
CSE 613: Parallel Programming

Lectures 11 – 12

(Basic Parallel Algorithmic Techniques)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2015

Some Basic Techniques

1. Divide-and-Conquer

― Recursive

― Non-recursive

― Contraction

2. Pointer Techniques

― Pointer Jumping

― Graph Contraction

3. Randomization

― Sampling

― Symmetry Breaking

Divide-and-Conquer

1. Divide: divide the original problem into smaller

subproblems that are easier are to solve

2. Conquer: solve the smaller subproblems

(perhaps recursively)

3. Merge: combine the solutions to the smaller subproblems

to obtain a solution for the original problem

Divide-and-Conquer

― The divide-and-conquer paradigm improves program

modularity, and often leads to simple and efficient algorithms

― Since the subproblems created in the divide step are often

independent, they can be solved in parallel

― If the subproblems are solved recursively, each recursive

divide step generates even more independent subproblems to

be solved in parallel

― In order to obtain a highly parallel algorithm it is often

necessary to parallelize the divide and merge steps, too

Merge-Sort (A, p, r) { sort the elements in A[p … r] }

1. if p < r then

3. Merge-Sort (A, p, q)

4. Merge-Sort (A, q + 1, r)

2. q ← (p + r) / 2

5. Merge (A, p, q, r)

Par-Merge-Sort (A, p, r) { sort the elements in A[p … r] }

1. if p < r then

3. spawn Merge-Sort (A, p, q)

4. Merge-Sort (A, q + 1, r)

2. q ← (p + r) / 2

6. Merge (A, p, q, r)

5. sync

Recursive D&C: Parallel Merge Sort

Par-Merge-Sort (A, p, r) { sort the elements in A[p … r] }

1. if p < r then

3. spawn Merge-Sort (A, p, q)

4. Merge-Sort (A, q + 1, r)

2. q ← (p + r) / 2

6. Merge (A, p, q, r)

5. sync

�� � � �Θ 1 , 																			
	� � 1,2�� �2 � Θ � , 		�����	��.
� 	Θ � log �

�� � � �Θ 1 , 																							
	� � 1,�� �2 � Θ � , 				�����	��.
� 	Θ �

Parallelism:
�� ��� � � Θ log �

Span:

Work:

Recursive D&C: Parallel Merge Sort

Too small!

Must parallelize the

Merge routine.

Non-Recursive D&C: Parallel Sample Sort

Task: Sort an array � 1,… , � of � distinct keys using � � processors.

Steps (without oversampling):

1. Pivot Selection: Select (uniformly at random) and sort ! � � " 1 pivot

elements ��, �#, … , �$. These elements define ! � 1 � � buckets: "∞, �� , ��, �# , … , �$&�, �$, �$, �∞
2. Local Sort: Divide � into � segments of equal size, assign each segment

to different processor, and sort locally.

3. Local Bucketing: If ! �'	, each processor inserts the pivot elements

into its local sorted sequence using binary search, otherwise inserts its

local elements into the sorted pivot elements. Thus the keys are divided

among ! � 1 � � buckets.

4. Merge Local Buckets: Processor 	 1 	 � merges the contents of

bucket 		from all processors through a local sort.

5. Final Result: Each processor copies its bucket to a global output array so

that bucket 	 1 	 � " 1 precedes bucket 	 � 1 in the output.

Steps (without oversampling):

1. Pivot Selection: Ο ! log ! � Ο � log � [worst case]

2. Local Sort: Ο
�' log �' [worst case]

3. Local Bucketing:

Ο !	� ! log �' , �' log! � Ο
�' log �' [worst case]

4. Merge Local Buckets: Ο
�$ log �$ � Ο

�' log �' [expected]

(not quite correct as the largest bucket can have

Θ
�$ log! keys with significant probability)

5. Final Result: Ο
�$ � Ο

�' [expected]

Overall: Ο
�' log �' � � log � [expected]

Non-Recursive D&C: Parallel Sample Sort

Contraction

1. Reduce: reduce the original problem to a smaller problem

2. Conquer: solve the smaller problem (often recursively)

3. Expand: use the solution to the smaller problem

to obtain a solution for the original larger problem

Contraction: Prefix Sums

Input: A sequence of � elements (�, (#, … , (� drawn from a

set) with a binary associative operation, denoted by ⊕.

