10 11 12 13 14 15

(e) Accumulation of the sum at processing element 0 after the final communication

# Superlinear Speedup

Theoretically,  $S_p \leq p$ 

Reasons for superlinear speedup

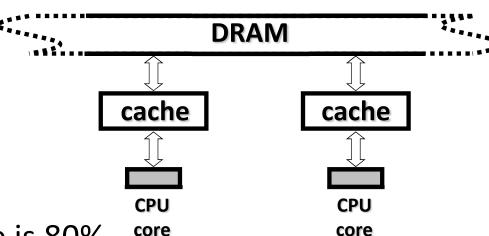
- Cache effects
- Exploratory decomposition

# Superlinear Speedup ( Cache Effects )

Let cache access latency = 2 ns

DRAM access latency = 100 ns

Suppose we want solve a problem instance that executes *k* FLOPs.



With 1 Core: Suppose cache hit rate is 80%.

If the computation performs 1 FLOP/memory access, then each FLOP will take  $2 \times 0.8 + 100 \times 0.2 = 21.6$  ns to execute.

With 2 Cores: Cache hit rate will improve. (why?)

Suppose cache hit rate is now 90%.

Then each FLOP will take  $2 \times 0.9 + 100 \times 0.1 = 11.8$  ns to execute.

Since now each core will execute only k / 2 FLOPs,

Speedup, 
$$S_2 = \frac{k \times 21.6}{(k/2) \times 11.8} \approx 3.66 > 2$$

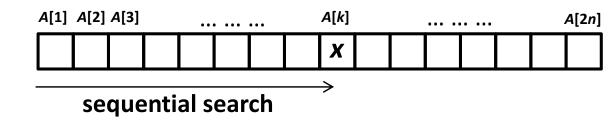
# Superlinear Speedup ( Due to Exploratory Decomposition )

Consider searching an array of 2*n* unordered elements for a specific element *x*.

Suppose x is located at array location k > n and k is odd.

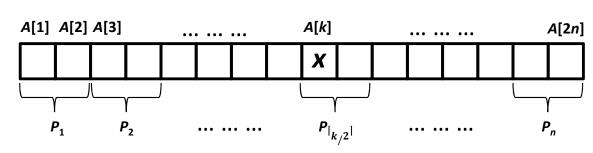
Serial runtime,  $T_1 = k$ 

Parallel running time with n processing elements,  $T_n = 1$ 



Speedup, 
$$S_n = \frac{T_1}{T_n} = k > n$$

Speedup is superlinear!



parallel search

# Parallelism & Span Law

We defined,  $T_p$  = runtime on p identical processing elements

Then span,  $T_{\infty}$  = runtime on an infinite number of identical processing elements

Parallelism, 
$$P = \frac{T_1}{T_{\infty}}$$

Parallelism is an upper bound on speedup, i.e.,  $S_p \leq P$ ( why? )

$$\frac{\mathsf{Span Law}}{T_p \geq T_{\infty}}$$

# **Work Law**

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is given by  $T_1$ 

On a Parallel Computer: is given by  $pT_p$ 

### **Work Law**

$$T_p \ge \frac{T_1}{p}$$

# **Work Optimality**

Let  $T_S$  = runtime of the optimal or the fastest known serial algorithm

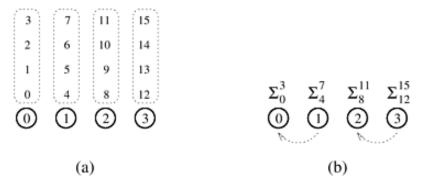
A parallel algorithm is cost-optimal or work-optimal provided

$$pT_p = \Theta(T_s)$$

Our algorithm for adding n numbers using n identical processing elements is clearly not work optimal.

# Adding n Numbers Work-Optimality

We reduce the number of processing elements which in turn increases the granularity of the subproblem assigned to each processing element.



Suppose we use p processing elements.

First each processing element locally adds its  $\frac{n}{p}$  numbers in time  $\Theta\left(\frac{n}{p}\right)$ .

**Source:** Grama et al., "Introduction to Parallel Computing", 2<sup>nd</sup> Edition

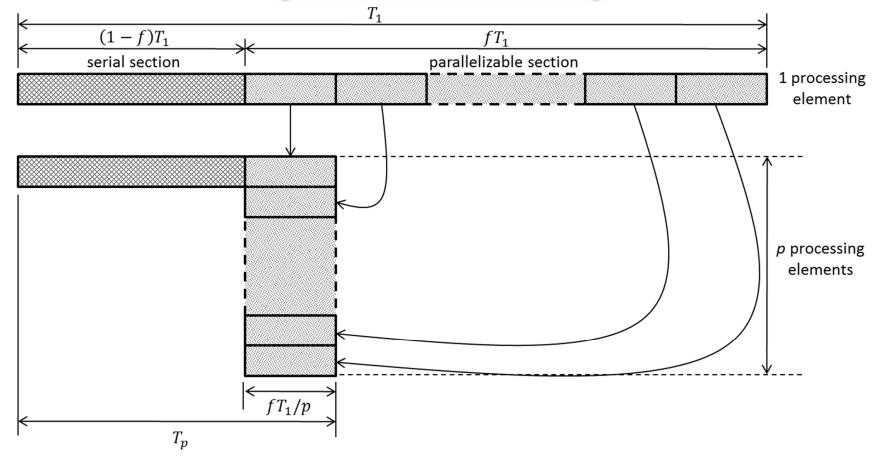
Then p processing elements adds these p partial sums in time  $\Theta(\log p)$ .

