CSE 613: Parallel Programming

Lecture 5 (Greedy Scheduling)

(inspiration for some slides comes from lectures given by Charles Leiserson)

Rezaul A. Chowdhury

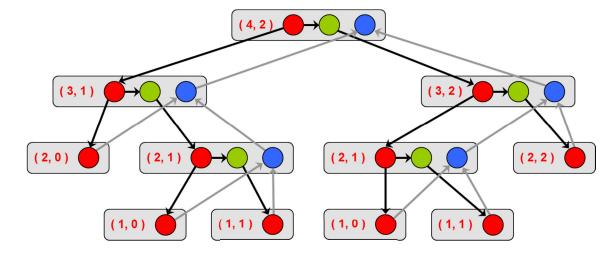
Department of Computer Science

SUNY Stony Brook

Spring 2015

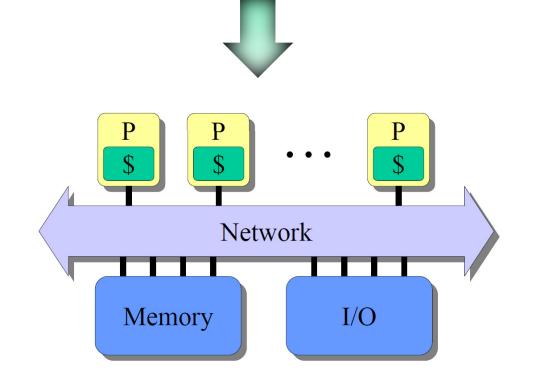
Scheduler

A runtime/online scheduler maps tasks to processing elements dynamically at runtime.



The map is called a *schedule*.

An offline scheduler prepares the schedule prior to the actual execution of the program.

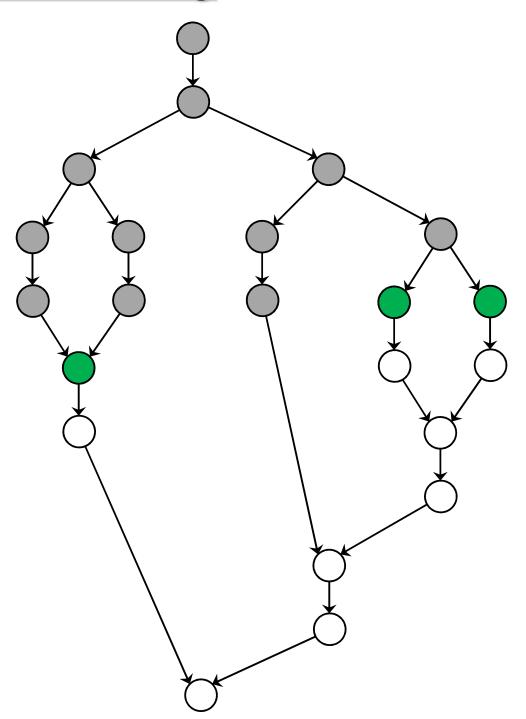


Greedy Scheduling

A strand / task is called ready provided all its parents (if any) have already been executed.

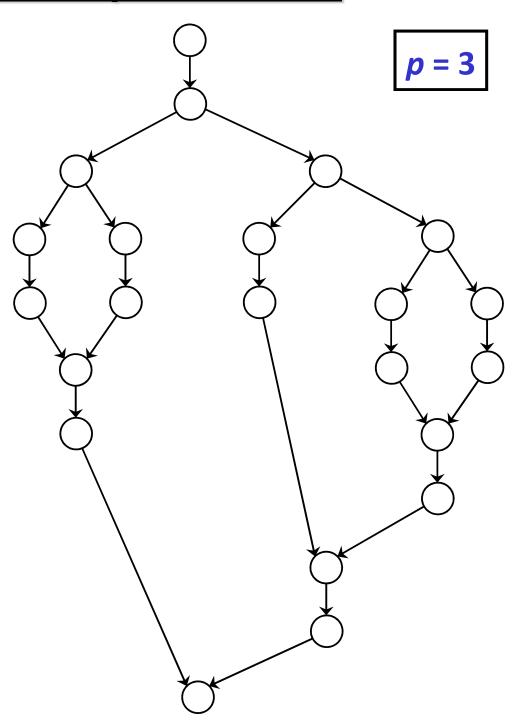
- executed task
- ready to be executed
- not yet ready

A greedy scheduler tries to perform as much work as possible at every step.



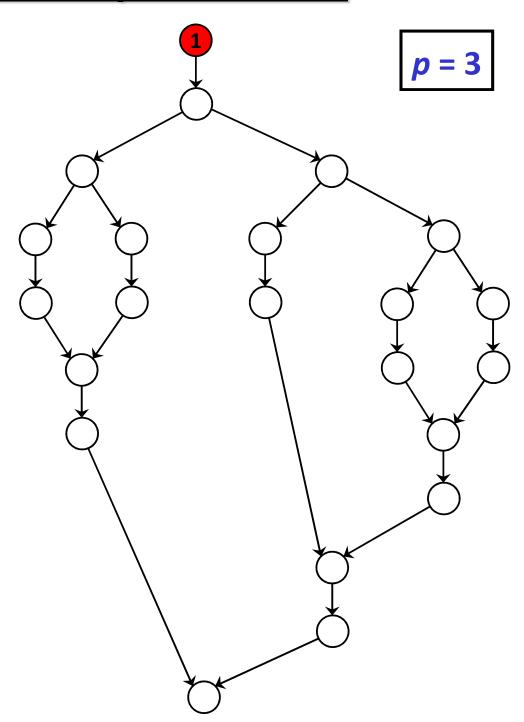
Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



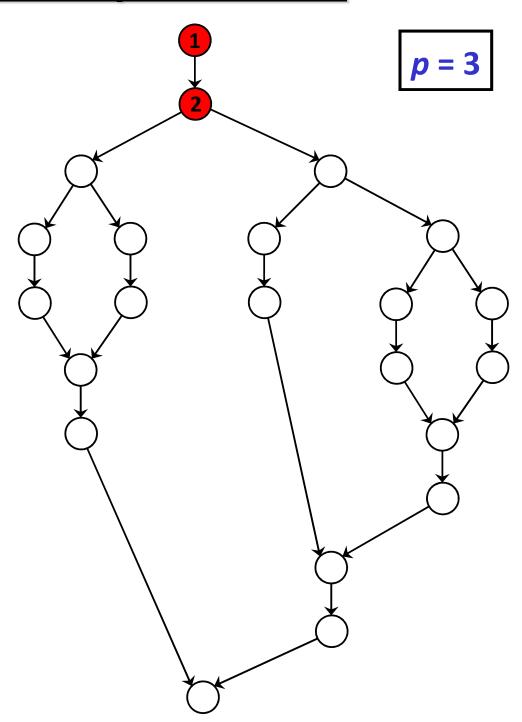
Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



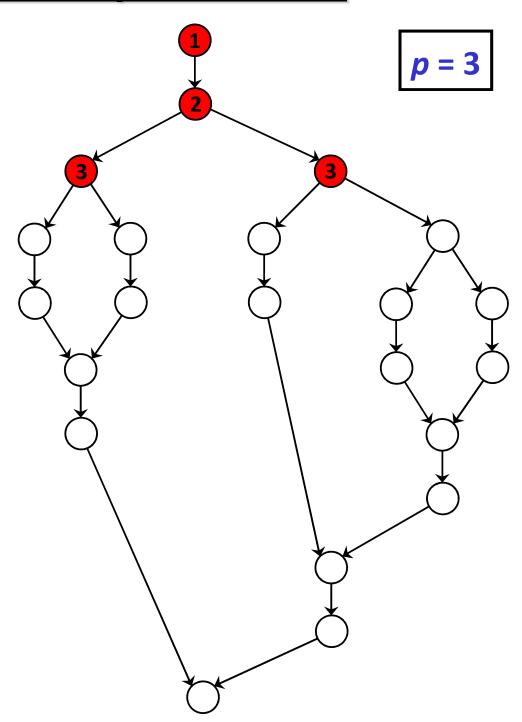
Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



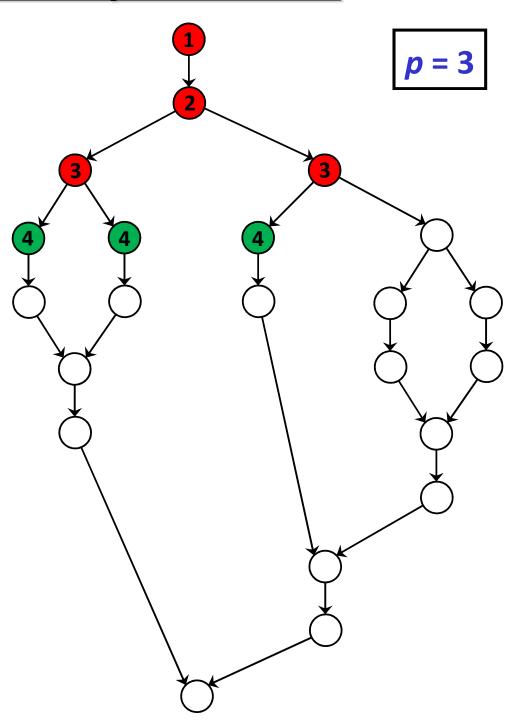
Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



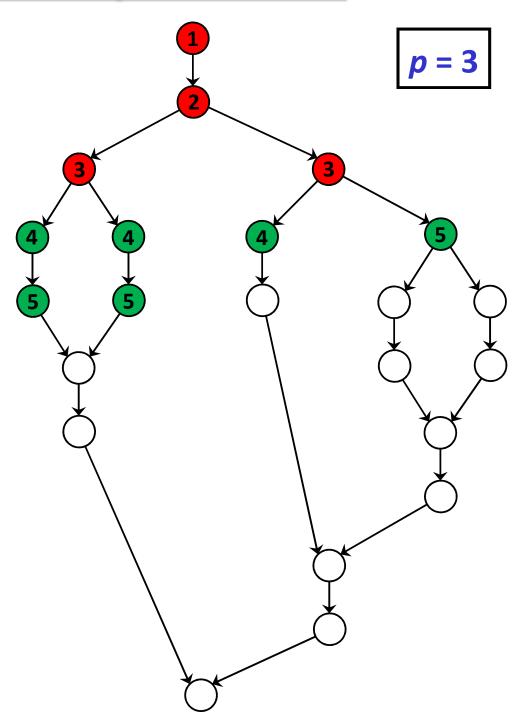
Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



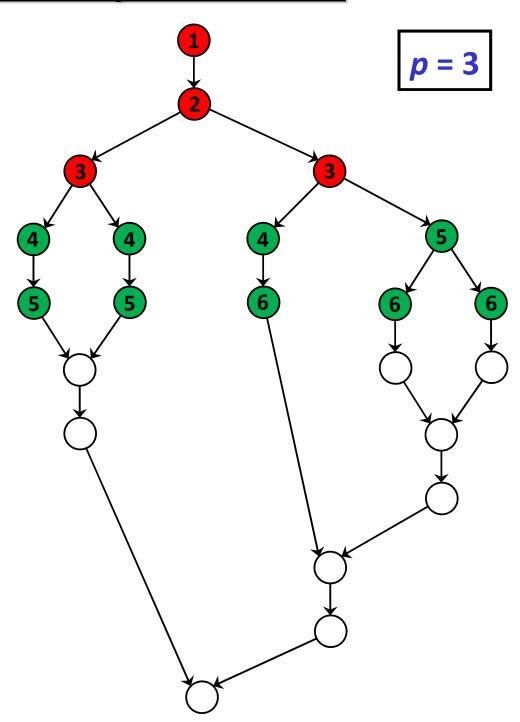
Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



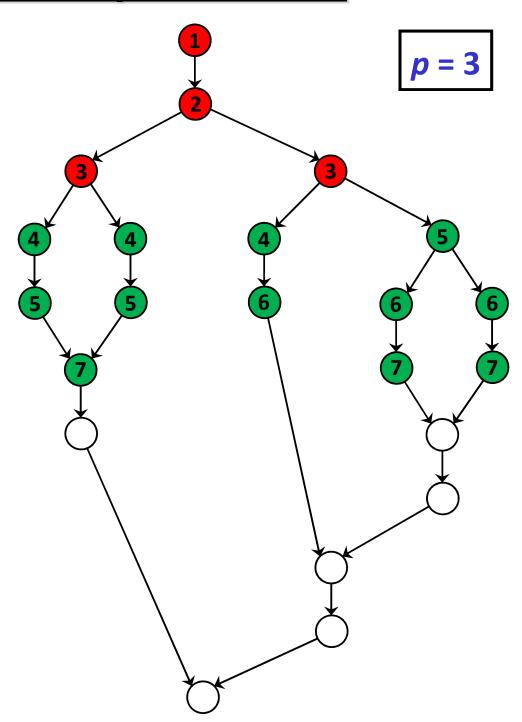
Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



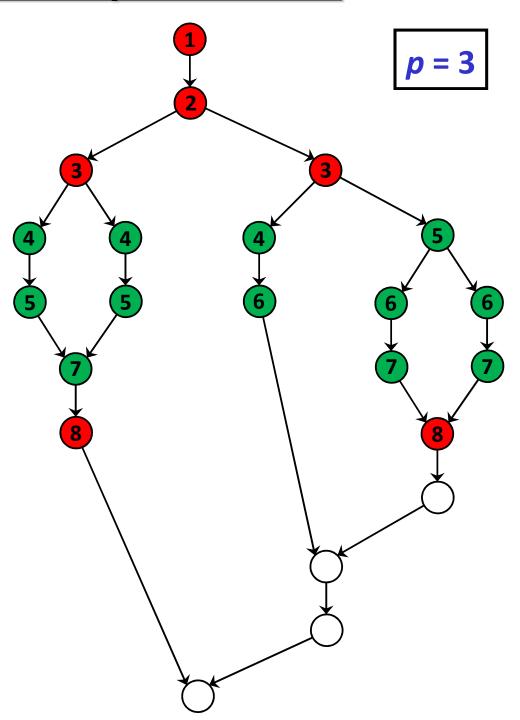
Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



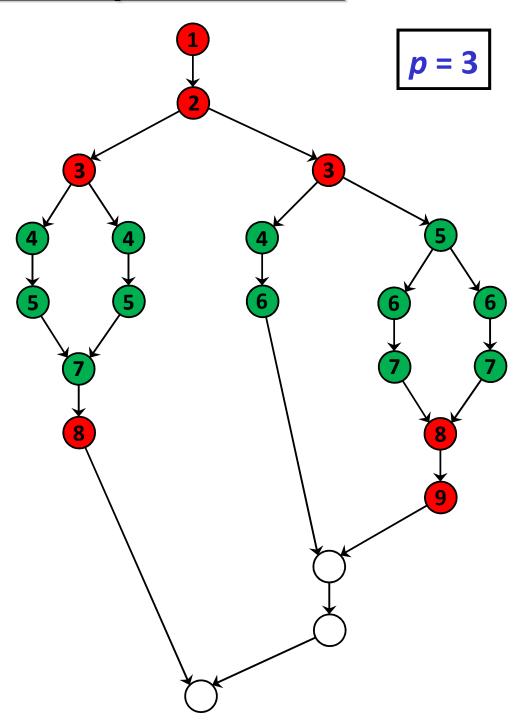
Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



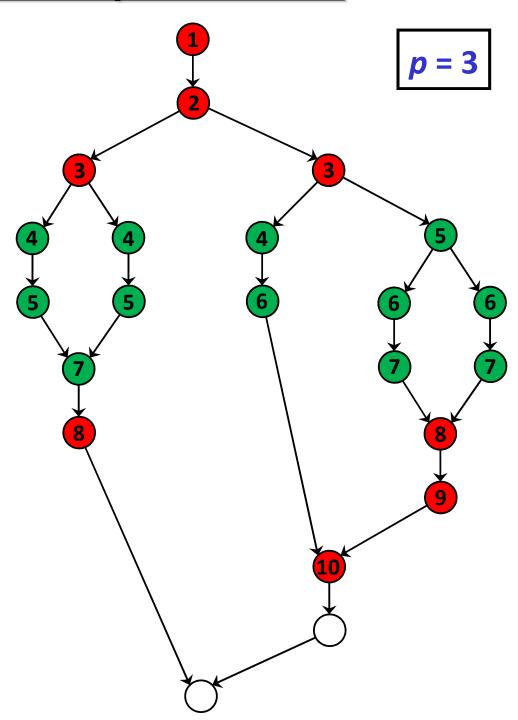
Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



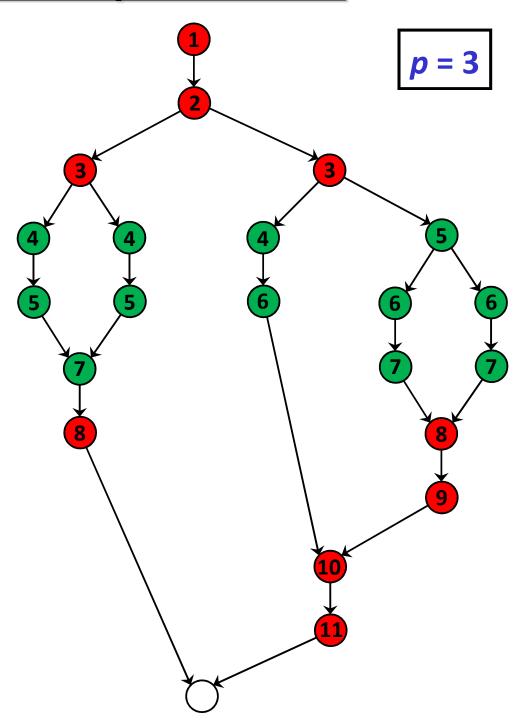
Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



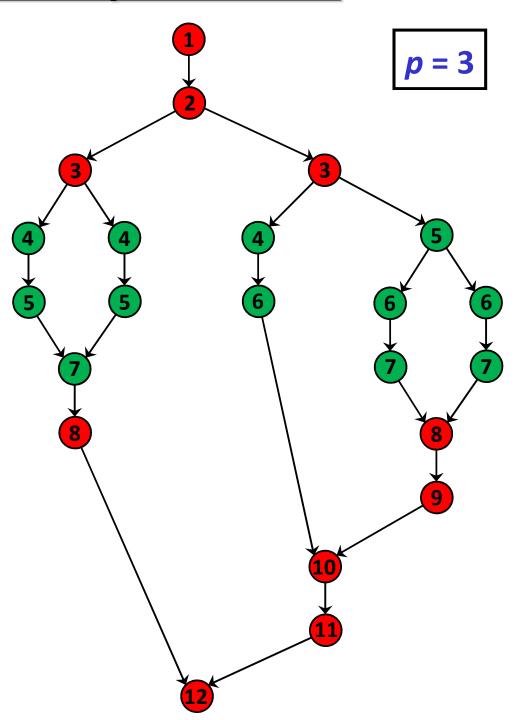
Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



Let p = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if execute all of them(incomplete step)



Greed Scheduling Theorem

Theorem [Graham'68, Brent'74]:

For any greedy scheduler,

$$T_p \le \frac{T_1}{p} + T_{\infty}$$

Proof:

 T_p = #complete steps

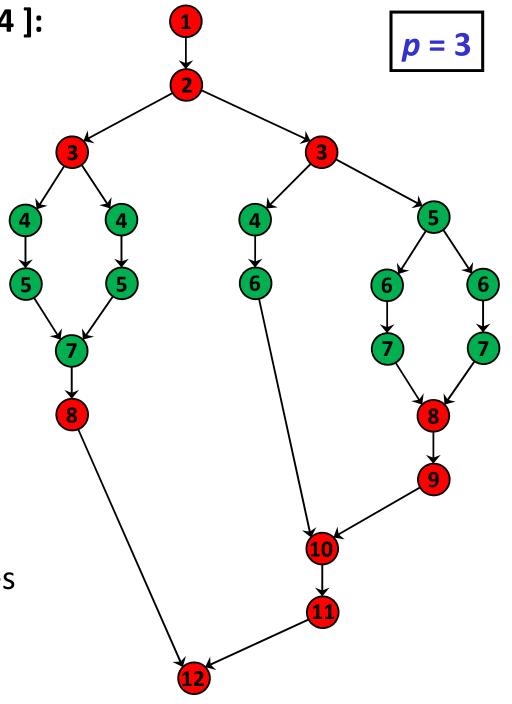
+ #incomplete steps

Each complete step performs p work:

#complete steps $\leq \frac{T_1}{p}$

Each incomplete step reduces the span by 1:

#incomplete steps $\leq T_{\infty}$



Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler $T_p \le 2T_p^*$, where T_p^* is the running time due to optimal scheduling on p processing elements.

Proof:

Work law: $T_p^* \ge \frac{T_1}{p}$

Span law: $T_p^* \geq T_{\infty}$

.:. From Graham-Brent Theorem:

$$T_p \le \frac{T_1}{p} + T_\infty \le T_p^* + T_p^* = 2T_p^*$$

Optimality of the Greedy Scheduler

Corollary 2: Any greedy scheduler achieves $S_p \approx p$ (i.e., nearly linear speedup) provided $\frac{T_1}{T_\infty} \gg p$.

Proof:

Given,
$$\frac{T_1}{T_\infty} \gg p \Rightarrow \frac{T_1}{p} \gg T_\infty$$

.:. From Graham-Brent Theorem:

$$T_{p} \leq \frac{T_{1}}{p} + T_{\infty} \approx \frac{T_{1}}{p}$$

$$\Rightarrow \frac{T_{1}}{T_{p}} \approx p \Rightarrow S_{p} \approx p$$