Output: A sequence of � partial sums ��, �#, … , �� , where �* � (�⊕(#⊕ … ⊕(* for 1 	 �.

5 3 7 1 3 6 2 4

(� (# (+ (, (- (. (/ (0

5 8 15 16 19 25 27 31�� �# �+ �, �- �. �/ �0
⊕ = binary addition

Contraction: Prefix Sums

Prefix-Sum ((�, (#, … , (� , ⊕) { � � 21 for some 2 3 0.

Return prefix sums ��, �#, … , �� }

4. parallel for 	 ← 1 to � 2⁄ do

5. 7* ← (#*&�⊕(#*
6. 8�, 8#, … , 8� #⁄ ← Prefix-Sum(7�, 7#, … , 7� #⁄ , ⊕)

1. if � � 1 then

3. else

2. �� ← (�

7. parallel for 	 ← 1 to � do

8. if 	 � 1 then �� ← (�
9. else if 	 � �9�� then �* ← 8* #⁄

10. else �* ← 8 *&� #⁄ ⊕	(*
11. return ��, �#, … , ��

Contraction: Prefix Sums

(� (# (+ (, (- (. (/ (0

�� �# �+ �, �- �. �/ �0

7� 7# 7+ 7,
7′� 7′#

7′′�

8� 8# 8+ 8,
8′� 8′#

8′′�

Contraction: Prefix Sums

5 3 7 1 3 6 2 4

5 8 15 16 19 25 27 31

8 8 9 6
16 15

31

8 16 25 31
16 31

31

Contraction: Prefix Sums

�� � � �Θ 1 , 																	
	� � 1,�� �2 � Θ � , 		�����	��.
� 	Θ �

�� � � �Θ 1 , 																									
	� � 1,�� �2 � Θ 1 , �����	��.
� 	Θ log �

Parallelism:
�� ��� � � Θ

�BCD �

Span:

Work:
Prefix-Sum ((�, (#, … , (� , ⊕) { � � 21 for some 2 3 0.

Return prefix sums ��, �#, … , �� }

4. parallel for 	 ← 1 to � 2⁄ do

5. 7* ← (#*&�⊕(#*
6. 8�, 8#, … , 8� #⁄ ← Prefix-Sum(7�, 7#, … , 7� #⁄ , ⊕)

1. if � � 1 then

3. else

2. �� ← (�

7. parallel for 	 ← 1 to � do

8. if 	 � 1 then �� ← (�
9. else if 	 � �9�� then �* ← 8* #⁄

10. else �* ← 8 *&� #⁄ ⊕	(*
11. return ��, �#, … , ��

Observe that we have assumed here that a parallel for loop can be

executed in Θ 1 time. But recall that cilk_for is implemented using

divide-and-conquer, and so in practice, it will take Θ log � time. In that

case, we will have �� � � Θ log2� , and parallelism � Θ
�BCD# � .

Pointer Techniques: Pointer Jumping

The pointer jumping (or path doubling) technique allows fast

processing of data stored in the form of a set of rooted directed trees.

For every node 9 in the set pointer jumping involves replacing 9 →��(� with 9 → ��(� → ��(� at every step.

Some Applications

― Finding the roots of a forest of directed trees

― Parallel prefix on rooted directed trees

― List ranking

Pointer Jumping: Roots of a Forest of Directed Trees

Find-Roots (�, F,)) { Input: A forest of rooted directed trees, each

with a self-loop at its root, such that each

edge is specified by 9, F 9 for 1 9 �.