Thus 
$$T_p = \Theta\left(\frac{n}{p} + \log p\right)$$
, and  $T_s = \Theta(n)$ .

So the algorithm is work-optimal provided  $n = \Omega(p \log p)$ .

# Scaling Laws

# Scaling of Parallel Algorithms (Amdahl's Law)



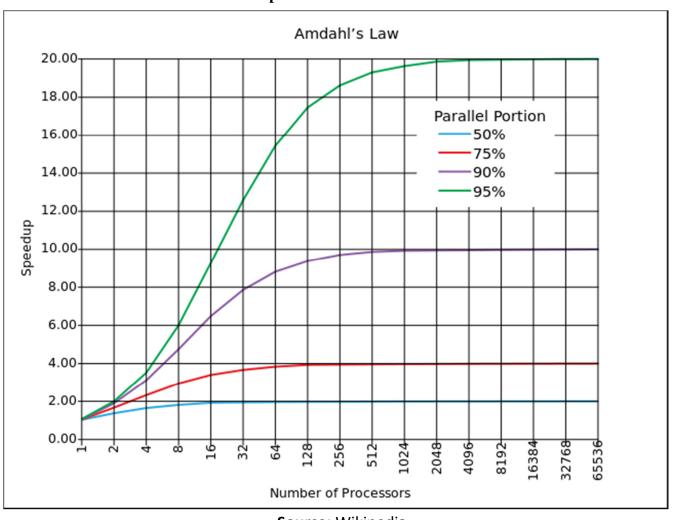
Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, 
$$T_p \ge (1-f)T_1 + f\frac{T_1}{p}$$
  
Speedup,  $S_p = \frac{T_1}{T_p} \le \frac{p}{f + (1-f)p} = \frac{1}{(1-f) + \frac{f}{p}} \le \frac{1}{1-f}$ 

# Scaling of Parallel Algorithms (Amdahl's Law)

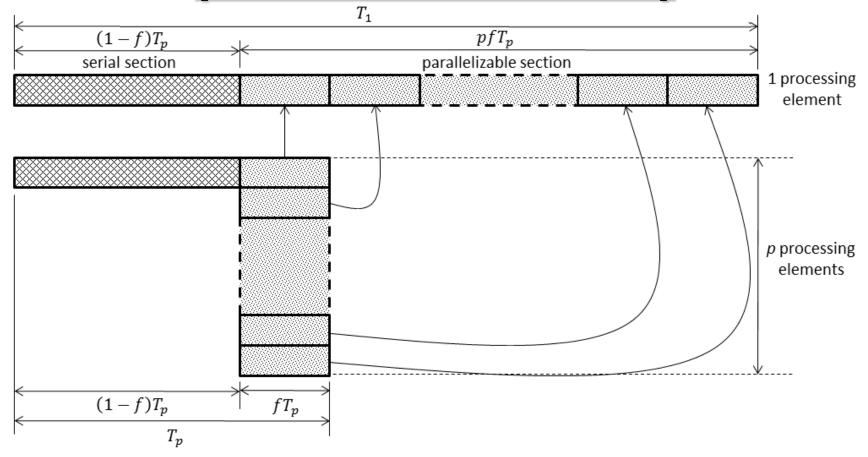
Suppose only a fraction f of a computation can be parallelized.

Speedup, 
$$S_p = \frac{T_1}{T_p} \le \frac{1}{(1-f) + \frac{f}{p}} \le \frac{1}{1-f}$$



**Source:** Wikipedia

# <u>Scaling of Parallel Algorithms</u> ( <u>Gustafson-Barsis' Law</u> )



Suppose only a fraction f of a computation was parallelized.

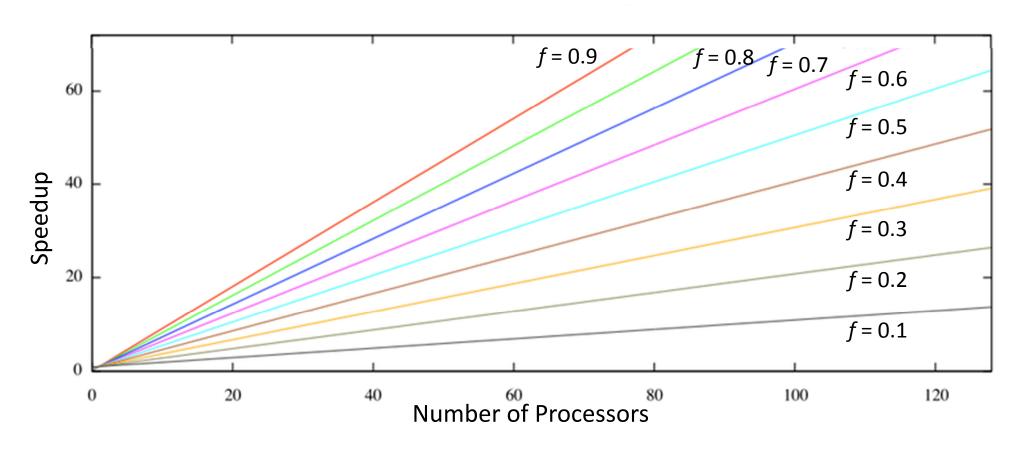
Then serial running time,  $T_1 = (1 - f)T_p + pfT_p$ 

Speedup, 
$$S_p = \frac{T_1}{T_p} = \frac{(1-f)T_p + pfT_p}{T_p} = 1 + (p-1)f$$

# <u>Scaling of Parallel Algorithms</u> ( <u>Gustafson-Barsis' Law</u> )

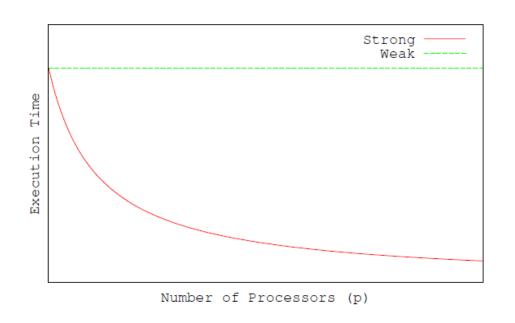
Suppose only a fraction f of a computation was parallelized.

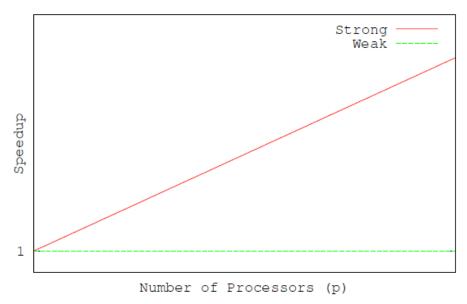
Speedup, 
$$S_p = \frac{T}{T_p} \le \frac{T_1}{T_p} = \frac{(1-f)T_p + pfT_p}{T_p} = 1 + (p-1)f$$



Source: Wikipedia

# Strong Scaling vs. Weak Scaling





### **Strong Scaling**

How  $T_p$  (or  $S_p$ ) varies with p when the problem size is fixed.

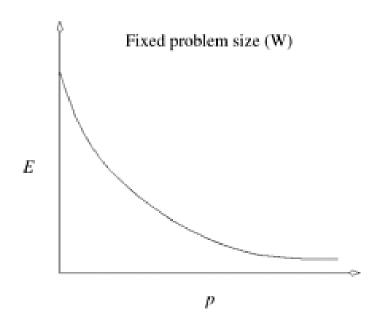
### **Weak Scaling**

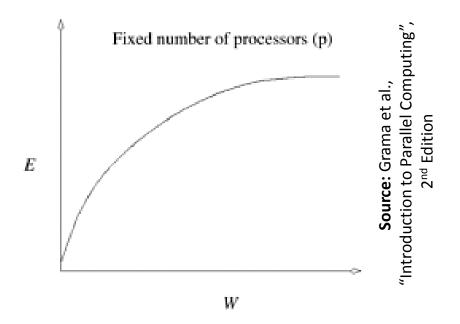
How  $T_p$  (or  $S_p$ ) varies with p when the problem size per processing element is fixed.

Source: Martha Kim, Columbia University

# Scalable Parallel Algorithms

Efficiency, 
$$E_p = \frac{S_p}{p} = \frac{T_1}{pT_p}$$





A parallel algorithm is called *scalable* if its efficiency can be maintained at a fixed value by simultaneously increasing the number of processing elements and the problem size.

Scalability reflects a parallel algorithm's ability to utilize increasing processing elements effectively.

# Scalable Parallel Algorithms

In order to keep  $E_p$  fixed at a constant k, we need

$$E_p = k \Rightarrow \frac{T_1}{pT_p} = k \Rightarrow T_1 = kpT_p$$

For the algorithm that adds *n* numbers using *p* processing elements:

$$T_1 = n$$
 and  $T_p = \frac{n}{p} + 2\log p$ 

So in order to keep  $E_p$  fixed at k, we must have:

$$n = kp\left(\frac{n}{p} + 2\log p\right) \Rightarrow n = \frac{2k}{1-k}p\log p$$

| n   | p = 1 | p = 4 | p = 8 | <i>p</i> = 16 | p = 32 |
|-----|-------|-------|-------|---------------|--------|
| 64  | 1.0   | 0.80  | 0.57  | 0.33          | 0.17   |
| 192 | 1.0   | 0.92  | 0.80  | 0.60          | 0.38   |
| 320 | 1.0   | 0.95  | 0.87  | 0.71          | 0.50   |
| 512 | 1.0   | 0.97  | 0.91  | 0.80          | 0.62   |

**Fig:** Efficiency for adding *n* numbers using *p* processing elements

**Source:** Grama et al., "Introduction to Parallel Computing", 2<sup>nd</sup> Edition