CSE 613: Parallel Programming

Lectures 11 - 12
(Basic Parallel Algorithmic Techniques)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2015

Some Basic Techniques

1. Divide-and-Conquer

- Recursive
- Non-recursive
- Contraction

2. Pointer Techniques

- Pointer Jumping
- Graph Contraction

3. Randomization

- Sampling
- Symmetry Breaking

Divide-and-Conquer

1. Divide: divide the original problem into smaller subproblems that are easier are to solve
2. Conquer: solve the smaller subproblems
(perhaps recursively)
3. Merge: combine the solutions to the smaller subproblems to obtain a solution for the original problem

Divide-and-Conquer

- The divide-and-conquer paradigm improves program modularity, and often leads to simple and efficient algorithms
- Since the subproblems created in the divide step are often independent, they can be solved in parallel
- If the subproblems are solved recursively, each recursive divide step generates even more independent subproblems to be solved in parallel
- In order to obtain a highly parallel algorithm it is often necessary to parallelize the divide and merge steps, too

Recursive D\&C: Parallel Merge Sort

Merge-Sort $(A, p, r) \quad\{$ sort the elements in $A[p \ldots r]\}$

1. if $p<r$ then
2. $q \leftarrow\lfloor(p+r) / 2\rfloor$
3. Merge-Sort (A, p, q)
4. Merge-Sort ($A, q+1, r)$
5. Merge (A, p, q, r)

Par-Merge-Sort (A, p, r) \{sort the elements in $A[p \ldots r]\}$

1. if $p<r$ then
2. $q \leftarrow\lfloor(p+r) / 2\rfloor$
3. spawn Merge-Sort ($A, p, q)$
4. $\quad \operatorname{Merge}$-Sort $(A, q+1, r)$
5. sync
6. Merge (A, p, q, r)

Recursive D\&C: Parallel Merge Sort

Par-Merge-Sort (A, p, r) \{sort the elements in $A[p \ldots r]\}$

1. if $p<r$ then
2. $q \leftarrow\lfloor(p+r) / 2\rfloor$
3. spawn Merge-Sort ($A, p, q)$
4. \quad Merge-Sort $(A, q+1, r)$
5. sync
6. Merge (A, p, q, r)

Work: $T_{1}(n)=\left\{\begin{array}{lr}\Theta(1), & \text { if } n=1, \\ 2 T_{1}\left(\frac{n}{2}\right)+\Theta(n), & \text { otherwise. }\end{array}\right.$

$$
=\Theta(n \log n)
$$

Span: $T_{\infty}(n)= \begin{cases}\Theta(1), & \text { if } n=1,\end{cases}$

$$
\text { span: } T_{\infty}(n)= \begin{cases}T_{\infty}\left(\frac{n}{2}\right)+\Theta(n), \quad \text { otheryise } .\end{cases}
$$

Must parallelize the

$$
=\Theta(n)
$$ Merge routine.

Parallelism: $\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta(\log n)$

Non-Recursive D\&C: Parallel Sample Sort

Task: Sort an array $A[1, \ldots, n]$ of n distinct keys using $p \leq n$ processors. Steps (without oversampling):

1. Pivot Selection: Select (uniformly at random) and sort $m=p-1$ pivot elements $e_{1}, e_{2}, \ldots, e_{m}$. These elements define $m+1=p$ buckets: $\left(-\infty, e_{1}\right),\left(e_{1}, e_{2}\right), \ldots,\left(e_{m-1}, e_{m}\right),\left(e_{m},+\infty\right)$
2. Local Sort: Divide A into p segments of equal size, assign each segment to different processor, and sort locally.
3. Local Bucketing: If $m \leq \frac{n}{p}$, each processor inserts the pivot elements into its local sorted sequence using binary search, otherwise inserts its local elements into the sorted pivot elements. Thus the keys are divided among $m+1=p$ buckets.
4. Merge Local Buckets: Processor $i(1 \leq i \leq p)$ merges the contents of bucket i from all processors through a local sort.
5. Final Result: Each processor copies its bucket to a global output array so that bucket $i(1 \leq i \leq p-1)$ precedes bucket $i+1$ in the output.

Non-Recursive D\&C: Parallel Sample Sort

Steps (without oversampling):

1. Pivot Selection: $\mathrm{O}(m \log (m))=\mathrm{O}(p \log p)$
[worst case]
2. Local Sort: $\mathrm{O}\left(\frac{n}{p} \log \frac{n}{p}\right)$
[worst case]
3. Local Bucketing:

$$
\mathrm{O}\left(\min \left(m \log \frac{n}{p}, \frac{n}{p} \log m\right)\right)=\mathrm{O}\left(\frac{n}{p} \log \frac{n}{p}\right)
$$

[worst case]
4. Merge Local Buckets: $\mathrm{O}\left(\frac{n}{m} \log \frac{n}{m}\right)=\mathrm{O}\left(\frac{n}{p} \log \frac{n}{p}\right) \quad$ [expected] (not quite correct as the largest bucket can have
$\Theta\left(\frac{n}{m} \log m\right)$ keys with significant probability)
5. Final Result: $\mathrm{O}\left(\frac{n}{m}\right)=\mathrm{O}\left(\frac{n}{p}\right)$

Overall: $\mathrm{O}\left(\frac{n}{p} \log \frac{n}{p}+p \log p\right) \quad$ [expected]

Contraction

1. Reduce: reduce the original problem to a smaller problem
2. Conquer: solve the smaller problem (often recursively)
3. Expand: use the solution to the smaller problem to obtain a solution for the original larger problem

Contraction: Prefix Sums

Input: A sequence of n elements $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ drawn from a set S with a binary associative operation, denoted by \oplus.

Output: A sequence of n partial sums $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, where

$$
s_{i}=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{i} \text { for } 1 \leq i \leq n
$$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
5	3	7	1	3	6	2	4

\oplus = binary addition

5	8	15	16	19	25	27	31
s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	s_{8}

Contraction: Prefix Sums

Prefix-Sum $\left(\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle, \oplus\right) \quad\left\{n=2^{k}\right.$ for some $k \geq 0$. Return prefix sums $\left.\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle\right\}$

1. if $n=1$ then
2. $s_{1} \leftarrow x_{1}$
3. else
4. parallel for $i \leftarrow 1$ to $n / 2$ do
5. $\quad y_{i} \leftarrow x_{2 i-1} \oplus x_{2 i}$
6. $\left\langle z_{1}, z_{2}, \ldots, z_{n / 2}\right\rangle \leftarrow \operatorname{Prefix}-\operatorname{Sum}\left(\left\langle y_{1}, y_{2}, \ldots, y_{n / 2}\right\rangle, \oplus\right)$
7. parallel for $i \leftarrow 1$ to n do
8. if $i=1$ then $s_{1} \leftarrow x_{1}$
9. else if $i=$ even then $s_{i} \leftarrow z_{i / 2}$
10.

$$
\text { else } s_{i} \leftarrow z_{(i-1) / 2} \oplus x_{i}
$$

11. return $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle$

Contraction: Prefix Sums

Contraction: Prefix Sums

Contraction: Prefix Sums

$\operatorname{Prefix}-$ Sum $\left(\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle, \oplus\right) \quad\left\{n=2^{k}\right.$ for some $k \geq 0$. Return prefix sums $\left.\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle\right\}$

1. if $n=1$ then
2. $s_{1} \leftarrow x_{1}$
3. else
4. parallel for $i \leftarrow 1$ to $n / 2$ do
5. $\quad y_{i} \leftarrow x_{2 i-1} \oplus x_{2 i}$
6. $\left\langle z_{1}, z_{2}, \ldots, z_{n / 2}\right\rangle \leftarrow \operatorname{Prefix}-\operatorname{Sum}\left(\left\langle y_{1}, y_{2}, \ldots, y_{n / 2}\right\rangle, \oplus\right)$
7. parallel for $i \leftarrow 1$ to n do
8. if $i=1$ then $s_{1} \leftarrow x_{1}$
9. else if $i=$ even then $s_{i} \leftarrow z_{i / 2}$
10. else $s_{i} \leftarrow z_{(i-1) / 2} \oplus x_{i}$
11. return $\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle$

Work:

$$
\begin{aligned}
T_{1}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1 \\
T_{1}\left(\frac{n}{2}\right)+\Theta(n), & \text { otherwise } .
\end{array}\right. \\
& =\Theta(n)
\end{aligned}
$$

Span:

$$
\begin{aligned}
T_{\infty}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1 \\
T_{\infty}\left(\frac{n}{2}\right)+\Theta(1), & \text { otherwise }
\end{array}\right. \\
& =\Theta(\log n)
\end{aligned}
$$

Parallelism: $\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(\frac{n}{\log n}\right)$

Observe that we have assumed here that a parallel for loop can be executed in $\Theta(1)$ time. But recall that cilk_for is implemented using divide-and-conquer, and so in practice, it will take $\Theta(\log n)$ time. In that case, we will have $T_{\infty}(n)=\Theta\left(\log ^{2} n\right)$, and parallelism $=\Theta\left(\frac{n}{\log ^{2} n}\right)$.

Pointer Techniques: Pointer Jumping

The pointer jumping (or path doubling) technique allows fast processing of data stored in the form of a set of rooted directed trees.

For every node v in the set pointer jumping involves replacing $v \rightarrow$ next with $v \rightarrow$ next \rightarrow next at every step.

Some Applications

- Finding the roots of a forest of directed trees
- Parallel prefix on rooted directed trees
- List ranking

Pointer Jumping: Roots of a Forest of Directed Trees

Find-Roots (n, P, S) \{Input: A forest of rooted directed trees, each with a self-loop at its root, such that each edge is specified by $\langle v, P(v)\rangle$ for $1 \leq v \leq n$. Output: For each v, the root $S(v)$ of the tree containing v. \}

1. parallel for $v \leftarrow 1$ to n do
2. $\quad S(v) \leftarrow P(v)$
3. flag \leftarrow true
4. while flag = true do
5. flag \leftarrow false
6. parallel for $v \leftarrow 1$ to n do

7. $\quad S(v) \leftarrow S(S(v))$
8. if $S(v) \neq S(S(v))$ then flag \leftarrow true

Pointer Jumping: Roots of a Forest of Directed Trees

Find-Roots (n, P, S) \{Input: A forest of rooted directed trees, each with a self-loop at its root, such that each edge is specified by $\langle v, P(v)\rangle$ for $1 \leq v \leq n$. Output: For each v, the root $S(v)$ of the tree containing v. \}

1. parallel for $v \leftarrow 1$ to n do
2. $\quad S(v) \leftarrow P(v)$
3. while $S(v) \neq S(S(v))$ do
4. $\quad S(v) \leftarrow S(S(v))$

Pointer Jumping: Roots of a Forest of Directed Trees

Let h be the maximum height of any tree in the forest.

Observe that the distance between v and $S(v)$ doubles after each iteration until $S(S(v))$ is the root of the tree containing v.

Find-Roots (n, P, S) \{Input: A forest of rooted directed trees, each with a self-loop at its root, such that each edge is specified by $\langle v, P(v)\rangle$ for $1 \leq v \leq n$. Output: For each v, the root $S(v)$ of the tree containing v. \}

1. parallel for $v \leftarrow 1$ to n do
2. $\quad S(v) \leftarrow P(v)$
3. flag \leftarrow true
4. while flag = true do
5. flag \leftarrow false
6. parallel for $v \leftarrow 1$ to n do
7. $\quad S(v) \leftarrow S(S(v))$
8. if $S(v) \neq S(S(v))$ then flag \leftarrow true

Hence, the number of iterations is $\log h$. Thus (assuming that each parallel for loop takes $\Theta(1)$ time to execute),

Work: $T_{1}(n)=\mathrm{O}(n \log h)$ and Span: $T_{\infty}(n)=\Theta(\log h)$
Parallelism: $\frac{T_{1}(n)}{T_{\infty}(n)}=\mathrm{O}(n)$

Pointer Techniques: Graph Contraction

1. Contract: the graph is reduced in size while maintaining some of its original properties (depending on the problem)
2. Conquer: solve the problem on the contracted graph
(often recursively)
3. Expand: use the solution to the contracted graph to obtain a solution for the original graph

Some Applications

- Finding connected components of a graph
- Minimum spanning trees

Graph Contraction: Connected Components (CC)

1. Direct the edges to form a forest of rooted directed trees
2. Use pointer jumping to contract each such tree to a single vertex
3. Recursively find the CCs of the contracted graph
4. Expand those CCs to label the vertices of the original graph with CC numbers

Randomization: Symmetry Breaking

A technique to break symmetry in a structure, e.g., a graph which can locally look the same to all vertices.

Some Applications

- Prefix sums in a linked list (list ranking)
- Selecting a large independent set from a graph
- Graph contraction

Symmetry Breaking: List Ranking

break symmetry:
contract:
expand:

1. Flip a coin for each list node
2. If a node u points to a node v, and u got a head while v got a tail, combine u and v
3. Recursively solve the problem on the contracted list
4. Project this solution back to the original list

Symmetry Breaking: List Ranking

In every iteration a node gets removed with probability $\frac{1}{4}$ (as a node gets head with probability $\frac{1}{2}$ and the next node gets tail with probability $\frac{1}{2}$).

Hence, a quarter of the nodes get removed in each iteration (expected number).

Thus the expected number of iterations is $\Theta(\log n)$.
In fact, it can be shown that with high probability,

$$
T_{1}(n)=\mathrm{O}(n) \text { and } T_{\infty}(n)=\mathrm{O}(\log n)
$$