Output: For each 9, the root) 9 of the tree

containing 9. }

1. parallel for 9 ← 1 to � do

2.) 9 ← F 9

7.) 9 ←)) 9
8. if) 9 G)) 9 then
HIJ ← ��K�

1 2

3 4

5

6 7

8

9

10

11

12

13

1 2

3
4 5

6

7

8

9

10

11

12

13

1

2

3 54

6

8
7

9

10 11

12

13

3.
HIJ ← ��K�
4. while
HIJ � ��K� do

5.
HIJ ←
IH��
6. parallel for 9 ← 1 to � do

Pointer Jumping: Roots of a Forest of Directed Trees

Find-Roots (�, F,)) { Input: A forest of rooted directed trees, each

with a self-loop at its root, such that each

edge is specified by 9, F 9 for 1 9 �.

Output: For each 9, the root) 9 of the tree

containing 9. }

1. parallel for 9 ← 1 to � do

2.) 9 ← F 9
4.) 9 ←)) 9
3. while) 9 G)) 9 do

1 2

3 4

5

6 7

8

9

10

11

12

13

1 2

3
4 5

6

7

8

9

10

11

12

13

1

2

3 54

6

8
7

9

10 11

12

13

Pointer Jumping: Roots of a Forest of Directed Trees

Let � be the maximum

height of any tree in the

forest.

Observe that the distance

between 9 and) 9
doubles after each

iteration until)) 9 is

the root of the tree

containing 9.

Work: �� � � Ο � log � and Span: �� � � Θ log �
Parallelism:

�� ��� � � Ο �

Find-Roots (�, F,)) { Input: A forest of rooted directed trees, each

with a self-loop at its root, such that each

edge is specified by 9, F 9 for 1 9 �.

Output: For each 9, the root) 9 of the tree

containing 9. }

1. parallel for 9 ← 1 to � do

2.) 9 ← F 9

7.) 9 ←)) 9
8. if) 9 G)) 9 then
HIJ ← ��K�

3.
HIJ ← ��K�
4. while
HIJ � ��K� do

5.
HIJ ←
IH��
6. parallel for 9 ← 1 to � do

Hence, the number of iterations is log �. Thus (assuming that each

parallel for loop takes Θ 1 time to execute),

Pointer Techniques: Graph Contraction

1. Contract: the graph is reduced in size while maintaining

some of its original properties (depending on the problem)

2. Conquer: solve the problem on the contracted graph

(often recursively)

3. Expand: use the solution to the contracted graph

to obtain a solution for the original graph

Some Applications

― Finding connected components of a graph

― Minimum spanning trees

Graph Contraction: Connected Components (CC)

1. Direct the edges to form a forest of rooted directed trees

2. Use pointer jumping to contract each such tree to a single vertex

3. Recursively find the CCs of the contracted graph

4. Expand those CCs to label the vertices of the original graph with

CC numbers

contraction

Randomization: Symmetry Breaking

A technique to break symmetry in a structure, e.g., a graph which

can locally look the same to all vertices.

Some Applications

― Prefix sums in a linked list (list ranking)

― Selecting a large independent set from a graph

― Graph contraction

Symmetry Breaking: List Ranking

1. Flip a coin for each list node

2. If a node K points to a node 9, and K got a head while 9 got a tail,

combine K and 9
3. Recursively solve the problem on the contracted list

4. Project this solution back to the original list

1 1 1 1 1 11 1 1

t h t h h t t h

1 2 1 2 1 11

8 7 5 4 2 11

8 7 6 5 4 13 2 1

solve recursively

break symmetry:

contract:

expand:

Symmetry Breaking: List Ranking

In every iteration a node gets removed with probability
�,

(as a node gets head with probability
�# and the next node gets tail

with probability
�#).

Hence, a quarter of the nodes get removed in each iteration

(expected number).

Thus the expected number of iterations is Θ log � .

In fact, it can be shown that with high probability,�� � � Ο � and �� � � Ο log �

