
 

 

Intel® Cilk++ SDK 
Programmer's Guide 

Document Number: 
322581-001US 
 



 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® 
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO 
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS 
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL 
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR 
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS 
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR 
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 
OTHER INTELLECTUAL PROPERTY RIGHT.  

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT 
DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE 
INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH 
MAY OCCUR. 

Intel may make changes to specifications and product descriptions at any time, without notice. 
Designers must not rely on the absence or characteristics of any features or instructions marked 
"reserved" or "undefined." Intel reserves these for future definition and shall have no 
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. 
The information here is subject to change without notice. Do not finalize a design with this 
information.  

The products described in this document may contain design defects or errors known as errata 
which may cause the product to deviate from published specifications. Current characterized 
errata are available on request.  

Contact your local Intel sales office or your distributor to obtain the latest specifications and 
before placing your product order. Copies of documents which have an order number and are 
referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, 
or by visiting Intel's Web Site.  

Intel processor numbers are not a measure of performance. Processor numbers differentiate 
features within each processor family, not across different processor families. See 
http  for details. ://www.intel.com/products/processor_number

This document contains information on products in the design phase of development. 

Core Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, 
IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap 
ahead., Intel. Leap ahead. logo, Intel NetStructure, Intel Viiv, Intel vPro, Intel XScale, Itanium, 
Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, 
Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon Inside are 
trademarks of Intel Corporation in the U.S. and other countries. 

* Other names and brands may be claimed as the property of others. 

Copyright © 2009, Intel Corporation. All rights reserved. 
 

Legal Information 

http://www.intel.com/products/processor_number�


iii 

 

 

Contents 

LEGAL INFORMATION ........................................................................................................ 2 

INTRODUCTION ................................................................................................................... 6 
Technical Support ............................................................................................................. 6 
Release Notes .................................................................................................................. 7 
Additional Resources and Information ............................................................................... 7 

GETTING STARTED ............................................................................................................. 8 
Build and Run a Cilk++ Example ....................................................................................... 8 
Convert a C++ Program .................................................................................................. 12 

Start with a Serial Program ......................................................................................... 12 
Convert to a Cilk++ program ....................................................................................... 14 
Add Parallelism Using cilk_spawn .............................................................................. 14 
Build, Execute and Test .............................................................................................. 15 

BUILD, RUN, AND DEBUG A CILK++ PROGRAM ............................................................ 17 
Build from the Linux* Command Line .............................................................................. 17 

Compiler Options for cilk++ for Linux* OS ................................................................... 18 
Build from the Windows* Command Line ........................................................................ 20 

cilkpp options .............................................................................................................. 20 
Build within Microsoft Visual Studio* ............................................................................... 22 

Convert C++ to Cilk++ within Visual Studio* ............................................................... 22 
Set Cilk++ Compiler Options within Visual Studio* ...................................................... 23 
Issues Building Cilk++ Programs Within Visual Studio* .............................................. 24 

Set Worker Count ........................................................................................................... 24 
Serialization .................................................................................................................... 25 
Debugging Strategies ...................................................................................................... 26 

CILK++ EXAMPLES ........................................................................................................... 28 

CILK++ CONCEPTS ........................................................................................................... 31 
Strands and Knots .......................................................................................................... 31 
Work and Span ............................................................................................................... 32 

THE CILK++ LANGUAGE ................................................................................................... 35 
Entering a Cilk++ Context ............................................................................................... 35 

cilk_main .................................................................................................................... 36 
cilk_spawn ...................................................................................................................... 36 

Spawning a Function that Returns a Value ................................................................. 37 
cilk_spawn Restrictions (Windows* OS only) .............................................................. 37 

cilk_sync ......................................................................................................................... 38 
cilk_for ............................................................................................................................ 39 

cilk_for Syntax ............................................................................................................ 40 
cilk_for Type Requirements ........................................................................................ 41 



iv 

 

 

cilk_for Restrictions..................................................................................................... 42 
cilk_for Grain Size ...................................................................................................... 43 

Cilk++ and C++ Language Linkage ................................................................................. 45 
Declarative Regions and Language Linkage ............................................................... 45 
Calling C++ Functions from Cilk++ ............................................................................. 46 
Language Linkage Rules for Templates ...................................................................... 47 

Cilk++ and the C++ boost Libraries ................................................................................. 48 
Preprocessor Macros ...................................................................................................... 48 
Exception Handling ......................................................................................................... 48 

CILK++ EXECUTION MODEL ............................................................................................ 50 

REDUCERS ........................................................................................................................ 52 
Using Reducers — A Simple Example ............................................................................ 53 
How Reducers Work ....................................................................................................... 55 
Safety and Performance Cautions ................................................................................... 57 
Reducer Library .............................................................................................................. 58 
Using Reducers — Additional Examples ......................................................................... 60 

String Reducer ............................................................................................................ 60 
List Reducer (With User-Defined Type) ...................................................................... 61 
Reducers in Recursive Functions ............................................................................... 62 

How to Develop a New Reducer ..................................................................................... 63 
Writing Reducers — A "Holder" Example .................................................................... 65 
Writing Reducers — A Sum Example ......................................................................... 67 

OPERATING SYSTEM SPECIFIC CONSIDERATIONS...................................................... 69 
Using Other Tools with Cilk++ Programs ......................................................................... 69 
General Interaction with OS Threads .............................................................................. 69 
Microsoft Foundation Classes and Cilk++ Programs ....................................................... 70 
Shared Cilk++ Libraries in Linux* OS .............................................................................. 71 
Converting Windows* DLLs to Cilk++ .............................................................................. 71 

RUNTIME SYSTEM AND LIBRARIES ................................................................................ 75 
cilk::context ..................................................................................................................... 75 
cilk::current_worker_count .............................................................................................. 76 
cilk::run ........................................................................................................................... 76 
cilk::mutex and Related Functions ................................................................................... 77 
Miser Memory Manager .................................................................................................. 78 

Memory Management Limitations ............................................................................... 78 
Miser Memory Management ....................................................................................... 79 
Miser Initialization ....................................................................................................... 79 
Miser Limitations ......................................................................................................... 79 

MIXING C++ AND CILK++ CODE ....................................................................................... 81 
Mixing C++ and Cilk++: Three Approaches ..................................................................... 81 
Header File Layout .......................................................................................................... 82 
Nested #include Statements ........................................................................................... 83 
Source File Layout .......................................................................................................... 84 



v 

 

 

Serializing Mixed C++/Cilk++ Programs .......................................................................... 85 

RACE CONDITIONS ........................................................................................................... 87 
Data Races ..................................................................................................................... 87 
Determinacy Races ......................................................................................................... 88 
Benign Races.................................................................................................................. 88 
Resolving Data Races ..................................................................................................... 89 

LOCKS ................................................................................................................................ 92 
Locks Cause Determinacy Races ................................................................................... 93 
Deadlocks ....................................................................................................................... 93 
Locks Contention Reduces Parallelism ........................................................................... 94 
Holding a Lock Across a Strand Boundary ...................................................................... 94 

CILKSCREEN RACE DETECTOR ...................................................................................... 96 
Using Cilkscreen ............................................................................................................. 96 
Understanding Cilkscreen Output.................................................................................... 98 
Controlling Cilkscreen From a Cilk++ Program .............................................................. 101 
Cilkscreen Performance ................................................................................................ 103 

CILKVIEW SCALABILITY ANALYZER ............................................................................ 105 
Cilkview Assumptions ................................................................................................... 105 
Running Cilkview .......................................................................................................... 105 
What the Profile Numbers Mean ................................................................................... 107 
Acting on the Profile Results ......................................................................................... 108 
Cilkview Example .......................................................................................................... 110 
Analyzing Portions of a Cilk++ Program ........................................................................ 112 
Benchmarking a Cilk++ Program................................................................................... 113 
Cilkview Reference ....................................................................................................... 113 

PERFORMANCE ISSUES IN CILK++ PROGRAMS ......................................................... 117 
Granularity .................................................................................................................... 117 
Optimize the Serial Program First ................................................................................. 117 
Timing Programs and Program Segments .................................................................... 118 
Common Performance Pitfalls ....................................................................................... 118 
Cache Efficiency and Memory Bandwidth ..................................................................... 119 
False Sharing ................................................................................................................ 120 

GLOSSARY OF TERMS ................................................................................................... 122 

INDEX ............................................................................................................................... 128 
  



6 

 

 

Version 1.10 (October 2009).  

This programmer's guide describes the Intel® Cilk++ SDK. The software described in this guide 
is provided under license from Intel Corporation. See the End User License Agreement (EULA) 
and the Release Notes for license details. 

The Intel Cilk++ SDK provides tools, libraries, documentation and samples that enable 
developers to use the Cilk++ language to add parallelism to new or existing C++ programs. This 
release of the SDK provides support for building IA-32 architecture programs (32-bit) that run on 
the Microsoft Windows* Operating System (OS) and IA-32 and Intel 64 architecture programs 
(32-bit and 64-bit) that run on the Linux OS*. 

Most of the information in this guide pertains to all platforms; differences are marked in the text. 

Target audience 
This programmer's guide is designed for application developers who will use the Intel Cilk++ 
SDK to improve performance by adding parallelism to new and existing C++ applications. We 
assume that the reader has a working knowledge of C++ programming. Expert-level knowledge 
of C++ will be helpful. 

Getting started 
We recommend that the reader first install the Intel Cilk++ SDK, then build and run at least one 
of the example programs in order to validate the installation and to begin to get familiar with the 
compiler and tools. See Getting Started (Page 8) for details. 

The Cilk++ Concepts (Page 31) and Cilk++ Language (Page 35) sections provide a good 
conceptual framework to understand the Cilk++ model of parallelism.  

Next, read about Race Conditions (Page 87), learn how to use the Intel Cilk++ cilkscreen 
race detector (Page 96) to identify race bugs, and how Reducers (Page 52) can be used to 
eliminate many common race problems. 

If you are planning to convert legacy serial applications, read the Mixing C++ and Cilk++ Code 
(Page 81) chapter. 

Typographic conventions 
We use a monospaced font for commands, code, keywords and program output. 

Pathnames are separated with back slash ("\") for Windows OS and forward slash ("/") for Linux 
OS. When the environment could be either Windows OS or Linux OS, we use the Linux OS 
forward slash convention. 
 

TECHNICAL SUPPORT 

We want you to be successful using the Intel® Cilk++ SDK. If you have feedback, questions, or 
problems, please use the support forums at http . ://whatif.intel.com

Chapter 1 
Introduction 

http://whatif.intel.com/�


7 

 

 

With problem reports, please include the following information: 

 Version of the Intel Cilk++ SDK (for example, Cilk++ SDK 1.1.0 for Linux* OS, 64-bit edition, 
build 7982) 

 Operating system and version (for example, Windows Vista* with Service Pack 1, Ubuntu 
9.04) 

 On Windows systems, please specify the compiler version (for example, Microsoft Visual 
Studio* 2005 with Service Pack 1) 

 A detailed description of the question, problem or suggestion 
 Source code whenever possible 
 Warning or error messages 
 

RELEASE NOTES 

The Release Notes list the system requirements, installation notes, and major changes from the 
previous release, such as new features, bug fixes, and examples. 

The release notes are available online from the http  web site. ://whatif.intel.com
 

ADDITIONAL RESOURCES AND INFORMATION 

There is a wealth of additional and supplementary information available about the Cilk++ 
language at http .  ://whatif.intel.com

The Cilk++ language is based on concepts developed and implemented for the Cilk language at 
MIT. To learn more about the history of the Cilk language, visit the following links: 

 The Cilk Implementation Project site (http ) is a 
gateway to the MIT Cilk project. A project overview (

://supertech.csail.mit.edu/cilkImp.html
http ) with 

links to a set of three lecture notes provides extensive historical, practical, and theoretical 
background information. 

://supertech.csail.mit.edu/cilk/

 "The Implementation of the Cilk-5 Multithreaded Language" 
(http ) by Matteo Frigo, Charles E. Leiserson, and 
Keith H. Randall, won the Most Influential 1998 PLDI Paper award 
(

://supertech.csail.mit.edu/papers/cilk5.pdf

http ) at the 
2008 ACM SIGPLAN Conference on Programming Language Design and Implementation.  

://software.intel.com/en-us/articles/Cilk-Wins-Most-Influential-PLDI-Paper-Award

 

http://whatif.intel.com/�
http://whatif.intel.com/�
http://supertech.csail.mit.edu/cilkImp.html�
http://supertech.csail.mit.edu/cilk/�
http://supertech.csail.mit.edu/papers/cilk5.pdf�
http://software.intel.com/en-us/articles/Cilk-Wins-Most-Influential-PLDI-Paper-Award�


8 

 

 

NOTE: For system requirements and installation instructions, see the Release Notes. 

Overview of the Cilk++ language 
The Cilk++ language extends C++ to simplify writing parallel applications that efficiently exploit 
multiple processors. 

The Cilk++ language is particularly well suited for, but not limited to, divide and conquer 
algorithms. This strategy solves problems by breaking them into sub-problems (tasks) that can 
be solved independently, then combining the results. Recursive functions are often used for 
divide and conquer algorithms, and are well supported by the Cilk++ language. 

The tasks may be implemented in separate functions or in iterations of a loop. The Cilk++ 
keywords identify function calls and loops that can run in parallel. The Intel Cilk++ runtime 
system schedules these tasks to run efficiently on the available processors. We will use the term 
worker to mean an operating system thread that the Cilk++ scheduler uses to execute a task in a 
Cilk++ program. 

Using the Intel® Cilk++ SDK 
In this chapter, we first walk you through the steps of building, running and testing a sample 
program Cilk++ program. 

Next, we describe how to convert a simple C++ program into a Cilk++ program.  

After walking through the source code conversion, we show you how to build the program, test it 
for race conditions, and measure its parallel performance. 

When using the Intel Cilk++ SDK, the compiler command names are cilkpp on Windows* 
systems and cilk++ (or g++) on Linux* systems. 
 

BUILD AND RUN A CILK++ EXAMPLE 

Each example is installed in an individual folder, as described in the Release Notes. In this 
section, we will walk through the qsort example. 

We assume that you have installed the Intel® Cilk++ SDK, and that you have more than one 
processor core available. If you have a single-core system, you can still build and test the 
example, but you should not expect to see any performance improvements. 

Building qsort 
Full, detailed build options are described in the "Building, Running, and Debugging (Page 17)" 
chapter. For now, use the default settings. 

 Linux* Systems 

Chapter 2 
Getting Started 



9 

 

 

 Change to the qsort directory (e.g. cd INSTALLDIR/examples/qsort) 
 Issue the make command. 
 The executable qsort will be built in the current directory. 
 If make fails, check to be sure that the PATH environment variable is set to find cilk++ 

from INSTALLDIR/bin. 
 Windows* Systems 
 Microsoft Visual Studio* 2005 and 2008 users can open the solution (such as 

qsort.sln) and build the Release version. The executable will be built as 
EXDIR\qsort\Release\qsort.exe. 

 From the command line, build qsort.exe using the cilkpp command: cilkpp 
qsort.cilk 

 If you get an error message, the most likely problem is that the environment is not setup 
properly. If cilkpp fails to find cl.exe, be sure that the Visual Studio environment is 
setup correctly by running the vcvarsall.bat script in the %ProgramFiles%\Visual 
Studio 8\VC folder (for Visual Studio* 2005) or %ProgramFiles%\Visual Studio 
9.0\VC for Visual Studio* 2008. If cilkpp is not found, the environment (including path 
changes) is not setup correctly. Restart the command shell or Visual Studio and try again.  
If that does not work, you may need to reboot your system. 

Running qsort 
First, ensure that qsort runs correctly.  With no arguments, the program will create and sort an 
array of 10,000,000 integers. For example: 

>qsort 
Sorting 10000000 integers 
5.641 seconds 
Sort succeeded. 

By default, a Cilk++ program will query the operating system and use as many cores as it finds. 
You can control the number of workers using the cilk_set_worker_count command line 
option to any Cilk++ program. This option is intercepted by the Cilk++ runtime system; the Cilk++ 
program does not see this argument. 

Observe speedup on a multicore system 
Here are some results on an 8-core system, where the speedup is limited by the application's 
parallelism and the core count. 

>qsort -cilk_set_worker_count=1 
Sorting 10000000 integers 
2.909 seconds 
Sort succeeded. 
 
>qsort -cilk_set_worker_count=2 
Sorting 10000000 integers 
1.468 seconds 
Sort succeeded. 
 
>qsort -cilk_set_worker_count 4 



10 

 

 

Sorting 10000000 integers 
0.798 seconds 
Sort succeeded. 
 
>qsort -cilk_set_worker_count 8 
Sorting 10000000 integers 
0.438 seconds 
Sort succeeded. 

Check for data races 
Use the Intel Cilk++ cilkscreen race detector (cilkscreen) to verify that there are no data races 
in the code. Note that any races will be exposed using a small data set. In this example, we sort 
an array of only 1,000 elements for the race detection analysis. Race conditions are always 
analyzed with a single-processor run, regardless of the number of processors available or 
specified. On Windows systems, cilkscreen can also be invoked from within Visual Studio*. 

>cilkscreen qsort 1000   (qsort.exe on Windows systems) 
Sorting 1000 integers 
0.078 seconds 
Sort succeeded. 
No errors found by Cilkscreen 

Measure scalability and parallel metrics 
Use the Intel Cilk++ cilkview scalability and performance analyzer (cilkview) to run your Cilk++ 
program on multiple processors and plot the speedup. As described in the cilkview chapter, 
the qsort example creates a cilk::cilkview object and calls the start(), stop() and 
dump() methods to generate performance measurements. By default, cilkview will run the 
program N times, using 1 to N cores.  Use the -workers option to specify the maximum number 
of workers to measure. cilkview will run the program one additional time using the Parallel 
Performance Analyzer option to predict how performance will scale.  Here, we run with 1 and 2 
workers, plus one additional run. You will see the output of qsort each time it runs. After a set 
of runs, cilkview will display a graph showing the measured and predicted performance. The 
graph, screen and file output are explained in detail in the cilkview chapter.  (On Linux* 
systems, the graph is only displayed if gnuplot is installed.) 

>cilkview -trials all 2 -verbose qsort.exe 
cilkview: CILK_NPROC=2 qsort.exe 
Sorting 10000000 integers 
5.125 seconds 
Sort succeeded. 
cilkview: CILK_NPROC=1 qsort.exe 
Sorting 10000000 integers 
9.671 seconds 
Sort succeeded. 
cilkview: cilkscreen -w qsort.exe 
Sorting 10000000 integers 
38.25 seconds 
Sort succeeded. 
 



11 

 

 

Cilkview Scalability Analyzer V1.1.0, Build 7684 
1) Parallelism Profile 
   Work :                                   17,518,013,236 
instructions 
   Span :                                   1,617,957,937 
instructions 
   Burdened span :                          1,618,359,785 
instructions 
   Parallelism :                            10.83 
   Burdened parallelism :                   10.82 
   Number of spawns/syncs :                 10,000,000 
   Average instructions / strand :          583 
   Strands along span :                     95 
   Average instructions / strand on span :  17,031,136 
   Total number of atomic instructions :    10,000,000 
 
2) Speedup Estimate 
   2 processors:          1.73 - 2.00 
   4 processors:          2.72 - 4.00 
   8 processors:          3.81 - 8.00 
   16 processors:         4.77 - 10.83 
   32 processors:         5.45 - 10.83 
 

 
 
 



12 

 

 
 

CONVERT A C++ PROGRAM 

Here is an overview of the sequence of steps to create a parallel program using the Intel® Cilk++ 
SDK.  

 Typically, you will start with a serial C++ program that implements the basic functions or 
algorithms that you want to parallelize. You will likely be most successful if the serial program 
is correct to begin with! Any bugs in the serial program will occur in the parallel program, but 
they will be more difficult to identify and fix. 

 Next, identify the program regions that will benefit from parallel operation. Operations that are 
relatively long-running and which can be performed independently are prime candidates. 

 Rename the source files, replacing the .cpp extension with .cilk. 
 Windows* OS: Within Visual Studio*, use the "Convert to Cilk" context menu. 

 Use the three Cilk++ keywords to identify tasks that can execute in parallel: 
 cilk_spawn indicates a call to a function (a "child") that can proceed in parallel with the 

caller (the "parent"). 
 cilk_sync indicates that all spawned children must complete before proceeding. 
 cilk_for identifies a loop for which all iterations can execute in parallel. 

 Build the program: 
 Windows OS: Use either the cilkpp command-line tool or compile within Visual 

Studio*.  
 Linux* OS: Use the cilk++ compiler command. 

 Run the program. If there are no race conditions (Page 87), the parallel program will 
produce the same result as the serial program. 

 Even if the parallel and serial program results are the same, there may still be race 
conditions. Run the program under the cilkscreen race detector (Page 96) to identify 
possible race conditions introduced by parallel operations. 

 Correct any race conditions (Page 89) with reducers (Page 52), locks, or recode to 
resolve conflicts. 

 Note that a traditional debugger can debug the serialization (Page 126) of a parallel program, 
which you can create easily with the Intel Cilk++ SDK.  

We will walk through this process in detail using a sort program as an example. 
 

START WITH A SERIAL PROGRAM 

We'll demonstrate how to use write a Cilk++ program by parallelizing a simple implementation of 
Quicksort (http ).  ://en.wikipedia.org/wiki/Quicksort

Note that the function name sample_qsort avoids confusion with the Standard C Library 
qsort function. Some lines in the example are removed here, but line numbers are preserved. 

 
 9  #include <algorithm> 
 
11  #include <iostream> 

http://en.wikipedia.org/wiki/Quicksort�


13 

 

 

12  #include <iterator> 
13  #include <functional> 
14 
15  // Sort the range between begin and end. 
16  // "end" is one past the final element in the range. 
19  // This is pure C++ code before Cilk++ conversion. 
20 
21  void sample_qsort(int * begin, int * end) 
22  { 
23      if (begin != end) { 
24          --end;  // Exclude last element (pivot) 
25          int * middle = std::partition(begin, end, 
26                     std::bind2nd(std::less<int>(),*end)); 
28          std::swap(*end, *middle);      // pivot to middle 
29          sample_qsort(begin, middle); 
30          sample_qsort(++middle, ++end); // Exclude pivot 
31      } 
32  } 
33 
34  // A simple test harness 
35  int qmain(int n) 
36  { 
37      int *a = new int[n]; 
38 
39      for (int i = 0; i < n; ++i) 
40          a[i] = i; 
41 
42      std::random_shuffle(a, a + n); 
43      std::cout << "Sorting " << n << " integers" 
                  << std::endl; 
 
45      sample_qsort(a, a + n); 
 
48 
49      // Confirm that a is sorted and that each element 
        //   contains the index. 
50      for (int i = 0; i < n-1; ++i) { 
51          if ( a[i] >= a[i+1] || a[i] != i ) { 
52              std::cout << "Sort failed at location i="  
                          << i << " a[i] = " 
53                        << a[i] << " a[i+1] = " << a[i+1] 
                          << std::endl; 
54              delete[] a; 
55              return 1; 
56          } 
57      } 
58      std::cout << "Sort succeeded." << std::endl; 
59      delete[] a; 
60      return 0; 
61  } 



14 

 

 

62 
63  int main(int argc, char* argv[]) 
64  { 
65      int n = 10*1000*1000; 
66      if (argc > 1) 
67          n = std::atoi(argv[1]); 
68 
69      return qmain(n); 
70  } 

 

CONVERT TO A CILK++ PROGRAM 

Converting the C++ code to Cilk++ code is very simple. 

 Rename the source file by changing the .cpp extension to .cilk. 
 Windows* OS: Use the "Convert to Cilk" context menu within Visual Studio*. 

 Add a "#include <cilk.h>" statement to the source. cilk.h declares all the entry points 
to the Cilk++ runtime. 

 Rename the main() function (Line 63) to cilk_main(). The Cilk+ runtime system will 
setup the Cilk++ context, then call this entry point instead of main(). 

 The result is a Cilk++ program that has no parallelism yet. 

Compile the program to ensure that the Intel® Cilk++ SDK development environment is setup 
correctly. 

Typically, Cilk++ programs are built with optimized code for best performance. 

 Windows command line: cilkpp /Ox qsort.cilk 
 Windows Visual Studio*: Specify the Release configuration 
 Linux* OS: cilk++ qsort.cilk -o qsort -O2 
 

ADD PARALLELISM USING CILK_SPAWN 

We are now ready to introduce parallelism into our qsort program.  

The cilk_spawn keyword indicates that a function (the child) may be executed in parallel with 
the code that follows the cilk_spawn statement (the parent). Note that the keyword allows but 
does not require parallel operation. The Cilk++ scheduler will dynamically determine what 
actually gets executed in parallel when multiple processors are available. The cilk_sync 
statement indicates that the function may not continue until all cilk_spawn requests in the 
same function have completed. cilk_sync does not affect parallel strands spawned in other 
functions. 



15 

 

 
 
21  void sample_qsort(int * begin, int * end) 
22  { 
23      if (begin != end) { 
24          --end;  // Exclude last element (pivot) 
25          int * middle = std::partition(begin, end, 
26                     std::bind2nd(std::less<int>(),*end)); 
28          std::swap(*end, *middle);      // pivot to middle 
29          cilk_spawn sample_qsort(begin, middle); 
30          sample_qsort(++middle, ++end); // Exclude pivot 
31          cilk_sync; 
32      } 
33  } 

In line 29, we spawn a recursive invocation of sample_qsort that can execute asynchronously. 
Thus, when we call sample_qsort again in line 30, the call at line 29 might not have 
completed. The cilk_sync statement at line 31 indicates that this function will not continue until 
all cilk_spawn requests in the same function have completed. 

There is an implicit cilk_sync at the end of every function that waits until all tasks spawned in 
the function have returned, so the cilk_sync at line 32 is redundant, but written here for clarity. 

The above change implements a typical divide-and-conquer strategy for parallelizing recursive 
algorithms. At each level of recursion, we have two-way parallelism; the parent strand (line 30) 
continues executing the current function, while a child strand executes the other recursive call. 
This recursion can expose quite a lot of parallelism. 
 

BUILD, EXECUTE AND TEST 

With these changes, you can now build and execute the Cilk++ version of the qsort program. 
Build and run the program exactly as we did with the previous example: 

Linux* OS:  
 cilk++ qsort.cilk -o qsort 

Windows* Command Line: 
 cilkpp qsort.cilk 

Windows Visual Studio*: 
 build the Release configuration 

Run qsort from the command line 
>qsort 
Sorting 10000000 integers 
5.641 seconds 
Sort succeeded. 

By default, a Cilk++ program will query the operating system and use all available cores. You 
can control the number of workers using the cilk_set_worker_count command line option 
to any Cilk++ program that uses cilk_main().  



16 

 

 

Observe speedup on a multicore system 
Run qsort using one and then two cores: 

>qsort -cilk_set_worker_count=1 
Sorting 10000000 integers 
2.909 seconds 
Sort succeeded. 
 
>qsort -cilk_set_worker_count=2 
Sorting 10000000 integers 
1.468 seconds 
Sort succeeded. 

Alternately, run cilkview to get a more detailed performance graph: 
>cilkview qsort 

 



17 

 

 

This chapter shows how to build, run, and debug Cilk++ programs in three different development 
environments: 

 Linux* command line 
 Windows* command line 
 Microsoft Visual Studio* 

Build options are described for each environment. 

Typically, Cilk++ programs are built for performance and will be built with full optimizations. 
There are two situations where a debug build (-g compiler option for Linux OS, and "Debug" 
configuration for Microsoft Visual Studio projects) is appropriate: 

 You want to build and debug the program's serialization (Page 126), as described in the 
"Debugging Cilk++ Programs (Page 26)" chapter. 

 You want the diagnostic output from the cilkscreen race detector (Page 96) to report data 
races. Using a debug build, cilkscreen can provide more complete and accurate 
symbolic information. 

 
 

BUILD FROM THE LINUX* COMMAND LINE 

In general, compile a Cilk++ program just as you would compile a C++ program, but use the 
cilk++ or the g++ command installed with the Intel® Cilk++ SDK. Be sure that your PATH 
includes the appropriate cilk/bin directory. 

The only difference between cilk++ and the version of g++ in the Intel Cilk++ SDK is that code 
compiled with cilk++ will be treated as Cilk++ code regardless of the file suffix (.cilk, .cpp, 
or .c). Files compiled with g++ will be treated as Cilk++ code only if they have a .cilk suffix. 

In general the cilk++ and g++ commands recognize the same set of options as the standard 
g++,with additional Cilk++ language options as described in the reference section. The Cilk++ 
language options generally fall into one of these three categories: 

 Enable or disable various warnings 
 Define whether to treat code as C++ or Cilk++ code 
 Control optimizations 

The optimization options (such as -O2) have the same effect with cilk++ as with g++. Be sure 
to set the appropriate optimization level to maximize the performance of the  Cilk++ program. 

To generate an IA-32 architecture (32-bit) Cilk++ program executable, use the -m32 command 
line option. To generate an Intel® 64 (64-bit) executable, use the -m64 command line option. 
The default value is the same as the cilk++ version (32 or 64-bit). The 64-bit version can only 
run on 64-bit systems. 

Chapter 3 
Build, Run, and Debug a Cilk++ Program 



18 

 

 

Link with the static (rather than the dynamic) Cilk++ runtime library using the g++ command. 
Specific command-line arguments are necessary, as follows: 

    g++ -Wl,-z,now -lcilkrts_static -lpthread 

Example: Build and run a program, such as the reducer example, with the following 
commands: 

cilk++ -O2 -o reducer reducer.cilk 
./reducer 

 

COMPILER OPTIONS FOR CILK++ FOR LINUX* OS 

The Linux* Cilk++ compiler (invoked either as cilk++ or g++) supports the following -W and -f 
options. The standard (non-Cilk++) compilers do not support these options. 

As with Linux g++, there are two forms. -fx (or -Wx) enables option x, and -fno-x (and -Wno-
x) disables the option. The enabling options are: 
-Wcilk-demote 

Warn when a Cilk++ function uses no Cilk++ keywords and could be declared as a C++ 
function without affecting its own operation. This does not indicate a bug, and the warning is 
disabled by default. 

-Wcilk-for 

Warn about suspicious constructs in cilk_for loops, such as loop conditions with side 
effects that will be evaluated different numbers of times in cilk_for and ordinary for 
loops. This warning is enabled by default. 

-Wcilk-promote 

Warn when a C++ function is converted ("promoted") to a Cilk++ function (Page 45). This 
happens when compiling static constructors and destructors and when instantiating 
templates. This does not indicate a bug, and the warning is disabled by default. 

-Wcilk-scope 

Warn when the Cilk++ scoping rules for labels change the program's behavior. The scope of 
a label defined inside a cilk_for loop does not extend outside the cilk_for, and vice 
versa. This warning is enabled by default. 

-Wcilk-virtual 

Warn when the language linkage of a virtual function does not match the linkage of the base 
class function, e.g. overriding a C++ function with a Cilk++ function. The derived class 
method's linkage is changed to match the base class. (This condition is an error with the 
Windows* compiler.) This warning is enabled by default. 

-Wredundant-sync 

Warn when a cilk_sync statement has no effect because the function has not spawned 
since the last cilk_sync. This warning is enabled by default in this release; the default may 
change in future versions. 

-fcilk 



19 

 

 

Allow Cilk++ keywords. This is on by default, even if the program is being compiled as C++. 
Cilk++ keywords are not available in C++ functions; this option permits a Cilk++ function to 
be declared in an otherwise C++ source file. 

-fcilk-stub 

Use the -fcilk-stub option with cilk++ to "stub out" Cilk++ features and build the 
serialization (Page 126) of a Cilk++ program. See the example at the end of the preceding 
section. 

-fcilk-check-spawn-queue 

The Intel Cilk++ runtime only permits 1024 outstanding spawns in a single thread. If this 
option is enabled, the compiler inserts a runtime check to detect exceeding that limit. If this 
option is disabled, spawn queue overflow may cause memory corruption. This option is 
enabled by default. The Cilk++ spawn limit, like the system stack limit, is typically exceeded 
in the case of a program bug that causes infinite recursion.  

-fcilk-demote 

Convert local functions from Cilk++ to C++ when it is safe to do so. This is enabled by default 
and should not need to be set to disabled. 

-fcilk-hyper-lookup 

Enable reducer lookup optimization. 
-fcilk-optimize-sync 

Eliminate redundant cilk_sync statements; e.g., when a block that ends with an implicit 
sync also contains an explicit sync. This is enabled by default and should not need to be 
changed. 

-fimplicit-cilk 

Use Cilk++ language linkage by default in a file that would otherwise be considered C++. It is 
not normally necessary to use this option unless you are running cc1plus directly. 

-finline-cilk-alloc 

Attempt to inline Cilk++ function epilogues. This is enabled by default and should not need to 
be disabled. 

-finline-cilk-epilogue 

Attempt to inline Cilk++ frame allocation. This is enabled by default when optimizing and 
should not need to be disabled. 

-fno-cilk-demote 

Small leaf Cilk++ functions that do not use the stack do not allocate a stack frame, improving 
performance. This optimization is enabled by default, and may be disabled with this flag. 

-x cilk++ 

Treat the following files as a Cilk++ source file regardless of the file suffix. -x none on the 
same command line will turn off this option so as to treat subsequent files normally according 
to their suffixes. 

-v 



20 

 

 

As in gcc, output version and other information to stderr. The information includes the 
vendor build number, such as: 
gcc version 4.2.4 (Cilk Arts build 6252) 

 

BUILD FROM THE WINDOWS* COMMAND LINE 

To build a Cilk++ program within a Windows* command shell, use the cilkpp command 
installed in the bin directory of the Intel® Cilk++ SDK installation. 

The cilkpp command executes a series of programs that pre-process the Cilk++ program, run 
the Microsoft* compiler, post-process the compiler output, and finally link the program with the 
appropriate Intel Cilk++ runtime libraries. 

The cilkpp program accepts and passes most cl options through to the Microsoft* compiler, 
including those for code optimization. In general, use the same options as you would use for a 
C++ program.  cilkpp will issue a warning for any options that the Cilk++ compiler does not 
support, as enumerated in the cilkpp reference section. 

 
 

CILKPP OPTIONS 

cilkpp options 
The cilkpp program invokes a series of programs in order to build a Cilk++ program.  

cilkpp supports the following options: 
/cilkp cpp 

Compile the code as C++, removing all cilkpp-specific command options from the 
command line and option files before passing the command to the Microsoft* cl compiler to 
produce the Cilk++ program serialization (Page 126). This option forces the inclusion of the 
cilk_stub.h file (see the end of this section). 

/cilkp keep 

Keep intermediate files. cilkpp normally deletes these files when they are no longer 
needed. 

/cilkp serial-debug 

This will turn off parallelism within a single source file and within everything that is called from 
that source file. The source file compiled with this option will use the native MSVC++ frame 
layout, so the debugger can show variables within that source file. Parallelism is not 
suppressed for the rest of the program.  

/cilkp skippreproc 

Skip the preprocessor step used to generate .tlh and .tli files, which the cl compiler 
generates when it sees #using directives. If your code doesn't have #using directives, this 
option can shorten build time. 

/cilkp verbose 



21 

 

 

Display internal debugging information as cilkpp runs. Intended for vendor debugging use. 

/cilkp version 

This provides the vendor build number and version. 
/cilkp vs2005 

Use only Visual Studio* 2005 tools. 
/cilkp v2008 

Use only Visual Studio 2008 tools. 
/cilkp vs2008Exp 

Use only Visual Studio 2008 Express Edition tools. 
/TK 

Compile files other than .cilk files as Cilk++. 
/cilka <option> 

Pass an option to the Cilk++ compiler post-processor. Intended for vendor debugging use. 
/cilkf <option> 

Pass an option to the Cilk++ compiler pre-processor. Intended for vendor debugging use. 
/isystem <include directory> 

Add the specified directory to the include search path, and treat this directory as a system 
include directory. Certain compiler warnings are disabled for header files found in system 
directories. The result is the same as if a .sysinclude file exists in the specified directory.  
At installation time, the Intel® Cilk++ SDK installer creates .sysinclude files in known 
system directories. 

The Cilk++ compiler can also process .cpp C++ files with Cilk++ keywords, creating a 
serialization, but be certain to include cilk_stub.h before cilk.h. Do this with the /cilkp 
cpp switch on the cilkpp command line. 

CL options not supported by the Cilk++ compiler 
cilkpp supports most of the cl command line options However, the following cl options are 
NOT supported: 

 /E - Preprocess to stdout 
 /EHa - Support asynchronous (structured) exceptions 
 /EP - Preprocess to stdout, no line numbers 
 /FA - Configure assembly listing 
 /Fa - Name assembly listing 
 /Gd - Default calling convention is __cdecl 
 /GL - Whole program optimization 
 /Gm - Minimal rebuild 
 /Gr - Default calling convention is __fastcall 
 /GS - Security cookies 



22 

 

 

 /Gz - Default calling convention is __stdcall 
 /openmp - Enable OpenMP 2.0 (http ) language extensions ://openmp.org/wp/
 /P - Preprocess to file 
 /Yc - Create precompiled header file 
 /Yu - Use precompiled header file 
 /Zg - Generate function prototypes 
 /Zs - Syntax check only 

 
 

BUILD WITHIN MICROSOFT VISUAL STUDIO* 

The Intel® Cilk++ SDK includes an add-in for Visual Studio that makes it easy to convert C++ 
programs to Cilk++ and run the compiler, cilkscreen race detector and cilkview scalability and 
performance analyzer using the Visual Studio Integrated Development Environment (IDE). 

Cilk++ language support is integrated into Visual Studio as a variant of C++, not as a complete 
new language. Therefore, Visual Studio does not offer a Cilk++ project type. The simplest way to 
create a Cilk++ project is to create and then convert an existing C++ project. For new projects, 
create a simple C++ shell program, and convert it to Cilk++. 

This section shows how to convert an existing C++ project to Cilk++, how to set compiler 
options, and how to run Cilk++ programs. 

Please note that Visual C++ 2008 Express Edition* does not support add-ins.  While the Express 
Edition can build an existing C++ project containing Cilk++ modules (such as the Cilk++ Example 
projects), it cannot convert a module from C++ to Cilk++ and copy the compiler settings. If you 
must use the Express Edition, it may be simpler to build from the command line with cilkpp. 
 

CONVERT C++ TO CILK++ WITHIN VISUAL STUDIO* 

Cilk++ files use the file suffix .cilk, causing Visual Studio to use the cilkpp program to 
compile the file. To add a Cilk++ file to an existing C++ project, simply open the New File dialog. 
Select "Visual C++" in the category tree, and then "Cilk++ File (.cilk)" in the 
Templates pane. Then click the "Open" button. 

There are two options to convert a C++ file to Cilk++. First, select a C++ file in the Solution 
Explorer and right click on it to bring up the context menu. The Cilk++ language addin provides 
two new options: 
Build as Cilk 

Creates a new .cilk file which includes the C++ file, copies any file-specific C++ settings 
for the file to file-specific Cilk++ settings and excludes the C++ file from the build.  

Convert to Cilk 

http://openmp.org/wp/�


23 

 

 

Renames the C++ file to .cilk and copies any file-specific C++ settings to the file-specific 
Cilk++ settings. 

The correct choice depends on whether you need to support other compilers. "Build as Cilk" 
leaves the existing C++ file in place, which facilitates maintaining a multi-platform build. 

If this is the first .cilk file in the project, the project-wide C++ settings for all configurations will 
be copied to the project-wide Cilk++ settings. After this point, changes to the C++ settings will 
not affect the Cilk++ settings. 

Caution:  
It is possible that the program will not immediately compile because of mismatched calling 
conventions. If such a mismatch occurs, there will be an error such as this: 

error: non-Cilk routine cannot call Cilk routine 

A mismatch in calling convention happens when a C/C++ function calls a Cilk++ function. After 
the project has been converted, all functions are considered to be Cilk++ functions except those 
that are explicitly defined otherwise (the main() function is always considered C). To demote 
functions from Cilk++ to C++ explicitly, use extern "C++", as described in Calling C++ 
functions from Cilk++ (Page 46). 

Caution:  
If "Build as Cilk" and "Convert to Cilk" fail to appear on the Solution Explorer context 
menu, run the "ResetAddin.bat" script in the visualstudio directory of the Intel® Cilk++ 
SDK installation. Visual Studio caches UI elements and may not recognize that the Cilk++ 
language add in has been added to the environment. 

In order to run the script, follow these steps (illustrated for Visual Studio* 2005). When the steps 
are complete, you may need to restart Visual Studio. 

 Open the Visual Studio 2005 Command Prompt: Start - All Programs - Microsoft Visual 
Studio 2005 - Visual Studio Tools - Visual Studio 2005 Command Prompt 

 In the command prompt, change the directory to: 
"C:\Program Files\Intel\Cilk++\visualstudio" 

 Run ResetAddin.bat 
 

SET CILK++ COMPILER OPTIONS WITHIN VISUAL STUDIO* 

The Compiling Cilk++ Programs from the Command Line (Page 17) section described the 
Cilk++ compiler options. These options can also be set from within Visual Studio. 

 Open the Project Properties page, either by right clicking on the project in the Solution 
Explorer or by selecting Properties from the Project pull-down list. 

 Expand the Cilk++ Compiler list in the Configuration Properties tree on the left. 
 Set the options as required. 

In particular, set the same code optimization options as would be used in the C++ program. 
Code optimization has a similar effect on Cilk++ performance as on C++ performance. 



24 

 

 

To build the serialization (Page 126) of the Cilk++ program, which is especially useful for 
debugging Cilk++ programs (Page 26), expand the General list under Cilk++ Compiler. Then 
set Compile as C++ to yes. 
 

ISSUES BUILDING CILK++ PROGRAMS WITHIN VISUAL STUDIO* 

The support for the Cilk++ language integrated into Visual Studio is not completely seamless. 
While most operations should work fine, there are some known problems and limitations: 

 Performing a command-line build by invoking devenv /build will cause an access 
violation exception within Visual Studio if the Cilk++ code is already up-to-date. Using 
/rebuild works around the problem. 
Command line builds should use MSBuild or VCBuild instead of devenv. Both MSBuild 
and VCBuild successfully build projects with Cilk++ code. 

 There is limited support for debugging Cilk++ applications. See Debugging Cilk++ 
Programs (Page 26) for details and workarounds. 

 The Cilk++ language is incompatible with incremental linking, so after converting a C++ 
project to Cilk++ in Visual Studio, the "Enable Incremental Linking" option is turned off 
(/INCREMENTAL:NO). This also applies to command line (cilkpp) and Visual Studio builds. 

 The Visual Studio integration for cilkscreen and cilkview does not properly handle 
attempts to redirect the standard input, standard output, or standard error. For example, if 
you've set the Command Arguments on the Debugging Properties page to 
    foo bar > out.spot 

instead of redirecting standard out to the file out.spot, all four arguments will be passed to 
the application. The results are unpredictable and will depend on the application being run. 
Some applications may terminate due to unrecognized arguments. Note that this is a problem 
in the integration of cilkscreen and cilkview with Visual Studio. The command line 
version of these tools handles redirection correctly. 

 

SET WORKER COUNT 

By default, the number of worker threads is set to the number of cores on the host system. In 
most cases, the default value will work well.  

You may increase or decrease the number of workers under program control (if you create a 
cilk::context) or from the command line or environment. 

You may want to use fewer workers than the number of processor cores available in order to run 
tests or to reserve resources for other programs. In some cases, you may want to oversubscribe 
by creating more workers than the number of available processor cores. This might be useful if 
you have workers waiting on locks, for example. 



25 

 

 

Command Line 
You can specify the number of worker threads from the command line, rather than use the 
default value, with the -cilk_set_worker_count option (Windows* programs also accept 
/cilk_set_worker_count). cilk_main() processes this option and removes it from the 
command line string that is visible to the application. Note that the processing of the command 
line cilk_set_worker_count option occurs in the code generated to support cilk_main().  
If you do not use cilk_main() in your program, you will need to decide whether to support this 
option in your command line processing. 

The following are all valid: 
qsort 
qsort 100000 
qsort 100000 -cilk_set_worker_count 4 
qsort 100000 -cilk_set_worker_count=4 
qsort -cilk_set_worker_count 4 100000 
qsort -cilk_set_worker_count=4 100000 

Environment 
You can also specify the number of worker threads using the environment variable 
CILK_NPROC. 

Windows* OS: set CILK_NPROC=4 

Linux* OS: CILK_NPROC=4 

Program Control 

If you create an explicit cilk::context, you can control the number of workers within your 
Cilk++ program. Note that you cannot use both cilk_main() and create your own 
cilk::context in the same program. See the description of the cilk::context interface in 
the Runtime System and Libraries (Page 75) chapter. 
 

SERIALIZATION 

The Cilk++ language is designed to have serial semantics. In other words, every Cilk++ program 
corresponds to an equivalent C++ program. We call such a C++ program the serialization 
(Page 126) of the Cilk++ program. The serialization is particularly useful when debugging 
Cilk++ programs (Page 26).  For more information on the value and consequences of serial 
semantics, see 4 Reasons Why Parallel Programs Should Have Serial Semantics 
(http

). 
://software.intel.com/en-us/articles/Four-Reasons-Why-Parallel-Programs-Should-Have-

Serial-Semantics

How to Create a Serialization 
The header file cilk_stub.h contains macros that redefine the Cilk++ keywords and library 
calls into an equivalent serial form. Include cilk_stub.h before cilk.h to build a 
serialization. 

Linux* OS: 

http://software.intel.com/en-us/articles/Four-Reasons-Why-Parallel-Programs-Should-Have-Serial-Semantics�
http://software.intel.com/en-us/articles/Four-Reasons-Why-Parallel-Programs-Should-Have-Serial-Semantics�


26 

 

 

The Cilk++ compiler provides command line options to facilitate serialization. There are two 
equivalent options: 

-fcilk-stub 
-include cilk_stub.h -fno-implicit-cilk 

For example, to build the serialized reducer example, copy reducer.cilk to reducer.cpp 
(which will contain Cilk++ keywords) and build, as follows: 

cp reducer.cilk reducer.cpp 
cilk++ -O2 -fcilk-stub -o reducer_serial reducer.cpp 

Windows* OS: 
The Cilk++ compiler supports serialization: 

cilkpp /cilkp cpp 

For example, to build the serialized reducer example, copy reducer.cilk to reducer.cpp 
(which will contain Cilk++ keywords) and build, as follows:  

copy reducer.cilk reducer.cpp 
cilkpp /O2 /cilkp cpp reducer.cpp 

This will compile the code as C++, removing all cilkpp-specific command options from the 
command line and option files before passing the command to the Microsoft cl compiler to 
produce the serialization. This option forces the inclusion of the cilk_stub.h file. 

 
 

DEBUGGING STRATEGIES 

Debugging a parallel program tends to be more difficult than debugging a serial program. The 
Intel® Cilk++ SDK is designed to simplify the challenge of parallel debugging as much as 
possible.  In particular, we recommend debugging the serialization first. 

Follow these steps to minimize the problem of debugging parallel programs: 

 If you are converting an existing C++ program, debug and test the serial version first.  
 Once you have a parallel Cilk++ program, test and debug the serialization. Because both the 

serial base program and the serialization of the Cilk++ program are serial C++ programs, you 
can use existing serial debug tools and techniques. 

 Use the cilkscreen race detector (Page 96) to identify races. Resolve the races using one 
or more of the following techniques, as described in "Data Race Correction Methods (Page 
89)": 

 Restructure the code to remove the race 
 Use a Cilk++ reducer 
 Use a cilk::mutex lock, other lock, or atomic operation 

It may be simpler to debug programs built without optimizations. This will turn off inlining, 
resulting in a more accurate call stack, and the compiler will not attempt to reorder instructions 
and optimize register usage. 

Linux* OS: The gdb debugger provided with the Intel Cilk++ SDK understands the Cilk++ cactus 
stack and can display stack traces for parallel Cilk++ programs. 



27 

 

 

Windows* OS: The Visual Studio* debugger does not understand the Intel Cilk++ runtime 
environment. While you can set a breakpoint in a Cilk++ function or method, you cannot examine 
variables, and the stack may not display properly.  In addition, stepping into a Cilk++ function will 
step into a function called __cilk_box(). In a release build, these calls are inlined and 
optimized out by the compiler. 

 
 



28 

 

 

The Intel® Cilk++ SDK includes examples that illustrate how to write a variety of Cilk++ 
programs. Each example is in its own directory in the examples directory, and each example 
includes the .cilk source code, Linux make file, and Microsoft Visual Studio* 2005 solution and 
project files. Several directories contain a ReadMe.txt file with additional information. 

Feel free to use the example code as a basis for experimentation and development. 

General Examples 
bzip2 

Linux* OS: The bzip2 example demonstrates how to parallelize a complete application.  

cilk-for 

The cilk-for example demonstrates how to create a simple for loop using the cilk_for 
keyword. Each loop iteration can execute in parallel. 

hanoi 
The hanoi example illustrates the use of a list reducer to collect the output while solving the 
classic Towers of Hanoi (http ) problem in parallel. ://en.wikipedia.org/wiki/Towers_of_hanoi

linear-recurrence 

This example computes a linear recurrence relation, and the computation is parallelized with 
a reducer. The example includes the reducer code, which augments the examples in the 
"Reducers (Page 52)" chapter. 

reducer 
The reducer example demonstrates how to use a reducer to accumulate values in parallel 
using a simple "sum" reducer. 

sum-cilk 

The sum-cilk example requires one of the Cilk++ Reducers (Page 52) and, like matrix-
transpose, is a good platform to experiment with performance tuning. 

wc-cilk 

The wc-cilk example (http
) demonstrates concurrent file processing with reducers to 

accumulate statistics. 

://software.intel.com/en-us/articles/Multicore-enabling-the-Unix-
Linux-wc-word-count-utility

Matrix Multiplication and Transpose Examples 
There are three matrix multiplication examples and one transpose example that illustrate 
cilk_for, loop granularity, memory management, and other methods to tune application 
performance. The projects contain ReadMe.txt files that describe the code in detail and 
suggest tuning techniques. 

Chapter 4 
Cilk++ Examples 

http://en.wikipedia.org/wiki/Towers_of_hanoi�
http://software.intel.com/en-us/articles/Multicore-enabling-the-Unix-Linux-wc-word-count-utility�
http://software.intel.com/en-us/articles/Multicore-enabling-the-Unix-Linux-wc-word-count-utility�


29 

 

 

matrix 

The matrix example multiplies two large matrices, using two distinct algorithms (naive-
iterative and recursive). Both algorithms run sequentially and parallel versions, and the timing 
results are displayed. The recursive algorithm is significantly faster and also provides 
superior parallel speed up. 

matrix_multiply 

matrix_multiply uses a straight-forward algorithm with three loops to multiply square 
matrices. 

matrix_multiply_dc_notemp 

matrix_multiply_dc_notemp uses a recursive divide-and-conquer algorithm to multiply 
square matrices. This solution does not use temporary storage. 

matrix-transpose 

The matrix-transpose example transposes a large square matrix (the size is a command 
line parameter). The example is set up to allow for a variety of performance tuning 
experiments by adjusting the cilk_for grain size, loop order, and more. 

Quicksort Examples 
The collection of quicksort examples include several ways to structure a Cilk++ program 
(including a dynamic link library and a Windows* GUI application), illustrate how to convert a 
serial C++ program, use a mutex, and find and resolve a race condition. 

qsort 

The qsort example demonstrates how to speed up a Quicksort 
(http ) algorithm by adding Cilk++ keywords. This is 
essentially the same code as in the "Getting Started (Page 

://en.wikipedia.org/wiki/Quicksort
8)" chapter. 

qsort-cpp 

The qsort-cpp example is a C++ program that can be converted to Cilk++. The code is 
essentially the same code as in the "Converting to Cilk++" section. 

qsort-race 

The qsort-race example includes an intentional race condition. When run under 
cilkscreen, the race is detected and reported to the user. 

qsort-mutex 

The qsort-mutex example demonstrates how to use the Cilk++ mutex library. 

qsort-dll 

http://en.wikipedia.org/wiki/Quicksort�


30 

 

 

Windows: qsort-dll is a Visual Studio* solution with three projects. It shows how to 
convert a Windows DLL (Dynamic Link Library) from C++ to Cilk++ (refer to Converting 
Windows DLLs to Cilk++ (Page 71) for more details). The projects are qsort-client, 
qsort-cpp-dll (a C++ DLL), and qsort-cilk-dll (a Cilk++ DLL). qsort-client is 
linked against both DLLs and will call one or the other based on the command line option (-
cpp or -cilk). The Cilk++ DLL will be faster on a multicore system. 

QuickDemo 

Windows: This example has a GUI interface built with Microsoft Foundation Classes (MFC). 
Threads that use MFC should not be converted to Cilk++ because of thread-local storage issues. 
QuickDemo demonstrates how to break an application into a UI thread which uses MFC and 
worker threads that use SendMessage() to communicate with the UI thread. 

 



31 

 

 

Cilk++ programming is a bit of a departure from traditional serial programming, and requires a 
somewhat different "world view" in order to write Cilk++ programs that perform and scale well. 

In this section, we will introduce and explain some concepts that are fundamental to Cilk++ 
programming, and indeed, important for any parallel programmer to understand. 

First, we will introduce a way to describe the structure of a Cilk++ program as a graph of strands 
and knots. 

Next, we will discuss how to analyze the expected performance of an Cilk++ program in terms of 
work, span, and parallelism. 

 

 
 

STRANDS AND KNOTS 

Traditional serial programs are often described using call graphs or class hierarchies. Parallel 
programming adds another layer on top of the serial analysis. In order to diagram, understand 
and analyze the parallel performance of a Cilk++ program, we will distinguish only between 
sections of code that run serially, and sections that may run in parallel. 

We will use the word strand to describe a serial section of the program. More precisely, we 
define a strand as "any sequence of instructions without any parallel control structures."  

Note that according to this definition, a serial program could be made up of many sequential 
strands as short as a single instruction each, a single strand consisting of the entire program, or 
any other partitioning. We will assume that sequential strands are always combined to make a 
single, longer strand. 

In addition, we will define a knot as the point at which three or more strands meet. A Cilk++ 
program will have two kinds of knots - a spawn knot and a sync knot. Here's a picture illustrating 
4 strands (1, 2, 3, 4), a spawn knot (A) and a sync knot (B). 

Here, only strands (2) and (3) may execute in parallel. 

 
A Cilk++ program fragment that has this structure is: 

... 
do_stuff_1();           // execute strand 1 
cilk_spawn func_3();    // spawn strand 3 at knot A 
do_stuff_2();           // execute strand 2 

Chapter 5 
Cilk++ Concepts 



32 

 

 

cilk_sync;              // sync at knot B 
do_stuff_4();           // execute strand 4 
... 

In these illustration, the strands are represented by lines and arcs, while the knots are 
represented by the circular nodes. We will refer to a strand/knot diagram as a Directed Acyclic 
Graph (DAG) that represents the serial/parallel structure of a Cilk++ program. 

Note: In some published literature (including some papers about Cilk and Cilk++), you will see 
similar diagrams in which the work is done in the nodes rather than the arcs. 

In a Cilk++ program, a spawn knot has exactly one input strand and two output strands. A sync 
knot has two or more input strands and exactly one output strand. Here is a DAG  with two 
spawns (labeled A and B) and one sync (labeled C). In this program, the strands labeled (2) and 
(3) may execute in parallel, while strands (3), (4), and (5) may execute in parallel. 

 
 

A DAG represents the serial/parallel structure of the execution of a Cilk++ program.  With 
different input, the same Cilk++ program may have a different DAG. For example, a spawn may 
execute conditionally. 

However, the DAG does NOT depend on the number of processors on which the program runs, 
and in fact the DAG can be determined by running the Cilk++ program on a single processor. 
Later, we will describe the execution model, and explain how work is divided among the number 
of available processors. 
 

WORK AND SPAN 

Now that we have a way of describing the serial/parallel structure of a Cilk++ program, we can 
begin analyze the performance and scalability. 

Consider a more complex Cilk++ program, represented in the following diagram.   

 
This DAG represents the parallel structure of some Cilk++ program.  The ambitious reader might 
like to try to construct a Cilk++ program that has this DAG. 



33 

 

 

Let's add labels to the strands to indicate the number of milliseconds it takes to execute each 
strand: 

 
 

Work 
The total amount of processor time required to complete the program is the sum of all the 
numbers.  We call this the work.  

In this DAG, the work is 181 milliseconds for the 25 strands shown, and if the program is run on 
a single processor, the program should run for 181 milliseconds.   

Span 
Another useful concept is the span, sometimes called the critical path length. The span is the 
most expensive path that goes from the beginning to the end of the program. In this DAG, the 
span is 68 milliseconds, as shown below: 

 
In ideal circumstances (e.g., if there is no scheduling overhead) then, if an unlimited number of 
processors are available, this program should run for 68 milliseconds. 

With these definitions, we can use the work and span to predict how a Cilk++ program will 
speedup and scale on multiple processors.  The math is fairly simple, but we'll change the 
names a bit to confuse you. 

When analyzing a Cilk++ program, we like to talk about the running time of the program on 
various numbers of processors. We'll use the following notation: 

 T(P) is the execution time of the program on P processors. 

Thus, using the descriptions of Work and Span: 



34 

 

 

 T(1) is the Work 

 T(∞) is the Span 

Note that on 2 processors, the execution time can never be less than T(1) / 2.  In general, we 
can state the Work Law: 

 T(P) >= T(1) / P 

Similarly, for P processors, the execution time is never less than the execution time on an infinite 
number of processorrs, hence the Span Law: 

 T(P) >= T(∞) 

Speedup and Parallelism 
Intuitively, if a program runs twice as fast on 2 processors, then the speedup is 2. We formalize 
this by defining the speedup on P processors as: 

 T(1) / T(P) 

The maximum possible speedup would occur using an infinite number of processors.  Thus, we 
define the parallelism as: 

 T(1) / T(∞) 

Estimating performance and scalability 

So what good is all this?  Well, if we had some way to measure T(1) and T(∞), then we could 
predict how much speedup we would expect on P processors, and estimate how well the 
program scales - that is, the maximum number of processors that might continue to yield a 
performance improvement. 

This is what cilkview does.  Measuring the work T(1) is of course easy - simply run the 
program on one processor. If we had a machine with an infinite number of processors available, 
then it would be easy to directly measure T(∞).  Unfortunately, those are hard to come by.  

For the rest of us, cilkview reports the parallelism by combining its knowledge of the DAG 
with measurements of the time spent executing each strand.  Using these and other 
measurements, cilkview provides a speedup estimate and other information that provides 
valuable insights into the behavior of a Cilk++ program. 
 



35 

 

 

Cilk++ is a new language based on C++. This chapter describes how to enter into a Cilk++ 
context, the Cilk++ keywords - cilk_spawn, cilk_sync and cilk_for, calling between C++ 
and Cilk++ code, exception handling, and predefined macros that are available. 

Note that this version of the Cilk++ language does not support speculative parallelism. There is 
no mechanism to abort parallel computation. 

This chapter does not cover other Intel® Cilk++ SDK components such as the Runtime System 
and Libraries (Page 75), the cilkscreen race detector (Page 96) and other tools, or reducers 
(Page 52). 

 
 

ENTERING A CILK++ CONTEXT 

Every program begins as a single-threaded serial program. In order to begin parallel operation, 
you must create and initialize the Cilk++ runtime context, and begin running at a well-defined 
entry point in your program. You can replace main() with cilk_main() to use the 
automatically generated context, or create an explicit context and call cilk::run to enter it.  
The cilk_main approach is simpler, but the explicit context provides more control. 

cilk_main 
In most of the examples, we take advantage of the scaffolding provided by the Cilk++ runtime 
system by declaring main program entry point to be cilk_main().  The runtime system 
automatically creates a set of worker threads, then calls your cilk_main entry point in a Cilk++ 
environment. This approach is very simple to use and works well for new applications that will be 
written in Cilk++ throughout.  A complete description of cilk_main is provided in the following 
section. 

Cilk++ Context and cilk::run 
Sometimes you may prefer to have a C++ main program, and call into a Cilk++ context explicitly. 
You might want to use Cilk++ in programs that also use other threading models or libraries such 
as Microsoft Foundation Classes or programs that create and use pthreads. If you are 
introducing Cilk++ into a large existing program, you may prefer to convert only a part of the 
program to Cilk++, and leave other sections in their original serial form.  Or, perhaps you are 
writing a library routine that will be called from other applications that may not be Cilk++ 
programs. 

In these cases, you have the option to create your own Cilk++ context, initialize it explicitly under 
program control, and call into and return from the Cilk++ context one or more times as needed. 

Chapter 6 
The Cilk++ Language 



36 

 

 

If the program only occasionally requires parallel resources, use the explicit cilk::run() 
interface, which is part of the runtime system and libraries (Page 75). When you call 
cilk::run(), the workers will all be active until cilk::run() returns. At that point, the 
workers will sleep until the next call to cilk::run(). There is some additional cost to entering 
and leaving a Cilk++ context in this manner, but if sufficient work is performed in the 
cilk::run() environment, that cost is insignificant. 

 
 

CILK_MAIN 

If you replace main() with cilk_main(), the Cilk++ compiler creates a Cilk++ context at 
startup time, and calls cilk_main() in a parallel environment.  

cilk_main() takes 0, 2, or 3 arguments with these prototypes: 
int cilk_main (); 
int cilk_main (int argc, char *argv[]); 
int cilk_main (int argc, char *argv[], char *env[]); 

Windows* OS: cilk_main() also supports wide characters with two additional prototypes: 
int cilk_main (int argc, wchar_t *argv[]); 
int cilk_main (int argc, wchar_t *argv[], wchar_t *env[]); 

As a result, you can support generic _tchar characters for parameter types and change a 
_tmain() function into a cilk_main() without changing any code. 
 

CILK_SPAWN 

The cilk_spawn keyword modifies a function call statement to tell the Cilk++ runtime system 
that the function may (but is not required to) run in parallel with the caller. A cilk_spawn 
statement has the following forms: 

var = cilk_spawn func(args);     // func() returns a value 
cilk_spawn func(args);           // func() returns void 

func is the name of a function which may run in parallel with the current strand. This means that 
execution of the routine containing the cilk_spawn can execute in parallel with func. func must 
have Cilk++ linkage, described in the "Cilk++ and C++ Language Linkage (Page 45)" section. 

var is a variable with the type returned by func. It is known as the receiver (Page 125) because it 
receives the function call result. The receiver must be omitted for void functions. 

args are the arguments to the function being spawned. Be careful to ensure that pass-by-
reference and pass-by-address arguments have life spans that extend at least until the next 
cilk_sync or else the spawned function may outlive the variable and attempt to use it after it 
has been destroyed. Note that this is an example of a data race which would be caught by 
cilkscreen. 

A spawned function is called a child of the function that spawned it. Conversely, the function that 
executes the cilk_spawn statement is known as the parent of the spawned function. 



37 

 

 

Note that a function can be spawned using any expression that is a function. For instance you 
could use a function pointer or member function pointer, as in: 

var = cilk_spawn (object.*pointer)(args); 
 

SPAWNING A FUNCTION THAT RETURNS A VALUE 

If you spawn a function that returns a value, the value should be assigned to a previously 
declared "receiver" variable before spawning. Otherwise, there will be a compiler error or 
warning. 

Here are three examples, along with the Linux* OS and Windows* OS behavior, and the correct 
usage. 

Example 1: Assign a function value to a variable constructed in the same statement. 
int x = cilk_spawn f(); 

 Windows OS: Won't compile; x is being constructed 
 Linux OS: Allowed with a warning. f() is called, but not spawned. There is no parallelism 

The correct form is to declare the receiver variable in a separate statement. 
int x; 
x = cilk_spawn f(); 

Example 2: Spawn the function without a receiver variable. 
cilk_spawn f(); 

 Windows OS: Won't compile; there is no receiver variable 
 Linux OS: Allowed, but the return value is ignored 

The correct form is to declare the receiver variable in a separate statement, as in Example 1. 

Example 3: Spawn a function used as an argument to another function. 
g(cilk_spawn f()); 

 Windows OS: Won't compile — There is no receiver variable 
 Linux OS: Allowed with a warning. f() is called, not spawned. There is no parallelism 

The correct syntax in this case is to declare the receiver variable in a separate statement, 
spawn, sync (next section), and use the result as the argument to g(). However, there is no 
benefit to this as the parent strand must sync immediately and cannot run in parallel with f(). 

int x; 
x = cilk_spawn f(); 
cilk_sync; 
g(x); 

 

CILK_SPAWN RESTRICTIONS (WINDOWS* OS ONLY) 

The Intel Cilk++ compiler for Windows OS requires a receiver for all non-void spawned functions. 



38 

 

 

Taken extra care with pass-by-const-reference arguments which are bound to rvalues. Rvalues 
are temporary variables that hold the intermediate results of an expression (e.g., the return value 
of a function call within a more complex expression). Rvalue temporaries are destroyed at the 
end of the full expression. An rvalue in the argument list of a spawned function is likely to be 
destroyed before the function returns, yielding a race condition. This limitation may be relaxed in 
the future. To avoid this race, eliminate the use of (anonymous) temporaries in a spawned 
function's argument list by storing the temporary values into named variables. For example, 
convert this: 

extern std::string f(int); 
extern int doit(const std::string& s); 
x = cilk_spawn doit(f(y)); 

to this: 
extern std::string f(int); 
extern int doit(const std::string& s); 
std::string a = f(y); 
x = cilk_spawn doit(a); 

The cilk_sync  corresponding to this cilk_spawn must occur before the temporary variable 
(a in this case) goes out of scope. 
 

CILK_SYNC 

The cilk_sync statement indicates that the current function cannot run in parallel with its 
spawned children. After the children all complete, the current function can continue. 

The syntax is as follows: 
cilk_sync; 

cilk_sync only syncs with children spawned by this function. Children of other functions are 
not affected. 

There is an implicit cilk_sync at the end of every function and every try block that contains a 
cilk_spawn. The Cilk++ language is defined this way for several reasons: 

 To ensure that program resource use does not grow out of proportion to the program's 
parallelism. 

 To ensure that a race-free parallel program has the same behavior as the corresponding 
serial program. An ordinary non-spawn call to a function works the same regardless of 
whether the called function spawns internally. 

 There will be no strands left running that might have side effects or fail to free resources. 
 The called function will have completed all operations when it returns. 

See The Power of Well-Structured Parallelism (answering a FAQ about Cilk++) 
(http

) for more discussion of this point. 
://software.intel.com/en-us/articles/The-Power-of-Well-Structured-Parallelism-answering-a-

FAQ-about-Cilk

http://software.intel.com/en-us/articles/The-Power-of-Well-Structured-Parallelism-answering-a-FAQ-about-Cilk�
http://software.intel.com/en-us/articles/The-Power-of-Well-Structured-Parallelism-answering-a-FAQ-about-Cilk�


39 

 

 
 

CILK_FOR 

A cilk_for loop is a replacement for the normal C++ for loop that permits loop iterations to 
run in parallel. The Cilk++ compiler converts a cilk_for loop into an efficient divide-and-
conquer recursive traversal over the loop iterations.  

Sample cilk_for loops are: 

cilk_for (int i = begin; i < end; i += 2) 
    f(i); 
 
cilk_for (T::iterator i(vec.begin()); i != vec.end(); ++i) 
    g(i); 

The "serialization (Page 126)" of a valid Cilk++ program has the same behavior as the similar 
C++ program, where the serialization of cilk_for is the result of replacing "cilk_for" with 
"for". Therefore, a cilk_for loop must be a valid C++ for loop, but cilk_for loops have 
several constraints compared to C++ for loops. 

Since the loop body is executed in parallel, it must not modify the control variable nor should it 
modify a nonlocal variable (Page 124), as that would cause a data race (Page 123). The 
cilkscreen race detector will help detect these data races. 

Serial/parallel structure of cilk_for 
Note that using cilk_for is not the same as spawning each loop iteration. In fact, the Cilk++ 
compiler converts the loop body to a function that is called recursively using a divide-and-
conquer strategy allows the Cilk++ scheduler to provide significantly better performance. The 
difference can be seen clearly in the DAG for the two strategies. 

First, the DAG for a cilk_for, assuming N=8 iterations and a grain size of 1. The numbers labeling 
the strands indicate which loop iteration is handled by each strand. Note that at each division of 
work, half of the remaining work is done in the child and half in the continuation. Importantly, the 
overhead of both the loop itself and of spawning new work is divided evenly along with the cost 
of the loop body. 



40 

 

 

If each iteration takes the same amount of time T to execute, then the span is log2(N) * T, or 3 * T 
for 8 iterations. The run-time behavior is well balanced regardless of the number of iterations or 
number of workers. 

 
Serial/parallel structure when spawning within a serial loop 
Here is the DAG for a serial loop that spawns each iteration. In this case, the work is not well 
balanced, because each child does the work of only one iteration before incurring the scheduling 
overhead inherent in entering a sync.  For a short loop, or a loop in which the work in the body is 
much greater than the control and spawn overhead, there will be little measurable performance 
difference. However, for a loop of many cheap iterations, the overhead cost will overwhelm any 
advantage provided by parallelism. 

 
 

CILK_FOR SYNTAX 

The general cilk_for syntax is: 

cilk_for (declaration; 
          conditional expression; 
          increment expression) 
    body 
 



41 

 

 

 The declaration must declare and initialize a single variable, called the "control variable". The 
constructor's syntactic form does not matter. If the variable type has a default constructor, no 
explicit initial value is needed. 

 The conditional expression must compare the control variable to a "termination expression" 
using one of the following comparison operators: 
    <  <=  !=  >=  > 

The termination expression and control variable can appear on either side of the comparison 
operator, but the control variable cannot occur in the termination expression. The termination 
expression value must not change from one iteration to the next. 

 The increment expression must add to or subtract from the control variable using one of the 
following supported operations: 
    += 
    -= 
    ++ (prefix or postfix) 
    --  (prefix or postfix) 
The value added to (or subtracted from) the control variable, like the loop termination 
expression, must not change from one iteration to the next. 

 

CILK_FOR TYPE REQUIREMENTS 

With care, you may use custom data types for the cilk_for control variable. For each custom 
data types, you need to provide some methods to help the runtime system compute the loop 
range size so that it can be divided. Types such as integer types and STL random-access 
iterators have an integral difference type already, and so require no additional work. 

Suppose the control variable is declared with type variable_type and the loop termination 
expression has type termination_type; for example: 

extern termination_type end; 
extern int incr; 
cilk_for (variable_type var; var != end; var += incr) ; 

You must provide one or two functions to tell the compiler how many times the loop executes; 
these functions allow the compiler to compute the integer difference between variable_type 
and termination_type variables: 

difference_type operator-(termination_type, variable_type); 
difference_type operator-(variable_type, termination_type); 

 The argument types need not be exact, but must be convertible from termination_type 
or variable_type. 

 The first form of operator- is required if the loop could count up; the second is required if 
the loop could count down. 

 The arguments may be passed by const reference or value. 
 The program will call one or the other function at runtime depending on whether the 

increment is positive or negative. 
 You can pick any integral type as the difference_type return value, but it must be the 

same for both functions. 



42 

 

 

 It does not matter if the difference_type is signed or unsigned. 

Also, tell the system how to add to the control variable by defining: 
variable_type operator+(variable_type, difference_type); 

If you wrote "-=" or "--" instead of "+=" or "++" in the loop, define operator- instead. 

Finally, these operator functions must be consistent with ordinary arithmetic. The compiler 
assumes that adding one twice is the same as adding two once, and if 

X - Y == 10 

then 
Y + 10 == X 

 

CILK_FOR RESTRICTIONS 

In order to parallelize a loop using the "divide-and-conquer" technique, the runtime system must 
pre-compute the total number of iterations and must be able to pre-compute the value of the loop 
control variable at every iteration.  To enable this computation, the control variable must act as 
an integer with respect to addition, subtraction, and comparison, even if it is a user-defined type. 
Integers, pointers, and random access iterators from the standard template library all have 
integer behavior and thus satisfy this requirement. 

In addition, a cilk_for loop has the following limitations, which are not present for a standard 
C++ for loop. The compiler will report an error or warning for most of these errors. 

 There must be exactly one loop control variable, and the loop initialization clause must 
assign the value. The following form is not supported: 
cilk_for (unsigned int i, j = 42; j < 1; i++, j++) 

 The loop control variable must not be modified in the loop body. The following form is not 
supported: 
cilk_for (unsigned int i = 1; i < 16; ++i) i = f(); 

 The termination and increment values are evaluated once before starting the loop and will 
not be re-evaluated at each iteration. Thus, modifying either value within the loop body will 
not add or remove iterations. The following form is not supported:  
cilk_for (unsigned int i = 1; i < x; ++i) x = f(); 

 The control variable must be declared in the loop header, not outside the loop. The following 
form is not supported: 
int i; cilk_for (i = 0; i < 100; i++) 

 A break or return statement will NOT work within the body of a cilk_for loop; the 
compiler will generate an error message. break and return in this context are reserved for 
future speculative parallelism support. 

 A goto can only be used within the body of a cilk_for loop if the target is within the loop 
body. The compiler will generate an error message if there is a goto transfer into or out of a 
cilk_for loop body. Similarly, a goto cannot jump into the body of a cilk_for loop from 
outside the loop. 

 A cilk_for loop may not be used in a constructor or destructor. It may be used in a 
function called from a constructor or destructor. 



43 

 

 

 A cilk_for loops may not "wrap around". For example, in C++ you can write: 
 for (unsigned int i = 0; i != 1; i += 3); 

and this has well-defined, if surprising, behavior; it means execute the loop 2,863,311,531 
times. Such a loop produces unpredictable results in Cilk++ when converted to a cilk_for. 

 A cilk_for may not be an infinite loop such as: 
cilk_for (unsigned int 1 = 0; i != i; i += 0); 

 

CILK_FOR GRAIN SIZE 

The cilk_for statement divides the loop into chunks containing one or more loop iterations.  
Each chunk is executed serially, and is spawned as a chunk during the execution of the loop.  
The maximum number of iterations in each chunk is the grain size. 

In a loop with many iterations, a relatively large grain size can significantly reduce overhead. 
Alternately, with a loop that has few iterations, a small grain size can increase the parallelism of 
the program and thus improve performance as the number of processors increases. 

Setting the Grain Size 
Use the cilk_grainsize pragma to specify the grain size for one cilk_for loop: 

#pragma cilk_grainsize = expression 

For example, you might write: 
#pragma cilk_grainsize = 1 
cilk_for (int i=0; i<IMAX; ++i) { . . . } 

If you do not specify a grain size, the system calculates a default that works well for most loops. 
The default value is set as if the following pragma were in effect: 

#pragma cilk_grainsize = min(512, N / (8*p)) 

where N is the number of loop iterations, and p is the number of workers created during the 
current program run. Note that this formula will generate parallelism of at least 8 and at most 
512. For loops with few iterations (less than 8 * workers) the grain size will be set to 1, and each 
loop iteration may run in parallel. For loops with more than (4096 * p) iterations, the grain size 
will be set to 512.  

If you specify a grain size of zero, the default formula will be used. The result is undefined if you 
specify a grain size less than zero. 

Note that the expression in the pragma is evaluated at run time. For example, here is an 
example that sets the grain size based on the number of workers: 

#pragma cilk_grainsize = n/(4*cilk::current_worker_count()) 

Loop Partitioning at Run Time 
The number of chunks that are executed is approximately the number of iterations N divided by 
the grain size K.  

The Cilk++ compiler generates a divide-and-conquer recursion to execute the loop. In pseudo-
code, the control structure looks like this: 

void run_loop(first, last) 
{ 



44 

 

 

    if (last - first) < grainsize) 
    { 
        for (int i=first; i<last ++i) LOOP_BODY; 
    } 
    else 
    { 
        int mid = (last-first)/2; 
        cilk_spawn run_loop(first, mid); 
        run_loop(mid, last); 
    } 
} 

In other words, the loop is split in half repeatedly until the chunk remaining is less than or equal 
to the grain size. The actual number of iterations run as a chunk will often be less than the grain 
size.  

For example, consider a cilk_for loop of 16 iterations: 
cilk_for (int i=0; i<16; ++i) { ... } 

With grain size of 4, this will execute exactly 4 chunks of 4 iterations each. However, if the grain 
size is set to 5, the division will result in 4 unequal chunks consisting of 5, 3, 5 and 3 iterations. 

If you work through the algorithm in detail, you will see that for the same loop of 16 iterations, a 
grain size of 2 and 3 will both result in exactly the same partitioning of 8 chunks of 2 iterations 
each. 

Selecting a Good Grain Size Value 
The default grain size usually performs well. However, here are guidelines for selecting a 
different value: 

 If the amount of work per iteration varies widely and if the longer iterations are likely to be 
unevenly distributed, it might make sense to reduce the grain size. This will decrease the 
likelihood that there is a time-consuming chunk that continues after other chunks have 
completed, which would result in idle workers with no work to steal. 

 If the amount of work per iteration is uniformly small, then it might make sense to increase 
the grain size. However, the default usually works well in these cases, and you don't want to 
risk reducing parallelism. 

 If you change the grain size, carry out performance testing to ensure that you've made the 
loop faster, not slower. 

 Use cilkview to estimate a program's work (Page 127), span (Page 126), and spawn 
overhead. This information can help determine the best granularity and whether it is 
appropriate to override the default grain size. 

Several examples (Page 28) use the grain size pragma: 
 matrix-transpose 
 cilk-for 
 sum-cilk 



45 

 

 
 

CILK++ AND C++ LANGUAGE LINKAGE 

A function using the Cilk++ calling convention is said to have Cilk++ language linkage and is 
known as a Cilk++ function. A function using a C++ or C calling convention is said to have C++ 
or C language linkage and is known as a C++ or C function. 

A Cilk++ function can use Cilk++ keywords and can call C++ or C functions directly. The reverse, 
however, is not true. A C or C++ function cannot call a Cilk++ function directly, nor can it use 
Cilk++ keywords. 

A later chapter, "Mixing C++ and Cilk++ (Page 81)", shows how to call Cilk++ functions from 
C++ code. This is often useful in large applications. 

Windows* Only: Please note that pointers to members of classes with virtual base classes (data 
or functions) cannot be used as arguments to Cilk++ functions.  
 

DECLARATIVE REGIONS AND LANGUAGE LINKAGE 

The extern keyword specifies the linkage in a declarative region. The syntax is: 
extern string-literal { declaration-list } 
extern string-literal declaration 

string-literal can be any of "Cilk++", "C++" or "C" to specify the language linkage for the 
declarations. The string is case-sensitive. 

There are several special cases and exceptions: 

 The main() function always has C language linkage whether or not it is declared using 
extern "C". 

 The cilk_main() function always has Cilk++ linkage, whether or not it is declared using 
extern "Cilk++". 

 A program should not contain both main() and cilk_main().  
 Windows* OS: This will produce a compiler or linker error.  
 Linux* OS: If a program contains both main() and cilk_main(), then main() will 

be called. 
 The topmost (default) declarative region of a Cilk++ file, outside of any extern 

"Cilk++"/"C++"/"C" construct, is a Cilk++ declarative region. 
 The __cilk macro is provided to declare a Cilk++ member function in a C++ class, where 

extern Cilk++ would not be valid: 
 __cilk is position-sensitive so that void __cilk foo() is valid but __cilk void 

foo() is not. 
 The "Mixing C++ and Cilk++ (Page 81)" chapter uses __cilk in code examples. 

Language linkage applies to functions, function types, struct types, class types, and union 
types. The following rules apply: 

 Fundamental and enumeration types do not have language linkage. 



46 

 

 

 A typedef is simply an alias for a type which may or may not have language linkage; the 
typedef itself does not have language linkage. 

 There are special rules for templates, as described below in the next section. 
 A function with one language linkage has a different type than a function with a different 

language linkage, even when they have the same prototype. 
 Do not cast a function pointer from Cilk++ to C++ or C language linkage or vice versa; the 

results will be unpredictable and not useful. 
 A virtual function overridden in a derived class is required to have the same language linkage 

in the base and derived classes (including compiler-generated virtual destructors). The 
Cilk++ Linux compiler will change the linkage of the derived class function to match the base 
class. The Windows compiler will report an error. 

 Windows OS: The language linkage for a function can be overridden by declaring it with a 
__cilk, __cdecl, __thiscall, __stdcall, or __fastcall calling-convention specifier 
immediately before the function's name. Except for __cilk (which is also valid in the Cilk++ 
compiler for Linux OS), all these Microsoft-specific calling conventions give a function C++ 
language linkage. 

 Windows OS: A class's language linkage applies to member functions that are generated 
automatically by the compiler when not declared; i.e., the default constructor, copy 
constructor, assignment operator, and destructor. 

 Linux OS: A compiler-generated member function has Cilk++ language linkage if and only if 
it calls a Cilk++ function. 

 Conflicting extern statements will generate warnings, and the first specification is used. For 
example, in the following, T1 has C++ linkage: 
    extern "C++" class T1; 
    extern "Cilk++" class T1 { ... }; 

 

CALLING C++ FUNCTIONS FROM CILK++ 

Cilk++ functions can call C++ functions. This makes it easier to parallelize existing C++ code. 

You must inform the Cilk++ compiler that a specific function is a C++ function (i.e., it has C++ 
linkage) and not a Cilk++ function. 

To declare a specific function to have C++ linkage, prefix the function declaration with extern 
"C++": 

extern "C++" void *operator new(std::size_t, void* ptr); 

Multiple declarations can be declared as having C++ linkage by creating a C++ declarative 
region: 

extern "C++" { 
    void myCppFunction(void*); 
    int anotherCppFunction(int); 
} 

Do not, however, have a #include statement in an extern "C++" block. Doing so will cause 
a compiler "conflicting specification" error when building the program's serialization (Page 126).  

Including a C++ header in a Cilk++ program requires two Cilk++ macros (defined in <cilk.h>): 



47 

 

 

 CILK_BEGIN_CPLUSPLUS_HEADERS 
 CILK_END_CPLUSPLUS_HEADERS 

The macros are null when building the serialization and are otherwise defined to be extern 
"C++" { and }, respectively. See the "Nested #include Statements (Page 83)" section for 
more information. 

The correct way to include a C++ header into a Cilk++ program is: 
CILK_BEGIN_CPLUSPLUS_HEADERS 
    #include <mycppheader.h> 
CILK_END_CPLUSPLUS_HEADERS 

The Cilk++ compiler treats system header files as if they were included within an extern 
"C++" region, thus causing declarations within system header files to be given C++ linkage. 

Windows* OS: If a file named .sys_include is present in an include directory, all header files 
in that directory are treated as system header files. The installer creates .sys_include files in 
known system include directories. 

 

Linux* OS: If a file is in an include directory specified with the -isystem option, cilk++ will 
treat that header file as a system header file. 
 

LANGUAGE LINKAGE RULES FOR TEMPLATES 

If a function template or member function of a class template is declared within a Cilk++ 
declarative region, then any instantiation of that function will have Cilk++ language linkage. 
However, if a function template or member function of a class template is declared within a C++ 
declarative region, then the special rules listed below apply when instantiating the template. The 
intent of these rules is to allow C++ templates (such as an STL template) to be instantiated from 
within Cilk++ code. 

 A C++ template is defined as a class or function template declared within C++ declarative 
region. A Cilk++ template is defined as a class or function template declared within a Cilk++ 
declarative region, including the top-level (default) declarative region. 

 A Cilk++ type is one of the following: 
 A struct, class, or union that is declared within a Cilk++ declarative region 
 An instantiation of a Cilk++ class template 
 A pointer or reference to a Cilk++ type or to a Cilk++ function 
 An array of Cilk++ types 
 A nested class of a Cilk++ type 

 An instantiation of a C++ class template is promoted to a Cilk++ type if any of the template 
type arguments is a Cilk++ type. Nested classes and member functions of such a promoted 
type are likewise promoted to Cilk++ language linkage. 



48 

 

 

 It is possible that the instantiation of a nested class or function template will be promoted to 
Cilk++ linkage even if its enclosing class is not a Cilk++ type or a promoted C++ class 
template. However, if a class template instantiation is promoted, all of its nested class and 
function templates are also promoted. 

 

CILK++ AND THE C++ BOOST LIBRARIES 

Using the Boost* C++ Libraries (http ) in a Cilk++ program requires care. The 
Cilk++ language defines rules governing expansion of template functions as C++ or Cilk++. 
These rules work well for the C++ standard template library. They do not work well with the 
Boost template library. Cilk++ programs using Boost may cause compiler errors related to calls 
from C++ into Cilk++. 

://www.boost.org/

Compiling Boost templates as Cilk++ instead of C++ will avoid many problems. This means: 

 On Linux* OS, install Boost outside of /usr/include and other standard include directories 
which are assumed to contain C and C++ code. 

 On Windows* OS, do not create a .sys_include file in the Boost include directory. 

 
 

PREPROCESSOR MACROS 
__cilkplusplus 

This macro is defined automatically by the Cilk++ compiler and is set to the Cilk++ language 
version number. The value in this release is 100, indicating language version 1.0. 

__cilkartsrev 

This macro is defined automatically by the Cilk++ compiler and is set to the Cilk++ compiler 
version number. The value in this release is 10100, indicating compiler version 1.1.0. 

__cilkartsbuild 

Compilers provided by Cilk Arts define this macro to the unique internal build number. You 
should generally not need to use this macro.  

__cplusplus 

Although Cilk++ is a different language than C++, many Cilk++ programs benefit from having 
this macro from C++ defined. For this reason, the Cilk++ compiler defines __cplusplus in 
addition to __cilkplusplus. To detect compilation with a C++ compiler which is not a 
Cilk++ compiler, compose a conditional directive as follows: 
    #if defined(__cplusplus) && ! defined(__cilkplusplus) 

 

EXCEPTION HANDLING 

The Cilk++ language attempts to reproduce, as closely as possible, the semantics of C++ 
exception handling. This generally requires limiting  parallelism while exceptions are pending, 
and programs should not depend on parallelism during exception handling. 

http://www.boost.org/�


49 

 

 

There is an implicit cilk_sync at the end of every try block. A function has no active children 
when it begins execution of a catch block. 

cilk_spawn behavior during exception handling is system-dependent. 

Windows* OS: cilk_spawn has no effect while an exception is pending, from construction of 
the exception object to its destruction after the last exception handler finishes. 

 

Linux* OS: cilk_spawn has no effect during execution of the exception object destructor, and 
cilk_sync statements are inserted before throws. These restrictions only affect execution of 
functions that throw and catch exceptions and the functions in between. If function f spawns 
function g, function g spawns function h, and function h throws an exception caught by function 
g, then function f is not affected by the exception. 

Exception logic is: 

 If an exception is thrown and not caught in a spawned child, then that exception is rethrown 
in the parent at the next sync point. 

 If the parent or another child also throws an exception, then the first exception that would 
have been thrown in the serial execution order takes precedence. The logically-later 
exceptions are discarded. There is currently no mechanism for collecting multiple exceptions 
thrown in parallel. 

Note that throwing an exception does not abort existing children or siblings of the strand in which 
the exception is thrown; these strands will run normally to completion. This behavior may change 
in a future version of the Intel® Cilk++ SDK. 

Windows OS: The Intel Cilk++ compiler support for Microsoft Visual Studio currently supports 
only C++ (synchronous) exceptions. Attempting to use asynchronous exceptions by using the 
/EHa compiler option will be rejected by the compiler.The compiler does not support the __try, 
__except, __finally, or __leave Microsoft* C++ extensions. 

 



50 

 

 

Earlier, we described how a DAG can be used to illustrate the serial/parallel structure of a 
Cilk+++ program. Recall that the DAG does not depend on the number of processors. The 
execution model describes how the runtime scheduler maps strands to workers. 

When parallelism is introduced, multiple strands may execute in parallel. However, in a Cilk++ 
program, strands that may execute in parallel are not required to execute in parallel. The 
scheduler makes this decision dynamically. We will not explain exactly how the scheduler 
operates, but the interested reader may consult previously published literature that describes the 
work-stealing scheduler in great detail. 

Consider the following Cilk++ program fragment: 
do_init_stuff();  // execute strand 1 
cilk_spawn func3();  // spawn strand 3   (the "child") 
do_more_stuff();  // execute strand 2 (the "continuation") 
cilk_sync; 
do_final_stuff;  // execute strand 4 
  

 Here is the simple DAG for the code: 

 
 

Recall that a worker (Page 127) is an operating system thread that executes a Cilk++ program.  
If there is more than one worker available, there are two ways that this program may execute: 

 The entire program may execute on a single worker, or 
 The scheduler may choose to execute strands (2) and (3) on different workers. 

In order to guarantee serial semantics, the function that is spawned (the "child", or strand (3) in 
this example) is always executed on the same worker that is executing the strand that enters the 
spawn. Thus, in this case, strand (1) and strand (3) are guaranteed to run on the same worker. 

If there is a worker available, then strand (2) (the "continuation") may execute on a different 
worker. We call this a steal, and say that the continuation was stolen by the new worker. 

Chapter 7 
Cilk++ Execution Model 



51 

 

 

To illustrate these two execution options, we introduce a new diagram.  First, we illustrate the 
execution on a single worker: 

 
If a second worker is scheduled, the second worker will begin executing the continuation, strand 
(2). The first worker will proceed to the sync at (B). Here, we indicate the second worker by 
illustrating strand (2) with a dotted line. After the sync, strand (4) may continue on either worker.  
In the current implementation, strand (4) will execute on the last worker that reaches the sync. 

 
 

The details of the execution model have several implications that will be described later, when 
we discuss the interaction between Cilk++ workers and system threads, and when we describe 
reducers. For now, the key ideas to remember are: 

 After a cilk_spawn, the child will always execute on the same worker (i.e. system thread) as 
the caller. 

 After a cilk_spawn, the continuation may execute on a different worker. If this occurs, we say 
that the continuation was stolen by another worker. 

 After a cilk_sync, execution may proceed on any worker that executed a strand that entered 
the sync. 

 
 



52 

 

 

This chapter describes Cilk++ reducers, their use, and how to develop custom reducers. 

The Intel® Cilk++ SDK provides reducers to address the problem of accessing nonlocal variables 
in parallel code. See "Reducers: Introduction to Avoiding Races" for a simple example, and these 
articles: "Are Determinacy-Race Bugs Lurking in YOUR Multicore Application?" 
(http

) and "Global Variable Reconsidered" (
://software.intel.com/en-us/articles/Are-Determinacy-Race-Bugs-Lurking-in-YOUR-Multicore-

Application http
) provide additional examples. Note that these papers 

describe an older reducer syntax, but the concepts are still applicable. 

://software.intel.com/en-
us/articles/Global-Variable-Reconsidered

Conceptually, a reducer is a variable that can be safely used by multiple strands running in 
parallel. The runtime system ensures that each worker has access to a private copy of the 
variable, eliminating the possibility of races without requiring locks. When the strands 
synchronize, the reducer copies are merged (or "reduced") into a single variable. The runtime 
system creates copies only when needed, minimizing overhead. 

Reducers have several attractive properties: 

 Reducers allow reliable access to nonlocal variables without races. 
 Reducers do not require locks and therefore avoid the problem of lock contention (and 

subsequent loss of parallelism) that arises from using locks to protect nonlocal variables. 
 Defined and used correctly, reducers retain serial semantics. The result of a Cilk++ program 

that uses reducers is the same as the serial version, and the result does not depend on the 
number of processors or how the workers are scheduled. Reducers can be used without 
significantly restructuring existing code. 

 Reducers are implemented efficiently, incurring minimal overhead. 
 Reducers can be used independently of the program's control structure, unlike constructs 

that are defined over specific control structures such as loops. 

Reducers are defined by writing C++ templates that provide an interface to the runtime system. 

Reducers are a kind of hyperobject. In Cilk Arts Cilk++ version 1.0.3 and earlier, reducers were 
declared using a hyperobject template. Beginning in Cilk Arts Cilk++ version 1.1.0, reducer 
declaration has been simplified. 

In this chapter, we will: 

 Demonstrate how to use a reducer supplied in the Intel Cilk++ SDK. 
 Describe the library of reducers. 
 Explain how to develop your own reducers. 
 Discuss some technical details, including appropriate operations, performance 

considerations and limitations of reducers. 

 

Chapter 8 
Reducers 

http://software.intel.com/en-us/articles/Are-Determinacy-Race-Bugs-Lurking-in-YOUR-Multicore-Application�
http://software.intel.com/en-us/articles/Are-Determinacy-Race-Bugs-Lurking-in-YOUR-Multicore-Application�
http://software.intel.com/en-us/articles/Global-Variable-Reconsidered�
http://software.intel.com/en-us/articles/Global-Variable-Reconsidered�


53 

 

 

WARNING: The syntax used to declare and use reducers changed between Cilk++ version 1.0.3 
and Cilk++ version 1.1.0.  Reducers written in the older style are still supported, but may be 
removed in a future version of the Intel Cilk++ SDK.  

 
 

USING REDUCERS — A SIMPLE EXAMPLE 

A common need for reducers appears when trying to accumulate a sum in parallel. Consider the 
following serial program that repeatedly calls a compute() function and accumulates the 
answers into the total variable.  

 
#include <iostream> 
 
unsigned int compute(unsigned int i) 
{ 
    return i;           // return a value computed from i 
} 
 
int main(int argc, char* argv[]) 
{ 
    unsigned int n = 1000000; 
    unsigned int total = 0; 
 
    // Compute the sum of integers 1..n 
    for(unsigned int i = 1; i <= n; ++i) 
    { 
        total += compute(i); 
    } 
 
    // the sum of the first n integers should be n * (n+1) / 2 
    unsigned int correct = (n * (n+1)) / 2; 
 
    if (total == correct) 
            std::cout << "Total (" << total  
                      << ") is correct" << std::endl; 
    else 
            std::cout << "Total (" << total  
                      << ") is WRONG, should be "  
                      << correct << std::endl; 
    return 0; 
} 
 



54 

 

 

Converting this to a Cilk++ program and changing the for to a cilk_for causes the loop to 
run in parallel, but creates a data race (Page 87) on the total variable. To resolve the race, 
we simply make total a reducer — in this case, a reducer_opadd, defined for types that have 
an associative "+" operator. The changes are marked below. This program is provided as 
examples/reducer/reducer.cilk. 

#include <cilk.h> 
#include <reducer_opadd.h> 
#include <iostream> 
 
unsigned int compute(unsigned int i) 
{ 
    return i;           // return a value computed from i 
} 
 
int cilk_main(int argc, char* argv[]) 
{ 
    unsigned int n = 1000000; 
    cilk::reducer_opadd<unsigned int> total; 
 
    // Compute 1..n 
    cilk_for(unsigned int i = 1; i <= n; ++i) 
    { 
        total += compute(i); 
    } 
 
    // the sum of the first N integers should be n * (n+1) / 2 
    unsigned int correct = (n * (n+1)) / 2; 
 
    if (total.get_value() == correct) 
            std::cout << "Total (" << total.get_value()  
                      << ") is correct" << std::endl; 
    else 
            std::cout << "Total (" << total.get_value() 
                      << ") is WRONG, should be " 
                      << correct << std::endl; 
    return 0; 
} 
 

The changes in the serial code show how to use a reducer provided by the Intel® Cilk++ SDK: 

 Include the appropriate reducer header file. 
 Declare the reduction variable as a reducer_kind<TYPE> rather than a TYPE.  
 Introduce parallelism, in this case by changing the for loop to a cilk_for loop.  
 Retrieve the reducer's terminal value with the get_value() method after the cilk_for 

loop is complete. 

Two examples (Page 28), reducer and sum-cilk use reducer_opadd in the same manner 
as in this code fragment. 



55 

 

 

Noet: Reducers are objects. As a result, they cannot be copied directly. The results are 
unpredictable if you copy a reducer object using memcpy(). Instead, use a copy constructor. 
 

HOW REDUCERS WORK 

In this section, we discuss in more detail the mechanisms and semantics of reducers. This 
information should help the more advanced programmer understand more precisely what rules 
govern the use of reducers as well as provide the background needed to write custom reducers. 

In the simplest form, a reducer is an object that has a value, an identity, and a reduction function. 

The reducers provided in the reducer library provide additional interfaces to help ensure that the 
reducers are used in a safe and consistent fashion. 

In this discussion, we refer to the object created when the reducer is declared as the "leftmost" 
instance of the reducer. 

In the following sections, we present a simple example and discuss the run-time behavior of the 
system as this program runs. 

First, consider the two possible executions of a cilk_spawn, with and without a steal. The 
behavior of a reducer is very simple: 

 If no steal occurs, the reducer behaves like a normal variable.  
 If a steal occurs, the continuation receives a view with an identity value, and the child 

receives the reducer as it was prior to the spawn. At the corresponding sync, the value in the 
continuation is merged into the reducer held by the child using the reduce operation, the new 
view is destroyed, and the original (updated) object survives. 

The following diagrams illustrate this behavior: 

No steal 
If there is no steal after the cilk_spawn indicated by (A): 

 
In this case, a reducer object visible in strand (1) can be directly updated by strand (3) and (4). 
There is no steal, thus no new view is created and no reduce operation is called. 

Steal 
If strand (2), the continuation of the cilk_spawn at (A), is stolen: 

 



56 

 

 

In this case, a reducer object in strand (1) is visible in strand (3), the child. Strand (2), the 
continuation, receives a new view with an identity value. At the sync (B), the new reducer view is 
reduced into the original view visible to strand (3). 

Example: Using reducer_opadd<> 
Here is a simplified program that uses reducer_opadd<> to accumulate a sum of integers in 
parallel. For addition, the identity value is -, and the reduction function adds the right value into 
the left value: 

1   reducer_opadd<int> sum; 
2 
3   void addsum() 
4   { 
5       sum += 1; 
6   } 
7 
8   int cilk_main() 
9   { 
10      sum += 1; 
11      cilk_spawn addsum();                          
12      sum += 1;       
        // the value of sum here depends on whether a steal occured 
13      cilk_sync;  
14      return sum.get_value(); 
15  } 

If no steal occurs... 
First consider the serial case when the execution occurs on a single processor, and there is no 
steal.  In this case, there is no private view of sum created, so all operations are performed on 
the leftmost instance. Because no new views are created, the reduction operation is never 
called. The value of sum will increase monotonically from 0 to its final value of 3.  

In this case, because there was no steal, the cilk_sync statement is treated as a no-op. 

 

If a steal occurs... 
If a steal occurs, then, when sum is accessed at line 12, a new view with an identity value (0) is 
created. In this case, the value of sum after line 12 executes will be 1. Note that the parent gets 
the new (identity) view and child gets the view that was active at the time of the spawn. This 
allows reducers to maintain deterministic results for reduce operations that are associative but 
not cummutative. The child (addsum) operates on the leftmost instance, and so sum increases 
from 1 to 2 at line 5. 

When the cilk_sync statement is encountered, if the strands joining together have different 
views of sum, those views will be merged using the reduction operation. In this case, reduction is 
an addition, so the new view in the parent (value 1) is added into the view held by the child 
(value 2) resulting in the leftmost instance receiving the value 3. After the reduction, the new 
view is destroyed. 



57 

 

 

Lazy semantics 
It is conceptually correct to understand that each strand has a private view of the reducer. For 
performance purposes, these views are created lazily—that is, only when two conditions are 
met. 

 First, a new view will only be created after a steal. 
 Second, the new view is created when the reducer is first accessed in the new strand.  At 

that point, a new instance is created, holding an identify value as defined by the default 
constructor for the type. 

If a new view has been created, it is merged into the prior view at cilk_sync.  If no view was 
created, no reduction is necessary.  (Logically, you can consider that an identity was created and 
then merged, which would be a no-op.) 

Safe operations 
It is possible to define a reducer by implementing only the identity and reduction functions. 
However, it is typically both safer and more convenient to provide functions using operator 
overloads in order to restrict the operations on reducers to those that make sense. 

For example, reducer_opadd defines +=, -=, * ++, --, +, and - operators.  Operations such as 
multiply (*) and divide (/) will not provide deterministic and consistent semantics, and are thus not 
provided in the reducer_opadd definition. 

 
 

SAFETY AND PERFORMANCE CAUTIONS 

In general, reducers provide a powerful way to define global variables that do not require locks 
and that provide results across parallel runs that are repeatable and exactly the same as the 
results of a serial execution. 

However, there are some cautions to be aware of. 

Safety 
To get strictly deterministic results, all operations (update and merge) that modify the value of a 
reducer must be associative.  

The reducers defined in the reducer library provide operators that are associative. In general, if 
you only use these operators to access the reducer, you will get deterministic, serial semantics.  
It is possible to use reducers with operations that are not associative, either by writing your own 
reducer with non-associative operations, or by accessing and updating the underlying value of 
any reducer with unsafe operations. 

Determinism 
When reducers are instantiated with floating-point types, the operations are not strictly 
associative. Specifically, the order of operations can generate different results when the 
exponents of the values differ. This can lead to results that vary based on the order in which the 
strands execute. For some programs, these differences are tolerable, but be aware that you may 
not see exactly repeatable results between program runs. 



58 

 

 

Performance 
When used judiciously, reducers can incur little or no runtime performance cost. However, the 
following situations may have significant overhead. Note that the overhead is also proportional to 
the number of steals that occur. 

If you create a large number of reducers (for example, an array or vector of reducers) you must 
be aware that there is an overhead at steal and reduce that is proportional to the number of 
reducers in the program. 

If you define reducers with a large amount of state, note that it may be expensive to create 
identity values when the reducers are referenced after a steal. 

In addition, if the merge operation is expensive, remember that a merge occurs at every sync 
that follows a successful steal. 

 
 

REDUCER LIBRARY 

The reducer library in the Intel® Cilk++ SDK contains the reducers shown in the following table. 

Each reducer is described in detail in comments in the corresponding header file. 

The middle column shows each reducer's identity element and Update operation (there may be 
several). The next section explains these concepts. 

REDUCER/HEADER FILE IDENTITY/ UPDATE DESCRIPTION 

reducer_list_append 
<reducer_list.h> 

empty list 
push_back() 

Creates a list using an append 
operation. The final list will always have 
the same order as the list constructed 
by the equivalent serial program, 
regardless of the worker count or the 
order in which the workers are 
scheduled. 

reducer_list_prepend 
<reducer_list.h> 

empty list 
push_front() 

Creates a list using a prepend 
operation. 

reducer_max 
<reducer_max.h> 

Argument to constructor 
cilk::max_of 

Finds the maximum value over a set of 
values. The constructor argument has 
an initial maximum value. 

reducer_max_index 
<reducer_max.h> 

Arguments to constructor 
cilk::max_of 

Finds the maximum value and the index 
of the element containing the maximum 
value over a set of values. The 
constructor argument has an initial 
maximum value and index. 

reducer_min 
<reducer_min.h> 

Argument to constructor 
cilk::min_of 

Finds the minimum value over a set of 
values. The constructor argument has 
an initial minimum value. 



59 

 

 

REDUCER/HEADER FILE IDENTITY/ UPDATE DESCRIPTION 

reducer_min_index 
<reducer_min.h> 

Arguments to constructor 
cilk::min_of 

Finds the minimum value and the index 
of the element containing the minimum 
value over a set of values. The 
constructor argument has an initial 
minimum value and index. 

reducer_opadd 
<reducer_opadd.h> 

0 
+=, =, -=, ++, -- 

Performs a sum. 

reducer_opand 
<reducer_opand.h> 

1 / true 
&, &=, = 

Perform logical or bitwise AND. 

reducer_opor 
<reducer_opor.h> 

0 / false 
|, |=, = 

Perform logical or bitwise OR. 

reducer_opxor 
<reducer_opxor.h> 

0 / false 
^, ^=, = 

Perform logical or bitwise XOR. 

reducer_ostream 
<reducer_ostream.h> 

Arguments to constructor 
<< 

Provides an output stream that can be 
written in parallel. In order to preserve a 
consistent order in the output stream, 
output will be buffered by the reducer 
class until there is no more pending 
output to the left of the current position. 
This ensures that the output will always 
appear in the same order as the output 
generated by the equivalent serial 
program. 

reducer_basic_string 
<reducer_string.h> 

Empty string, or 
arguments to constructor 
+=, append 

Creates a string using append or += 
operations. Internally, the string is 
maintained as a list of substrings in 
order to minimize copying and memory 
fragmentation. The substrings are 
assembled into a single output string 
when get_value() is called. 

reducer_string 
<reducer_string.h> 

Empty string, or 
arguments to constructor 
+=, append 

Provides a shorthand for a 
reducer_basic_string of type 
char. 

reducer_wstring 
<reducer_string.h> 

Empty string, or 
arguments to constructor 
+=, append 

Provides a shorthand for a 
reducer_basic_string of type 
wchar. 

 



60 

 

 
 

USING REDUCERS — ADDITIONAL EXAMPLES 

The following sections illustrate how to use a variety of reducers, including the String and List 
reducers included with the Intel® Cilk++ SDK. 

 
 

STRING REDUCER 

reducer_string builds 8-bit character strings, and the example uses += (string concatenation) 
as the update operation. 

This example demonstrates how reducers work with the runtime to preserve serial semantics. In 
a serial for loop, the reducer will concatenate each of the characters 'A' to 'Z', and then print out: 

The result string is: ABCDEFGHIJKLMNOPQRSTUVWXYZ 

The cilk_for loop will use a divide-and-conquer algorithm to break this into two halves, and 
then break each half into two halves, until it gets down to a "reasonable" size chunk of work. 
Therefore, the first worker might build the string "ABCDEF", the second might build "GHIJKLM", 
the third might build "NOPQRS", and the fourth might build "TUVWXYZ". The  runtime system 
will always call the reducer's reduce method so that the final result is a string containing the 
letters of the English alphabet in order. 

String concatenation is associative (but not commutative), the order of operations is not 
important. For instance, the following two expressions are equal: 
 "ABCDEF" concat ("GHIJKLM" concat ("NOPQRS" concat "TUVWXYZ")) 
 ("ABCDEF" concat "GHIJKLM") concat ("NOPQRS" concat "TUVWXYZ") 

The result is always the same, regardless of how cilk_for creates the work chunks. 

The call to get_value() performs the reduce operation and concatenates the substrings into a 
single output string. Why do we use get_value() to fetch the string? It makes you think about 
whether fetching the value at this time makes sense. You could fetch the value whenever you 
want, but, in general, you should not. The result might be an unexpected intermediate value, 
and, in any case, the intermediate value is meaningless. In this example, the result might be 
"GHIJKLMNOPQRS", the concatenation of "GHIJKLM" and "NOPQRS". 

While Cilk++ reducers provide serial semantics, the serial semantics are only guaranteed at the 
end of the parallel calculation, such as at the end of a cilk_for loop, after the runtime system 
has performed all the reduce operations. Never call get_value() within the cilk_for loop; 
the value is unpredictable and meaningless since results from other loop iterations are being 
combined (reduced) with the results in the calling iteration. 

Unlike the previous example, which adds integers, the reduce operation is not commutative. You 
could use similar code to append (or prepend) elements to a list using the reducer library's 
reducer_list_append, as is shown in the example in the next section. 

#include <reducer_string.h> 
 
int cilk_main() 
{ 



61 

 

 

    // ... 
 
    cilk::reducer_string result; 
    cilk_for (std::size_t i = 'A'; i < 'Z'+1; ++i) { 
        result += (char)i; 
    } 
     
    std::cout << "The result string is: " 
              << result.get_value() << std::endl; 
 
    return 0; 
} 

In this and other examples, each loop iteration only updates the reducer once; however, you 
could have several updates in each iteration. For example: 

cilk_for (std::size_t i = 'A'; i < 'Z'+1; ++i) { 
    result += (char)i; 
    result += tolower((char)i); 
} 

is valid and would produce the string: 
AaBb...Zz 

 

LIST REDUCER (WITH USER-DEFINED TYPE) 

reducer_list_append creates lists, using the STL list append method as the update 
operation. The identity is the empty list. The example here is almost identical to the previous 
string example. The reducer_list_append declaration does, however, require a type, as 
shown in the following code. 

#include <reducer_list.h> 
 
int cilk_main() 
{ 
    // ...  
 
    cilk::reducer_list_append<char>  result; 
    cilk_for (std::size_t i = 'A'; i < 'Z'+1; ++i) { 
        result.push_back((char)i);  
    } 
 
    std::cout << "String = ";  
    std::list<char> r; 
    r = result.get_value(); 
    for (std::list<char>::iterator i = r.begin();  
                                   i != r.end(); ++i) { 
        std::cout << *i; 
    } 
    std::cout << std::endl; 
} 



62 

 

 

Reducer with User-Defined Type 
Note that the type of the reducer_list_append in this example is char.  The following will 
generate a compile-time error indicating invalid override of non-Cilk function 
with Cilk function. 

 
typedef struct complex_type { 
    int x; 
    int y; 
} complex_type; 
 
cilk::reducer_list_append<complex_type> result;   // ERROR REPORTED 
HERE 

This error is reported because the constructor and destructor of complex_type, which are 
called by the runtime system to create and destroy views, are functions with Cilk++ linkage. To 
force those functions to have C++ linkage, declare the type in a C++ region as follows: 

extern "C++" { 
  typedef struct complex_type { 
      int x; 
      int y; 
  } complex_type; 
} 
 
cilk::reducer_list_append<complex_type> result; 

For more details, see Cilk++ and C++ Language Linkage (Page 45). 
 

REDUCERS IN RECURSIVE FUNCTIONS 

The previous reducer examples all performed the update operations within a cilk_for loop, 
but reducers work with arbitrary control flow, such as recursively spawned functions.  This 
example illustrates how a reducer can be used to create an in-order list of elements in a tree.  
Note that the final list will always contain the elements in the same order as in a serial execution, 
regardless of the number of cores or how the computation is scheduled. There is a similar 
example in the article: Global Variable Reconsidered (http

).  
://software.intel.com/en-

us/articles/Global-Variable-Reconsidered
#include <reducer_list.h> 
Node *target; 
 
cilk::reducer_list_append<Node *> output_list; 
... 
// Output the tree with an in-order walk 
void walk (Node *x) 
{ 
    if (NULL == x) 
        return; 
    cilk_spawn walk (x->left); 
    output_list.push_back (x->value); 

http://software.intel.com/en-us/articles/Global-Variable-Reconsidered�
http://software.intel.com/en-us/articles/Global-Variable-Reconsidered�


63 

 

 

    walk (x->right); 
} 

 

HOW TO DEVELOP A NEW REDUCER 

You can develop a custom reducer if none of the reducers provided in the Intel® Cilk++ SDK 
satisfy your requirements. 

Examples 
Any of the reducers in the Intel Cilk++ SDK can be used as models for developing new reducers, 
although these examples are all relatively complex. The implementations are in the 
reducer_*.h header files in the include directory of the installation. Two of the Cilk++ 
examples (Page 28) contain simpler custom reducers: 

 The "hanoi" example program contains a custom reducer that builds the list of moves used 
to solve the problem using recursive divide-and-conquer, rather than a cilk_for loop. 

 The "linear-recurrence" example has a custom reducer to allow a linear recurrence to 
be computed in parallel. 

Two additional examples are provided in the following sections. 

Components of a Reducer 
A reducer can be broken into 4 logical parts: 

 A "View" class – This is the private data for the reducer.  The constructor and destructors 
must be public so they can be called by the runtime system.  The constructor should initialize 
the View to the "identity value" for your reducer.  Identity values will be discussed more 
below. The View class may make the enclosing reducer class a friend so it can access 
private data members, or it can provide access methods. 

 A "Monoid" class.  A monoid is a mathematical concept that will be formally defined below.  
For now, just accept that your Monoid class must derive from 
 cilk::monoid_base<View>, and contain a public static member named reduce with 
the following signature: 
    static void reduce (View *left, View *right);  

 A hyperobject that provides per-strand views.  It should be a private member variable 
declared as follows: 
private: 
    cilk::reducer<Monoid> imp_; 

 The rest of the reducer, which provides routines to access and modify the data.  By 
convention there is a get_value() member which returns the value of the reducer. 

Note that the reducers in the reducer library use struct instead of class for the View and 
Monoid classes.  Recall that the only difference between struct and class in C++ is that the 
default access for a class is private, while the default access for a struct is public. 

The Identity Value 
The identity value is that value, which when combined with another value in either order (that is, 
a "two-sided identity") produces that second value. For example: 



64 

 

 

 0 is the identity value for addition:  
 x = 0 + x = x + 0 

 1 is the identity value for multiplication: 
 x = 1 * x = x * 1. 

 The empty string is the identity value for string concatenation: 
 "abc" = "" concat "abc" = "abc" concat "" 

The Monoid 
In mathematics, a monoid comprises a set of values (type), an associative operation on that set, 
and an identity value for that set and that operation.  So for example (integer, +, 0) is a monoid, 
as is (real, *, 1). 

In the Cilk++ language, a Monoid is defined by a type T along with five functions: 

reduce(T *left, T *right) evaluates *left = *left OP *right 

identity(T *p) constructs IDENTITY value into the 
uninitialized *p 

destroy(T *p) calls the destructor on the object pointed to by 
p 

allocate(size) returns a pointer to size bytes of raw memory 

deallocate(p) deallocates the raw memory at p 

These five functions must be either static or const.  A class that meets the requirements of 
Cilk++ Monoid is usually stateless, but will sometimes contain state used to initialize the identity 
object. 

The monoid_base class template is a useful base class for a large set of Monoid classes for 
which the identity value is a default-constructed value of type T, allocated using operator new.  A 
class derived from monoid_base need only declare and implement the reduce function. 

The reduce function merges the data from the "right" instance into the "left" instance.  After the 
runtime system calls the reduce function, it will destroy the right instance. 

For deterministic results, the reduce function must implement an associative operation, though 
it does not need to be commutative.  If implemented correctly, the reduce function will retain 
serial semantics.  That is, the result of running the application serially, or using a single worker, is 
the same as running the application with multiple workers.  The runtime system, together with 
the associativity of the reduce function ensures that the results will be the same, regardless of 
the number of workers or processors, or how the strands are scheduled. 

 



65 

 

 
 

WRITING REDUCERS — A "HOLDER" EXAMPLE 

This example shows how to write a reducer that is about as simple as possible—it has no update 
methods, and the reduce method does nothing.  A "Holder" is analogous the "Thread Local 
Storage", but without the pitfalls described in the OS Thread section. 

The rule that you should not call get_value() except when fully synched is intentionally 
violated here.  

Such a reducer has a practical use. Suppose there is a global temporary buffer used by each 
iteration of a for loop. This is safe in a serial program, but unsafe if the for loop is converted to 
a parallel cilk_for loop. Consider the following program that reverses an array of point 
elements, using a global temporary variable temp while swapping values. 

 
class point 
{ 
public: 
    point() : x_(0), y_(0), valid_(false) {}; 
 
    void set (int x, int y) { 
        x_ = x; 
        y_ = y; 
        valid_ = true; 
    } 
 
    void reset() { valid_ = false; } 
 
    bool is_valid() { return valid_; } 
    int x() { if (valid_) return x_; else return -1; } 
    int y() { if (valid_) return y_; else return -1; } 
 
private: 
    int x_; 
    int y_; 
    bool valid_; 
}; 
 
point temp;  // temp is used when swapping two elements 
 
int cilk_main(int argc, char **argv) 
{ 
    int  i; 
    point ary[100]; 
 
    for (i = 0; i < 100; ++i) 
        ary[i].set(i, i); 
 
    cilk_for (int j = 0; j < 100 / 2; ++j) 
    { 



66 

 

 

        // reverse the array by swapping 0 and 99, 1 and 98, etc. 
        temp.set(ary[j].x(), ary[j].y()); 
        ary[j].set (ary[100-j-1].x(), ary[100-j-1].y()); 
        ary[100-j-1].set (temp.x(), temp.y()); 
    } 
 
    // print the results 
    for (i = 0; i < 100; ++i) 
        printf ("%d: (%d, %d)\n", i, ary[i].x(), ary[i].y()); 
 
    return 0; 
} 

There is a race on the global variable temp, but the serial program will work properly. In this 
example, it would be simple and safe to declare temp inside the  cilk_for(). However, the 
"holder" pattern described below can be used to provide a form of storage that is local to Cilk++ 
strands. 

Our solution is to implement and use a "holder" reducer. 

First, put the declaration of the point class inside an extern "C++" { } region. The point 
class is used within the Monoid, so its default constructor and destructor methods must be public 
and must have C++ linkage, as described in the section discussing how to use a reducer with a 
user-defined type (Page 61). 

The point_holder class is our reducer. It uses the point class as the view. The Monoid class 
contains a reduce which does nothing, because we don't care which version we retain. The rest 
of the methods of point_holder allow us to access and update the reducer data. 

extern "C++" 
{ 
class point 
{ 
    // Define the point class here, exactly as above 
}; 
 

      // define the point_holder reducer 

class point_holder 
{ 
    struct Monoid: cilk::monoid_base<point> 
    { 
        // reduce function does nothing 
        static void reduce (point *left, point *right) {} 
    }; 
 
private: 
    cilk::reducer<Monoid> imp_; 
 
public: 
    point_holder() : imp_() {} 
 



67 

 

 

    void set(int x, int y) { 
        point &p = imp_.view(); 
        p.set(x, y); 
    } 
 
    bool is_valid() { return imp_.view().is_valid(); } 
 
    int x() { return imp_.view().x(); } 
 
    int y() { return imp_.view().y(); } 
};  // class point_holder 
 
};  // extern "C++" 

To use the point_holder reducer in the sample program, simply replace the declaration of 
temp 
 point temp;    // temp is used when swapping two elements 

with a declaration using the reducer type: 
 point_holder temp;  // temp is used when swapping two elements 

The rest of the original program remains unchanged. 

To summarize how the point_holder reducer works: 

 The default constructor will create a new instance whenever a new point_holder is 
created—that is, whenever temp is referenced after a steal. 

 The reduce method does nothing. Since we only use temp for temporary storage, there is 
no need to combine (reduce) the left and right instances. 

 The default destructor will invoke the destructor, freeing its memory. 
 Because the local view value produced in a loop iteration is not combined with values 

from other iterations, it is valid to call x() and y() to get the local values within the 
cilk_for.  

 Because the reduce() function for the holder does nothing, the default constructor does 
not need to provide a true identity value. 

 

WRITING REDUCERS — A SUM EXAMPLE 

This example shows a slightly more complex custom reducer that includes two update methods. 

Different reducers represent different data types and have different update and reducing/merging 
operations. For example, a list-append reducer would provide a push_back() operation, an 
empty list identity value, and a reduce function that performs list concatenation. An integer-max 
reducer would provide a max() operation, a type-specific identity as a constructor argument, 
and a reduce function that keeps the larger of the values being merged. 

A reducer can be instantiated on a user-defined class, such as the Sum class in the following 
example or the list reducer (Page 61) shown earlier. This implementation could be easily 
generalized to use a template. Sum is similar to reducer_opadd and is shown to illustrate how 
to write a custom reducer that supports multiple update operators. 



68 

 

 

extern "C++" { 
    class Sum 
    { 
    public: 
        // Required constructor, initialize to identity (0). 
        Sum() : d_value() { } 
        // Required reduce method 
        void reduce(Sum* other) { d_value += other->d_value; } 
 
        // Two update operations 
        Sum& operator+=(const int& v) { 
            d_value += v; return *this;  
        } 
        Sum& operator++() { 
            ++d_value; 
            return *this; 
        } 
 
        int get_value() const { return d_value; } 
 
    private: 
        int d_value; 
    }; 
} 

The example illustrates several reducer requirements and features: 

 The View class in this reducer is a simple int. The default constructor for an int 
initializes it to 0—the identity value for addition. 

 The reduce function in the monoid simply adds the value of the right instance to the left 
instance. 

 The operations provided are the += and ++ operators. 
 We could add variations such as -= and --, as long as a subsequence of operations 

starting from the identity can be merged (or "reduced") with another subsequence to 
produce a value consistent with the entire sequence. 

 The get_value() function returns the result of the entire sequence of operations. 
get_value() usage is a convention designed to make you think about when you're 
fetching the reducer's value. While the sum of a sequence of numbers is valid at any 
time, intermediate values may not be what's expected, nor will they typically be useful. 

 



69 

 

 

 This chapter describes: 

 How Cilk++ programs interact with operating system threads 
 How Cilk++ programs interact with Microsoft Foundation Classes (MFC) 
 How to build Linux* Shared Libraries containing Cilk++ code 
 How to build Windows* DLLs containing Cilk++ code 
 

USING OTHER TOOLS WITH CILK++ PROGRAMS 

Because Cilk++ programs have a stack layout and calling conventions that are different from the 
standard C++ conventions, tools that understand the binary program executable (including 
memory checkers such as valgrind, code coverage tools and the like) may not work with the 
parallel Cilk++ binaries. You can use such programs on the serialization (Page 25) of the Cilk++ 
program. 
 

GENERAL INTERACTION WITH OS THREADS 

The runtime system allocates a set of OS threads using native OS facilities. 

 Cilk++ programs do not really always use 100% of all available processors 
When running a Cilk++ program, you may observe that the Cilk++ program appears to consume 
all the resources of all the processors in the system, even when there is no parallel work to 
perform. This effect is apparent with programs such as the Windows* Task Manager 
"Performance" tab; all CPUs may appear to be busy, even if only one strand is executing. 

In fact, the runtime scheduler does yield the CPUs to other programs. If there are no other 
programs requesting the processor, then the Cilk++ worker will be immediately run again to look 
for work to steal, and this is what makes the CPUs appear to be busy. Thus, the CIlk++ program 
appears to consume all the processors all the time, but there is no adverse effect on the system 
or other programs. 

Use caution when using native threading interfaces 
Cilk++ strands are not operating-system threads. A Cilk++ strand will never migrate between 
workers while running. However, the worker may change after a cilk_spawn, cilk_sync, or 
cilk_for statement since all these statements terminate one or more strands and create one 
or more new strands. Furthermore, the programmer does not have any control over which worker 
will run a specific strand. 

This can impact a program in several ways, most importantly: 

 Do not use Windows thread local storage or Linux* Pthreads thread specific data, because 
the OS thread may change when work is stolen. Instead, use other programming techniques, 
such as the Cilk++ holder reducer described earlier. 

Chapter 9 
Operating System Specific Considerations 



70 

 

 

 Do not use operating system locks or mutexes across cilk_spawn, cilk_sync, or 
cilk_for statements, because only the locking thread can unlock the object. See the 
"Holding a Lock Across a Strand Boundary (Page 94)" section. 

 

MICROSOFT FOUNDATION CLASSES AND CILK++ PROGRAMS 

This section is for Windows* programmers only. 

The Microsoft Foundation Classes (MFC) library depends upon thread local storage to map from 
its class wrappers to the GDI handles for objects. Because a Cilk++ strand is not guaranteed to 
run on any specific OS thread, Cilk++ code, or code called from a Cilk++ function or method, 
cannot safely call MFC functions.  

There are two methods typically used to perform a computationally-intensive task in an MFC-
based application:  

 The user interface (UI) thread creates a computation thread to run the computationally-
intensive task. The compute thread posts messages to the UI thread to update it, leaving the 
UI thread free to respond to UI requests.  

 The computationally-intensive code is run on the UI thread, updating the UI directly and 
occasionally running a "message pump" to handle other UI requests. 

Since the runtime system can switch operating system threads, Cilk++ code must be isolated 
from code such as MFC that depends on Thread Local Storage. 

To add a computation thread to an MFC program:  

 Create a computation thread using operating-system facilities (i.e., _beginthreadex or 
AfxBeginThread). All the C++ code that is to be converted to Cilk++ should run in this 
thread. The computation thread leaves the main (UI) thread available to run the message 
pump for processing window messages and updating the UI. 

 Pass the handle (HWND) for the UI windows to the computation thread. When the computation 
thread needs to update the UI, it shuld send a message to the UI thread by calling 
PostMessage. PostMessage marshals and queues the message into the message queue 
associated with the thread that created the window handle. Do NOT use SendMessage, as 
SendMessage is run on the currently executing thread, which is not the correct (UI) thread. 

 Test the C++ program to assure that the logic and thread management are correct. 
 Declare a cilk::context and call the context's run() function (Cilk++ runtime 

functions (Page 75)) from within this computation thread, creating the initial Cilk++ strand. 
 Before terminating, the main (UI) thread should wait for the computation thread to complete, 

using WaitForSingleObject(). 

The QuickDemo example illustrates a Cilk++ application using MFC. 

Additional cautions: 

 When the main UI thread creates the computation thread, it should not wait for the thread to 
complete. The function that creates the computation thread should return to allow the 
message pump to run.  

 Be sure that none of the data passed to the computation thread is allocated on the stack. If it 
is, it will quickly be invalidated as the worker creation function returns, releasing the data.  



71 

 

 

 A data block passed to the computation thread should be freed by the computation thread 
when it is done, just before it sends a completion message to the UI. 

 Use the PostMessage function instead of CWnd::PostMessage, as a primary reason for 
creating a computation thread is to avoid the MFC thread-local variables in Cilk++ code. 

 

SHARED CILK++ LIBRARIES IN LINUX* OS 

Create a shared library containing Cilk++ code in the same way as when creating a shared 
library containing C++ code, using the -shared compiler option.  

Use the cilk++ command to create the library. If you use a different command, use the linker 
option "-z now"; this option is automatically provided by the cilk++ command. The -z now 
linker option disables lazy binding of functions. Setting the environment variable LD_BIND_NOW 
before running the program has the same effect. Lazy binding does not function in Cilk++ 
programs. 

Examples: 
cilk++ -shared -o libcilkstuff.so cilk1.o cilk2.o 
g++ -shared -Wl,-z,now -shared -o libcilkstuff.so cilk1.o cilk2.o 

You must link a small part of the runtime library into the main executable. The cilk++ command 
will perform this step automatically. Otherwise, use the options:  

-Wl,-z,now -lcilkrts_main -lcilkrts 

when creating a program that calls Cilk++ code in a shared library.  

Examples:  
cilk++ -o program main.o -lcilk_library 
g++ -o program -Wl,-z,now -lcilk_library \ 
    -lcilkrts_main -lcilkrts 

 

CONVERTING WINDOWS* DLLS TO CILK++ 

The Getting Started (Page 8) section showed how to convert an existing C++ application to 
Cilk++. It's often necessary to convert a Windows dynamic link library (DLL) to Cilk++ without 
modifying the calling ("client") code in any way. 

In particular, the programmer who uses a Cilk++ DLL should not need to change an existing C++ 
client application to get the performance gains from a converted library. The DLL might be 
provided by a third party, and the client application developer or user may not even know that the 
DLL is written in the Cilk++ language. 

This section uses an example based on the previous qsort example to illustrate the conversion 
steps. The Microsoft Visual Studio* solution example, qsort-dll, contains three projects: 

 qsort-client — the common C++ code to invoke the DLLs 
 qsort-cpp-dll — the C++ quicksort implementation in a DLL 
 qsort-cilk-dll — the Cilk++ quicksort implementation in a DLL 

qsort-client is linked against both DLLs and will call one or the other based on the command 
line option (-cpp or -cilk). The Cilk++ DLL will be faster on a multicore system. Note that: 



72 

 

 

 qsort-client is written in C++ and is totally unaware of the fact that it calls a library 
written in Cilk++ 

 qsort-client does not use cilk_main(), and, therefore, you cannot use the –
cilk_set_worker_count option. 

Use the Cilk++ Compiler 
Using the conversion process described in Getting Started (Page 8) as a guide, first convert the 
C++ code to use the Cilk++ compiler: 

 Open the qsort-cpp-dll solution. 
 Select and expand the qsort-cpp-dll project. 
 Right click on the qsort-cpp-dll.cpp source file and select Convert to Cilk++. 

Modify the C++ Source Code 

Modify qsort-dll-cpp.cpp to create a Cilk++ context, and convert the sample_qsort call 
into a call that can be used by cilk::context::run. Here is a complete listing from the 
qsort-dll-cilk project, followed by an explanation of the changes. 

 19  /* 
 20   * An DLL quicksort implementation in Cilk++. 
 21   */ 
     . . . 
 29  #include <windows.h> 
 30 
 31  #include <cilk.h> 
 32  #include "qsort.h" 
 33 
 34  static cilk::context ctx; 
 35 
 36  BOOL WINAPI DllMain( HMODULE hModule, 
 37                         DWORD  ul_reason_for_call, 
 38                         LPVOID lpReserved) 
 39  { 
 40      switch (ul_reason_for_call) { 
 41          case DLL_PROCESS_ATTACH: 
 42              ctx.set_worker_count(0);  // Default count 
 43              break; 
 44 
 45          case DLL_PROCESS_DETACH: 
 46              break; 
 47 
 48          case DLL_THREAD_ATTACH: 
 49              break; 
 50 
 51          case DLL_THREAD_DETACH: 
 52              break; 
 53 
 54          default: 
 55              break; 



73 

 

 

 56      } 
 57 
 58      return true; 
 59  } 
     . . . 
 66  static void cilk_qsort(int * begin, int * end) { 
         . . . 
 77  } 
 78 
 79  // The cilk::context::run signature is different from 
 80  // the cilk_qsort signature, so convert the arguments 
 81  static int cilk_qsort_wrapper (void * args) 
 82  { 
 83      int *begin, *end; 
 84      int **argi = (int **)args; 
 85 
 86      begin = argi[0]; 
 87      end   = argi[1]; 
 88 
 89      cilk_qsort (begin, end); 
 90 
 91      return 0; 
 92  } 
 93 
 94  extern "C++" void QSORT_DLL sample_cilk_qsort  
                  (int * begin, int * end) 
 95  { 
 96      int * args[2] = {begin, end}; 
 97 
 98      int retval =  
             ctx.run (cilk_qsort_wrapper, (void *)args); 
 99      return; 
100  } 
    

The code changes are: 

 Include the Cilk++ header file: See Line 31. 
 Create a global Cilk++ context variable (Line 34). This will construct the Cilk++ context when 

the DLL is loaded. We use cilk::context::run, rather than cilk::run, so that it is not 
necessary to create a context for every sample_qsort() call. 

 Add a DllMain function: See Lines 36-59. 
 When the client process starts and first attaches to the DLL, set the number of workers, 

which, in this case, is the number of cores. Notice that there is no way to get the number 
of workers from the command line, as in the qsort example. 

 No action is necessary, in this limited example, when threads attach and detach. 
 Rename the qsort function: See Line 81. This function has Cilk++ linkage, and it should 

have a different name from the sample_qsort function called by the client application (see 
Line 83). 



74 

 

 

 Modify the sample_qsort function: See Lines 94-100. 
 Specify C++ linkage since this is within a Cilk++ module (Line 94). 
 Copy the function arguments into a pointer array in order to conform to the 

cilk::context::run signature. 
 Call cilk::context::run, specifying a wrapper function, cilk_sort_wrapper with 

the correct signature that will convert the arguments to the form required by cilk_qsort 
(Line 66). 

 Write cilk_sort_wrapper; see Lines 68-81. Convert the parameters to the form that 
cilk_qsort requires. 

Note: Detecting Races in DLLs 

The global Cilk++ context variable, ctx (Line 34) is constructed statically when qsort-client 
loads. Consequently, cilkscreen is not able to analyze the Cilk++ code in 
cilk_qsort_wrapper(), as cilkscreen starts after qsort-client and is not aware of 
ctx. There are no race conditions in this particular example, but, if there were, cilkscreen 
would not be able to detect them. The solution would be to call cilk_qsort_wrapper() from 
a cilk_main() test harness and run cilkscreen on that test harness before releasing the 
DLL for use by C++ programs. 

Modify the DLL Header File 
Change the header file, qsort.h, which is included by both the client and the DLL project, to 
give sample_qsort C++ linkage using extern "C++". This has no impact on the client 
project but is required in the DLL project. 

 1  #ifndef _QSORT_H 
 2  #define _QSORT_H 
 3  #ifdef _WINDLL 
 4  #define QSORT_DLL __declspec(dllexport) 
 5  #else 
 6  #define QSORT_DLL __declspec(dllimport) 
 7  #endif 
 8 
 9  extern "C++"  
10      void QSORT_DLL sample_qsort(int * begin, int * end); 
11  #endif 

 



75 

 

 

Cilk++ programs require the runtime system and libraries, which this chapter describes in four 
parts: 

 cilk::context and its functions. 
 cilk::run, which runs functions with Cilk++ linkage 
 cilk::mutex and related objects 
 The Miser memory manager 

Include cilk.h to declare the Cilk++ runtime functions and classes. All runtime functions and 
classes, other than the Miser memory manager, are in the cilk namespace. 
 

CILK::CONTEXT 

A cilk::context is an object used to run Cilk++ functions from C++ code. C++ code cannot 
call Cilk++ functions directly because the languages use incompatible calling conventions. 

cilk::context provides the following interface: 

 int run(void *fn, void *args) runs a function, fn, with the specified arguments. fn 
must have Cilk++ linkage. 

 unsigned set_worker_count(unsigned n) specifies the number of workers and 
returns the previous number of workers. By default, the Intel Cilk++ runtime system will 
create a worker for every physical core on the system. Processors with Hyper-Threaded 
technology are counted as a single processor. 
 Passing 0 resets the number of workers to the default. 
 set_worker_count() should not be called while Cilk++ code is running. 

 unsigned get_worker_count() returns the number of workers. 
 A constructor with no arguments. 

The following two lines show how construct a context, start the runtime system, and execute a 
Cilk++ function from a C++ function: 

cilk::context ctx; 
ctx.run(cilk_function, (void *)&n); 

The second parameter, (void *)&n, is an array of pointers to cilk_function() arguments. 

The next section describes an alternative, the cilk::run() function, which does not require an 
explicit context and which takes an argument list. 

In some cases, you will not need a context because your program does not need to call into the 
runtime system directly. cilk_main() is the standard Cilk++ program entry point, and it creates 
the context and initializes the runtime system. However, there are situations where it is 
appropriate to call Cilk++ code from C++ code, and the runtime is required. Examples include: 

Chapter 10 
Runtime System and Libraries 



76 

 

 

 qsort-dll (a Windows* example program), where a shared library (DLL) creates a context 
for each program that calls the library. 

 In large programs when mixing C++ and Cilk++ (Page 81). 
 You must use C++ for the main program before executing Cilk++ code, as described in "MFC 

with Cilk++ for Windows OS (Page 70)" 

Getting the Worker Id 

The runtime system provides one additional function that is not part of cilk::context but is 
convenient to describe here. 

int current_worker_id() returns the worker ID for the worker currently executing the 
calling Cilk++ strand. A worker ID is a small integer. Each worker within a cilk::context has 
a unique worker ID. Note that this function is provided purely for informational purposes. No 
other runtime  API accepts a worker ID. In general, Cilk++ code should not care which worker a 
strand is running on. 
 

CILK::CURRENT_WORKER_COUNT 

When running a cilk_main() program, there is no way to access the context that 
cilk_main() creates. Consequently, you cannot get or set the worker count or invoke run(). 
Since cilk_main() calls run() to execute the Cilk++ code, there is no need to call run() 
again. Also, the worker count cannot be set once Cilk++ code is running. 

However, it may be useful to know the worker count, so the following function is in the cilk 
namespace. 

unsigned cilk::current_worker_count() 

Operation is as follows: 

 If called from a Cilk++ worker, it will return the number of workers. 
 If called outside of a Cilk++ worker, it will return 0. 
 If called in serialized code, it will return 1. 

Notice that the function name and behavior are different from the similar function: 
cilk::context::get_worker_count() 

 

CILK::RUN 

cilk::run() runs Cilk++ functions and is an alternative to using context::run (in the cilk 
namespace). This function is easy to use as it lists the arguments directly, rather than 
assembling them in an array. Furthermore, there is no need to declare an explicit context. 

The function must have Cilk++ linkage, such as: 

extern "Cilk++" rettype function(argtype1, argtype2, argtype3, 
... ); 

Note that: 



77 

 

 

 There can be up to 15 arguments. 
 The return type, rettype, can be void. 

Run function with cilk::run() as follows: 

returnval = cilk::run(&function, arg1, arg2, arg3, ...); 

The requirements are: 

 The argument types must match so that arg1 is compatible with argtype1, etc. 
 returnval must be assignable (or constructable) from retype.  
 If retype is void, no assignment would be possible; just call cilk::run(). 
 To specify the number of workers, call set_worker_count() before calling 

cilk::run(). 

For an example of cilk::run(), see matrix-transpose. 
 

CILK::MUTEX AND RELATED FUNCTIONS 

cilk::mutex objects provide the same functionality for Cilk++ strands as native OS locks 
(such as Windows* CRITICAL_SECTION and Pthreads pthread_mutex_t objects) provide for 
threads; they ensure that only one Cilk++ strand can lock the cilk::mutex at any time. 

Mutexes are used primarily to remove data races (Page 123). The section on Locks (Page 92) 
describes potential problems with mutexes, such as deadlocks (Page 123) and determinacy 
races that are not data races. 

Mutexes are not ordered. If multiple strands are waiting on a mutex and it becomes available, 
there is no way to predict which strand will be granted the mutex. 

cilk::mutex is defined in cilk_mutex.h and provides the following three interface functions: 

 void lock() waits until the mutex is available and then enters. Only one strand may enter 
the mutex at any time. There is no limit on how long the strand will wait to acquire the mutex. 

 void unlock() releases the mutex for other strands to enter. It is an error to unlock a 
mutex that the strand has not locked. 

 bool try_lock() returns false if the mutex is not available. If the mutex is available, the 
mutex is locked and the method returns true. 

There are two additional objects related to mutexes: 

 cilk::fake_mutex (defined in fake_mutex.h) is the equivalent of cilk::mutex, only it 
doesn't actually lock anything. Its sole purpose is to tell cilkscreen that it should consider 
some sequence of code protected by a "lock". The Race Condition (Page 125) chapter 
gives more information.  



78 

 

 

 cilk::lock_guard (defined in lock_guard.h) is an object that must be allocated on the 
stack. It calls the lock method on the cilk::mutex passed to its constructor, and it will call 
the unlock method on that mutex in its destructor. The destructor will be invoked 
automatically when the object goes out of scope. cilk::lock_guard is a template class. 
The template parameter is the type of mutex, which must have "lock" and "unlock" 
methods and default constructors/destructors. Specifically, you can use both cilk::mutex 
and cilk::fake_mutex , as well as any other class that has the required methods. 

Note: A cilk::mutex is an example of a "lock", which is a more general term. The "Locks and 
Their Implementation (Page 92)" section describes other locking mechanisms. 
 

MISER MEMORY MANAGER 

Some memory managers perform poorly when used by parallel applications, including Cilk++ 
programs. Therefore, the Intel® Cilk++ SDK provides an additional memory manager, "Miser", as 
a drop-in replacement for the system-provided C/C++ memory management functions (new, 
delete, malloc, calloc, realloc, and free). 

Miser is transparent to the programmer; once it is enabled, C/C++ runtime memory management 
function calls are automatically forwarded to the Miser implementation. 

Miser is NOT in the cilk namespace. 

The following sections describe memory management limitations and the Miser solution. For in-
depth discussion, see these articles: 

 Multicore Storage Allocation (http
) . 

://software.intel.com/en-us/articles/Multicore-Storage-
Allocation

 Miser – A Dynamically Loadable Memory Allocator for Multithreaded Applications 
(http

) . This article includes a graph showing Miser's performance 
advantages using a solution to the N-Queens problem; without Miser, performance is best 
with just two cores. Using Miser, performance improves nearly linearly with the core count. 

://software.intel.com/en-us/articles/Miser-A-Dynamically-Loadable-Memory-Allocator-for-
Multi-Threaded-Applications

 

MEMORY MANAGEMENT LIMITATIONS 

Some C/C++ runtime memory management functions, while thread safe, are optimized for 
performance and memory usage in a single threaded environment. The three principal 
limitations, two of which are caused by concurrency, are: 

 Lock contention between strands (and worker threads) for access to the runtime memory 
management, which is globally locked. Lock contention can greatly reduce concurrency and 
performance. 

 "False sharing (Page 123)" is the situation where workers on different cores have memory 
allocated on the same cache line, which also reduces performance. 

 Fragmentation caused by allocating and deallocating small memory blocks. This is a general 
problem not directly related to concurrency. 

http://software.intel.com/en-us/articles/Multicore-Storage-Allocation�
http://software.intel.com/en-us/articles/Multicore-Storage-Allocation�
http://software.intel.com/en-us/articles/Miser-A-Dynamically-Loadable-Memory-Allocator-for-Multi-Threaded-Applications�
http://software.intel.com/en-us/articles/Miser-A-Dynamically-Loadable-Memory-Allocator-for-Multi-Threaded-Applications�


79 

 

 
 

MISER MEMORY MANAGEMENT 

Miser avoids these problems by combining several techniques: 

 Miser avoids lock contention and false sharing by creating a distinct memory pool for each 
strand. 

 Miser avoids fragmentation by rounding up allocation unit sizes to the nearest power of two 
for memory request sizes less than or equal to 256. This simplification improves 
performance, but does reduce memory allocation efficiency. 

 Miser forwards allocation requests of size greater than 256 to the operating system allocator. 
 

MISER INITIALIZATION 

For Windows* programmers only: 

Enable Miser at runtime by loading the Miser DLL using the Windows LoadLibrary function, 
as follows: 

#include <windows.h> 
    . . . 
HMODULE mdll = LoadLibrary ("Miser.dll"); 
if (NULL == mdll) { 
    // Report and handle fatal error 
} 

Miser will handle all subsequent C/C++ runtime memory allocation calls in this program. There is 
no affect on other programs, including other Cilk++ programs. 

Any operations on memory allocated before Miser was enabled, such as free() or _msize(), 
will be forwarded to the C/C++ runtime. 

For Linux* programmers only: 

Miser is enabled at link time, not run time. To link with Miser, just use "-lmiser" on the 
command line. You can use Miser with C and C++ as well as Cilk++ programs. 

Examples: 
cilk++ -o myprog myprog.cilk -lmiser 
gcc -o myprog myprog.c -lmiser 

Alternatively, set the environment variable when executing the program (such as a.out) as 
follows, illustrated for 64-bit installation of the Intel® Cilk++ SDK to the default install location: 

$ LD_PRELOAD=/usr/local/cilk/lib64/libmiser.so ./a.out 
 

MISER LIMITATIONS 

On all platforms: 

 Once enabled, Miser cannot be disabled and will handle all memory management requests 
from C, C++ or CIlk++ code until the program terminates. 



80 

 

 

 Each Cilk++ program (process) enables Miser independently, and enabling Miser in one 
Cilk++ program does not affect memory management in another program. 

On Windows* platforms only: 

 You cannot use the Windows FreeLibrary() function to free the Miser.dll module. 
 The project must use the "Multithreaded DLL" compiler option: /MD or /MDd. Miser cannot 

intercept calls to the static C/C++ runtime library. The Runtime Library setting can be found 
on the Code Generation page of the C/C++ compiler property pages in Microsoft Visual 
Studio*. 

 Miser only affects the operation of the C RunTime Library memory management functions. It 
does not change the behavior of the system heap management functions, such as Windows 
HeapCreate, HeapAlloc, and VirtualAlloc. 

 



81 

 

 

A common problem is to add parallelism to a large C++ program without converting the entire 
program to the Cilk++ language. One approach is to convert entire classes to the Cilk++ 
language. There is a problem, however, since C++ code cannot call members of a Cilk++ class. 
Furthermore, C++ code cannot include any header file that declares Cilk++ functions without 
certain adjustments. 

In some cases, the best strategy might be to start up the Cilk++ environment fairly close to the 
leaves of the call tree, using C++ wrappers to allow the Cilk++ functions to be callable from C++ 
(one of four approaches in the next section). The amount of work performed by each parallel 
function may be sufficient to offset the overhead of starting the runtime system each time 
through. The qsort-dll example, uses this approach. 

The next sections describe techniques that allow C++ to call Cilk++ code. 

In many cases, this is not necessary, and there is a fourth approach where Cilk++ code calls 
C++. Just convert the key loop or recursive function to the Cilk++ language. Then, call freely 
from Cilk++ code to C++ code, as long as the C++ code does not try to call back into Cilk++ 
code. 
 

MIXING C++ AND CILK++: THREE APPROACHES 

There are four general approaches to adding Cilk++ code to a project:  

 Convert the entire project to the Cilk++ language 
 Convert only the call tree leaves where the Cilk++ keywords are used, requiring that C++ 

functions call Cilk++ functions 
 Some combination of these two approaches  
 Structure the project so that Cilk++ code calls C++ code, but not conversely 

Approach #1 may be too big a commitment for large projects, at least initially. The fourth 
approach may not be possible. Approach #2 can suffer from significant overhead of starting and 
stopping the Cilk++ environment on entry to each parallel function (although we are working to 
reduce that overhead in future releases). Approach #3 is a reasonable balance, but it is practical 
only when converting a module with a small number of public entry points. 

For Windows* examples using the second method (convert the call tree leaves), see "MFC with 
Cilk++ for Windows OS (Page 70)" (also, the QuickDemo example) and "Converting 
Windows DLLs to Cilk++ (Page 71)" (also, the qsort-dll example). 

Approaches 2 and 3 both involve creating wrapper functions callable from C++ that start the 
Cilk++ environment and call a Cilk++ function using the cilk::context::run (Page 75) (or 
cilk::run (Page 76)) entry point. In the following code, the arguments (three in this case) are 
bundled into a single structure for use by the run() call. 

Note that this code is C++, and the source files do not need to have the .cilk extension. 

Chapter 11 
Mixing C++ and Cilk++ Code 



82 

 

 

int myCilkEntrypoint (argType1 arg1, argType2 arg2, 
                                     argType3 arg3) 
{ 
    // Do parallel work 
} 
 
typedef struct 
{ 
    argType1 arg1; 
    argType2 arg2; 
    argType3 arg3; 
} argBundle; 
 
int myCilkEntrypointWrapper (void *args) 
{ 
    // Unbundle the parameters and do the work 
    argBundle *data = (argBundle)args; 
    return myCilkEntrypoint (data->arg1, data->arg2, 
                                         data->arg3); 
} 
 
extern "C++" 
int myCppEntrypoint (argType1 arg1, argType2 arg2, 
                                    argType3 arg3) 
{ 
    // Bundle parameters to call the Cilk++ entrypoint 
    argBundle data = { arg1, arg2, arg2 }; 
 
    // Create Cilk++ context; call Cilk++ entrypoint, 
    // passing it the argument bundle 
    cilk::context ctx; 
    ctx.run (myCilkEntrypointWrapper, (void *)&data); 
} 

If the function in question is a class member, then myCppEntryPoint and 
myCilkEntryPointWrapper will need to pack and unpack the this pointer as well as the 
arguments. All the code in the calling chain from the cilk::context::run call down to any 
function that uses cilk_spawn, cilk_sync, or cilk_for must have Cilk++ linkage. However, 
the Cilk++ functions can call back into C++ at the leaves of the call tree. Reduce the run() 
calling overhead by reusing the cilk::context object (e.g., by making it static). 
 

HEADER FILE LAYOUT 

Cilk++ functions, along with the extern "Cilk++" and __cilk keywords, should not be seen 
by the C++ compiler. It is necessary, therefore, to #ifdef some parts of the header file in order 
to share the header between files written in the Cilk++ language and those in C++. Use the 
__cilkplusplus predefined macro for this purpose. For example, given a class with a few 
parallel functions, the original class: 



83 

 

 

class MyClass 
{ 
public: 
    MyClass(); 
    int doSomethingSmall(ArgType); 
    double doSomethingBig(ArgType1, ArgType2); 
}; 

would be transformed into the something like the following if we wish to parallelize the 
doSomethingBig function: 

extern "C++" { 
 
class MyClass 
{ 
#ifdef __cilkplusplus 
private: 
    // Parallel implementation of doSomethingBig 
    double __cilk parallel_doSomethingBig(ArgType1, ArgType2); 
    static double __cilk  
            parallel_doSomethingBig_wrapper(void* args); 
    void __cilk parallel_helper(ArgType2); 
#endif 
public: 
    MyClass(); 
    int doSomethingSmall(ArgType); 
    double doSomethingBig(ArgType1, ArgType2); 
}; 
 
} 

The doSomethingBig member function becomes a C++ wrapper around the function's parallel 
version, as described above. Note that the call to cilk::context::run requires a static (or 
global) function, hence the parallel_doSomethingBig_wrapper function to unpack the 
pointer. There is more information about these functions in the upcoming "Source File Layout 
(Page 84)" section. 
 

NESTED #INCLUDE STATEMENTS 

Note that in the above example, we have kept most of the interface as C++ and added a small 
Cilk++ interface. In order to accomplish this, we needed to wrap essentially the entire header file 
in extern "C++". This might cause problems when compiling certain headers (e.g., some 
Windows* ATL headers) using the C++ compiler. A function that is declared extern "C", for 
example, could normally be defined without repeating the extern "C" specification. If the 
definition is wrapped in extern "C++", however, the undecorated definition becomes illegal. 
The problem is limited to the native C++ compiler, not to the Cilk++ compiler. 



84 

 

 

Therefore, when compiling a header from within a C++ source file, it is desirable to remove the 
extern "C++" directives, which are at best redundant and at worse harmful. cilk.h provides 
a set of macros that evaluate to an extern "C++" region within a Cilk++ compilation and 
evaluate to nothing in a C++ compilation. 

Use the following macros only for bracketing the #include of C++ header files, not as a general 
replacement for extern "C++". Do not, for example, use the macros to start a C++ region 
within a C region, since they will be compiled out in a non-Cilk++ compilation. 

#ifdef __cilkplusplus 
# define CILK_BEGIN_CPLUSPLUS_HEADERS   extern "C++" { 
# define CILK_END_CPLUSPLUS_HEADERS     } 
#else 
# define CILK_BEGIN_CPLUSPLUS_HEADERS 
# define CILK_END_CPLUSPLUS_HEADERS 
#endif 

Use this as follows: 
#include <cilk.h> 
 
CILK_BEGIN_CPLUSPLUS_HEADERS 
#include "MyHeaderFile.h" 
CILK_END_CPLUSPLUS_HEADERS 

These macros are part of cilk.h. See the earlier "Calling C++ Functions from Cilk++ (Page 
46)" section for more about language linkage and these macros. 
 

SOURCE FILE LAYOUT 

For either Approach #2 or Approach #3, the original source file may contain a mixture of 
functions, some of which are to be converted to the Cilk++ language and others not. There are 
two ways to handle this: 

 Create a separate .cilk file for the Cilk++ code.  
 Convert the entire .cpp to .cilk, then wrap the C++ sections in extern "C++", as shown 

below, using the macros defined in the previous section. 
 

double MyClass::parallel_doSomethingBig(ArgType1, ArgType2) 
{ 
    ... 
    cilk_spawn parallel_helper(arg2); 
    ... 
} 
double MyClass::parallel_doSomethingBig_wrapper(void* arg) 
{ 
    ArgStruct* args = (ArgStruct*) args 
    MyClass* self = args->self; 
    ArgType1 arg1 = args->arg1; 
    ArgType2 arg2 = args->arg2; 
 



85 

 

 

    return self->parallel_doSomethingBig(arg1, arg2); 
} 
void MyClass::parallel_helper(ArgType2) {...} 
 
extern "C++"  
{ 
MyClass::MyClass() {...} 
int MyClass::doSomethingSmall(ArgType) {...} 
 
double MyClass::doSomethingBig(ArgType1 arg1, ArgType2 arg2) 
{ 
    ArgStruct args = { this, arg1, arg2 }; 
    cilk::context ctx; 
    ctx.run(parallel_doSomethingBig, &args); 
} 
 
}  // extern "C++" 

 

Since extern "C++" and extern "Cilk++" can nest, so you can also write: 

 
extern "C++" 
{ 
// Other C++ code here 
 
extern "Cilk++" { 
    double MyClass::parallel_doSomethingBig(ArgType1, 
                                            ArgType2) {...} 
    double MyClass::parallel_doSomethingBig_wrapper(void* arg) 
           {...} 
    void MyClass::parallel_helper(ArgType2) {...} 
} // end extern "Cilk++" 
 
MyClass::MyClass() {...} 
 
int MyClass::doSomethingSmall(ArgType) {...} 
 
double MyClass::doSomethingBig(ArgType1, ArgType2) {...} 
 
}  // extern "C++" 

 

SERIALIZING MIXED C++/CILK++ PROGRAMS 

A Cilk++ program often contains C++ modules. Those modules may need to use a few features 
from the Intel® Cilk++ SDK, such as reducers, without being completely converted into Cilk++. 
Conversion to Cilk++ means that the calling function must also be Cilk++, and so on up the call 
stack, which is inconvenient in many situations. For example, you may want to use reducers from 
within a C++ module without converting the entire module to Cilk++. 



86 

 

 

Supporting this usage model means that cilk.h cannot assume that, just because the compiler 
is a C++ compiler and not a Cilk++ compiler, that there is no Cilk++ runtime or that the user 
wants stubs for library facilities such as reducers. On the other hand, a true serialization of a 
Cilk++ program does require stubbing out the library facilities. 

Resolve this issue by separating the concerns into two cases: 

 A file that is used only when building the serialized program. That is, the compilation is for 
debugging or for use where the Cilk++ environment is not available. 

 A C++ file that is part of a Cilk++ program is being compiled. 

Cilk++ provides two header files to address these two cases:  

 cilk_stub.h contains stubs for cilk_spawn, cilk_sync, and other language keywords. 
It will not contain definitions for interfaces to libraries provided with the Intel Cilk++ SDK. It 
also defines a macro, CILK_STUB.  

 cilk.h contains the core Cilk++ library API. If CILK_STUB is defined, then inline stubs are 
provided for library interfaces where they make sense. Some features in cilk.h may be 
unavailable in a C++ compilation.  

It should be rare that a source file would include cilk_stub.h directly. The cilkpp 
(Windows* OS) and cilk++ (Linux* OS) wrappers will force inclusion of cilk_stub.h if 
serialization mode is turned on via the Windows compiler "/cilkp cpp" option and the "-
fcilk-stub" Linux compiler option. Users who do not have a Cilk++ compiler available will be 
advised to force the inclusion of cilk_stub.h for any file that uses a Cilk++ language or library 
feature, whether that file be a .cilk or a .cpp file. Force inclusion with the Windows "/FI" and 
Linux "-include" options. 

 



87 

 

 

Races are a major cause of bugs in parallel programs. In this chapter, we describe what a race 
is, and programming techniques for avoiding or correcting race conditions. In the following 
chapter, we will describe how to use the cilkscreen race detector to find data races in your Cilk++ 
program. 

For a more theoretical treatment, see What Are Race Conditions? Some Issues and 
Formalizations (http ), by Robert Netzer and 
Barton Miller. Note that the paper uses the term general race where we would say determinacy 
race. A data race is a special case of determinacy race. 

://portal.acm.org/citation.cfm?id=130616.130623

 

DATA RACES 

A data race occurs when two parallel strands, holding no locks in common, access the same 
memory location and at least one strand performs a write. The program result depends on which 
strand "wins the race" and accesses the memory first. 

For example, consider the following very simple program:  
int a = 2;    // declare a variable that is 
              // visible to more than one worker 
 
void Strand1() 
{ 
    a = 1; 
} 
 
int Strand2() 
{ 
    return a; 
} 
 
void Strand3() 
{ 
    a = 2; 
} 
 
int cilk_main() 
{ 
    int result; 
 
    cilk_spawn Strand1(); 
    result = cilk_spawn Strand2(); 
    cilk_spawn Strand3(); 
    cilk_sync; 

Chapter 12 
Race Conditions 

http://portal.acm.org/citation.cfm?id=130616.130623�


88 

 

 

    std::cout << "a = " << a << ", result = "  
              << result << std:endl; 
} 

Because Strand1(), Strand2() and Strand3() may run in parallel, the final value of a and 
result can vary depending on the order in which they run.  

Strand1() may write the value of "a" before or after Strand2() reads "a", so there is a 
read/write race between Strand1() and Strand2(). 

Strand3() may write the value of "a" before or after Strand1() writes "a", so there is a 
write/write race between Strand3() and Strand1(). 

 
 

DETERMINACY RACES 

A determinacy race occurs when two parallel strands access the same memory location and at 
least one strand performs a write. The program result depends on which strand "wins the race" 
and accesses the memory first. 

Observe that a data race is a special case of a determinacy race. 

If the parallel accesses are protected by locks, then by our definition, there is no data race.  
However, a program using locks may not produce deterministic results. A lock can ensure 
consistency by protecting a data structure from being visible in an intermediate state during an 
update, but does not guarantee deterministic results. More details are provided when we discuss 
locks and races. 
 

BENIGN RACES 

Some data races are benign. In other words, although there is a race, you can prove that the 
race does not affect the output of the program. 

Here is a simple example: 
bool bFlag = false; 
cilk_for (int i=0; i<N; ++i) 
{ 
    if (some_condition()) bFlag = true; 
} 
if (bFlag) do_something(); 

This program has a write/write race on the bFlag variable. However, all of the writes are writing 
the same value (true) and the value is not read until after the cilk_sync that is implicit at the 
end of the cilk_for loop. 

In this example, the data race is benign. No matter what order the loop iterations execute, the 
program will produce the same result. 



89 

 

 
 

RESOLVING DATA RACES 

There are several ways to resolve a race condition: 

 Fix a bug in your program 
 Use local variables instead of global variables 
 Restructure your code 
 Change your algorithm 
 Use reducers 
 Use a Lock 

Here is a brief description of each of these techniques: 

Fix a bug in your program 
The race condition in qsort-race is a bug in the program logic. The race is caused because 
the recursive sort calls use an overlapping region, and thus reference the same memory location 
in parallel. The solution is to fix the application. 

Use local variables instead of global variables 
Consider the following program: 

#include <cilk.h> 
#include <iostream> 
 
const int IMAX=5; 
const int JMAX=5; 
int a[IMAX * JMAX]; 
 
int cilk_main() 
{ 
    int idx; 
 
    cilk_for (int i=0; i<IMAX; ++i) 
    { 
        for (int j=0; j<JMAX; ++j) 
        { 
            idx = i*JMAX + j;          // This is a race. 
            a[idx] = i+j; 
        } 
    } 
 
    for (int i=0; i<IMAX*JMAX; ++i) 
        std::cout << i << " " << a[i] << std::endl; 
    return 0; 
} 

This program has a race on the idx variable, because it is accessed in parallel in the cilk_for 
loop. Because idx is only used inside the lop, it is simple to resolve the race by making idx 
local within the loop: 



90 

 

 

int cilk_main() 
{ 
//  int idx;                           // Remove global 
    cilk_for (int i=0; i<IMAX; ++i) 
    { 
        for (int j=0; j<JMAX; ++j) 
        { 
            int idx = i*JMAX + j;      // Declare idx locally 
            a[idx] = i+j; 
        } 
    } 
} 

Restructure your code 
In some cases, you can eliminate the race by a simple rewrite.  Here is another way to resolve 
the race in the previous program: 

int cilk_main() 
{ 
//  int idx;                           // Remove global 
    cilk_for (int i=0; i<IMAX; ++i) 
    { 
        for (int j=0; j<JMAX; ++j) 
        { 
//          idx = i*JMAX + j;          // Don't use idx 
            a[i*JMAX + j] = i+j;       // Instead,  
                                       // calculate as needed 
        } 
    } 
} 

Change your algorithm 
One of the best solutions, though not always easy or even possible, is to find an algorithm that 
partitions your problem such that the parallelism is restricted to calculations that cannot race. A 
detailed description of this approach is described in a solution to N-body interactions 
http . ://software.intel.com/en-us/articles/A-cute-technique-for-avoiding-certain-race-conditions

Use reducers 
Reducers are designed to be race-free objects that can be safely used in parallel. See the 
chapter on Reducers (Page 52) for more information.  

Use locks 
Locks can be used to resolve data race conditions, albeit with the drawbacks described in the 
chapter on Locks (Page 92). There are several kinds of locks, including: 

 cilk::mutex objects 
 System locks on Window*s or Linux* systems 
 Atomic instructions that are effectively short-lived locks that protect a read-modify-write 

sequence of instructions 

http://software.intel.com/en-us/articles/A-cute-technique-for-avoiding-certain-race-conditions�


91 

 

 

The following simple program has a race on sum, because the statement sum=sum+i both reads 
and writes sum: 

int cilk_main() 
{ 
    int sum = 0; 
    cilk_for (int i=0; i<10; ++i) 
    { 
        sum = sum + i;                  // THERE IS A RACE ON SUM 
    } 
} 

Using a lock to resolve the race: 
#include <cilk_mutex.h> 
 
int cilk_main() 
{ 
        cilk::mutex mut; 
        int sum = 0; 
        cilk_for (int i=0; i<10; ++i) 
        { 
                mut.lock(); 
                sum = sum + i;          // PROTECTED WITH LOCK 
                mut.unlock(); 
        } 
        std::cout << "Sum is " << sum << std::endl; 
 
        return 0; 
} 

Note that this is for illustration only. A reducer is typically a better way to solve this kind of race. 
 



92 

 

 

There are many synchronization mechanisms that may be implemented in the hardware or 
operating system.  

The race detector, described in detail in the next chapter, recognizes the following locking 
mechanisms; it does not recognize any others. 

 The Intel® Cilk++ SDK provides the cilk::mutex to create critical code sections where it is 
safe to update and access shared memory or other shared resources safely. cilkscreen 
recognizes the lock and will not report a race on a memory access protected by the 
cilk::mutex. The qsort-mutex example shows how to use a cilk::mutex. 

 Windows* OS: Windows CRITICAL_SECTION objects provide nearly the same 
functionality as cilk::mutex objects. cilkscreen will not report races on accesses 
protected by EnterCriticalSection(), TryEnterCriticalSection(), or 
LeaveCriticalSection(). 

 Linux* OS: Posix* Pthreads mutexes (pthead_mutex_t) provide nearly the same 
functionality as cilk::mutex objects. cilkscreen will not report races on accesses 
protected by pthread_mutex_lock(), pthread_mutex_trylock(), or 
pthread_mutex_unlock(). 

 cilkscreen recognizes atomic hardware instructions, available to C++ programmers 
through compiler intrinsics. 

There are other operating system-specific mutexes, but these methods are nearly always slower 
than a cilk::mutex. Furthermore, cilkscreen will not recognize the other mutexes and 
could report a data race that does not exist. 

Several basic lock terms and facts are useful: 

 We speak interchangeably of "acquiring", "entering", or "locking" a lock (or "mutex"). 
 A strand (or thread) that acquires a lock is said to "own" the lock. 
 Only the owning strand can "release", "leave", or "unlock" the lock. 
 Only one strand can own a lock at a time. 
 cilk::mutex is implemented using Windows CRITICAL_SECTION or Linux 

pthread_mutex_t objects. 

Lock contention can create performance problems in parallel programs. Furthermore, while locks 
can resolve data races, programs using locks are often non-deterministic. We recommend 
avoiding locks whenever possible. 

These problems (and others) are described in detail in the following sections. 

 

Chapter 13 
Locks 



93 

 

 
 

LOCKS CAUSE DETERMINACY RACES 

Even though you properly use a lock to protect a resource (such as a simple variable or a list or 
other data structure), the actual order that two strands modify the resource is not deterministic. 
For example, suppose the following code fragment is part of a function that is spawned, so that 
several strands may be executing the code in parallel. 

. . . 
// Update is a function that modifies a global variable, gv. 
sm.lock(); 
Update(gv); 
sm.unlock(); 
. . . 

Multiple strands will race to acquire the lock, sm, so the order in which gv is updated will vary 
from one program execution to the next, even with identical program input. This is the source of 
non-determinism, but it is not a data race by the definition: 

A data race is a race condition that occurs when two parallel strands, holding no locks in 
common, access the same memory location and at least one strand performs a write. 

This non-determinacy may not cause a different final result if the update is a commutative 
operation (Page 122), such as integer addition. However, many common operations, such as 
appending an element to the end of a list, are not commutative, and so the result varies based 
on the order in which the lock is acquired. 
 

DEADLOCKS 

A deadlock can occur when using two or more locks and different strands acquire the locks in 
different orders. It is possible for two or more strands to become deadlocked when each strand 
acquires a mutex that the other strand attempts to acquire.  

Here is a simple example, with two strand fragments, where we want to move a list element from 
one list to another in such a way that the element is always in exactly one of the two lists. L1 and 
L2 are the two lists, and sm1 and sm2 are two cilk::mutex objects, protecting L1 and L2, 
respectively. 

// Code Fragment A. Move the beginning of L1 to the end of L2. 
sm1.lock(); 
sm2.lock(); 
L2.push_back(*L1.begin); 
L1.pop_front(); 
sm2.unlock(); 
sm1.unlock(); 
    ... 
    ... 
// Code Fragment B. Move the beginning of L2 to the end of L1. 
sm2.lock(); 
sm1.lock(); 
L1.push_back(*L2.begin); 
L2.pop_front(); 



94 

 

 

sm2.unlock(); 
sm1.unlock(); 

The deadlock would occur if one strand, executing Fragment A, were to lock sm1 and, in another 
strand, Fragment B were to lock sm2 before Fragment A locks sm2. Neither strand could 
proceed.  

The common solution for this example is to acquire the locks in exactly the same order in both 
fragments; for example, switch the first two lines in Fragment B. A common practice is to release 
the locks in the opposite order, but doing so is not necessary to avoid deadlocks. 

There are extensive references (http ) about deadlocks and 
techniques to avoid them. 

://en.wikipedia.org/wiki/Deadlock

 

LOCKS CONTENTION REDUCES PARALLELISM 

Parallel strands will not be able to run in parallel if they concurrently attempt to access a shared 
lock. In some programs, locks can eliminate virtually all of the performance benefit of parallelism. 
In extreme cases, such programs can even run significantly slower than the corresponding 
single-processor serial program. Consider using a reducer if possible. 

Nonetheless, if you must use locks, here are some guidelines.  

 Hold a synchronization object (lock) for as short a time as possible (but no shorter!). Acquire 
the lock, update the data, and release the lock. Do not perform extraneous operations while 
holding the lock. If the application must hold a synchronization object for a long time, then 
reconsider whether it is a good candidate for parallelization. This guideline also helps to 
assure that the acquiring strand always releases the lock. 

 Always release a lock at the same scope level as it was acquired. Separating the acquisition 
and release of a synchronization object obfuscates the duration that the object is being held, 
and can lead to failure to release a synchronization object and deadlocks. This guideline also 
assures that the acquiring strand also releases the lock.  

 Never hold a lock across a cilk_spawn or cilk_sync boundary. This includes across a 
cilk_for loop. See the following section for more explanation. 

 Avoid deadlocks by assuring that a lock sequence is always acquired in the same order. 
Releasing the locks in the opposite order is not necessary but can improve performance. 

 

HOLDING A LOCK ACROSS A STRAND BOUNDARY 

The best and easiest practice is to avoid holding a lock across strand boundaries. Sibling strands 
can use the same lock, but there are potential problems if a parent shares a lock with a child 
strand. The issues are:  

 The cilkscreen race detector assumes that everything protected by a synchronization object 
is protected from racing. So spawning a child function while holding a lock prevents the race 
detector from considering whether there are races between the two strands.  

 There is no guarantee that a strand created after a cilk_spawn or cilk_sync boundary 
will continue to execute on the same OS thread as the parent strand. Most locking 
synchronization objects, such as a Windows* CRITICAL_SECTION, must be released on the 
same thread that allocated them.  

http://en.wikipedia.org/wiki/Deadlock�


95 

 

 

 cilk_sync exposes the application to Cilk++ runtime synchronization objects. These can 
interact with the application in unexpected ways. Consider the following code: 
 
int child (cilk::mutex &m, int &a) 
{ 
    m.lock(); 
    a++; 
    m.unlock(); 
} 
 
int parent(int a, int b, int c) 
{ 
    cilk::mutex m; 
    try 
    { 
        cilk_spawn child (&m, a); 
        m.lock(); 
        throw a; 
    } 
    catch (...) 
    { 
        m.unlock(); 
    } 
} 

There is an implied cilk_sync at the end of a try block which contains a cilk_spawn. In the 
event of an exception, execution cannot continue until all children have completed. If the parent 
acquires the lock before a child, the application is deadlocked since the catch block cannot be 
executed until all children have completed, and the child cannot complete until it acquires the 
lock. Using a "guard" object won't help, because the guard object's destructor won't run until the 
catch block is exited.  

To make the situation worse, invisible try blocks are everywhere. Any compound statement that 
declares local variables with non-trivial destructors has an implicit try block around it. Thus, by 
the time the program spawns or acquires a lock, it is probably already in a try block.  

The rule, then, is: if a function holds a lock that could be acquired by a child, the function should 
not do anything that might throw an exception before it releases the lock. However, since most 
functions cannot guarantee that they won't throw an exception, follow these rules:  

 Do not acquire a lock that might be acquired by a child strand. That is, lock against your 
siblings, but not against your children. 

 If you need to lock against a child, put the code that acquires the lock, performs the work, 
and releases the lock into a separate function and call it rather than putting the code in the 
same function as the spawn. 

 If a parent strand needs to acquire a lock, set the values of one or more primitive types, 
perhaps within a data structure, then release the lock. This is always safe, provided there are 
no try blocks, function calls that may throw (including overloaded operators), spawns or 
syncs involved while holding the lock. Be sure to pre-compute the primitive values before 
acquiring the lock.  

 



96 

 

 

The cilkscreen race detector monitors the actual operation of a Cilk++ program as run with some 
test input. cilkscreen reports all data races (Page 123) encountered during execution.  By 
monitoring program execution, cilkscreen can detect races in your production binary, and 
can even detect races produced by third-party libraries for which you may not have source code. 

In order to ensure a reliable parallel program, you should review and resolve all races that 
cilkscreen reports. You can instruct cilkscreen to ignore benign races. 

cilkscreen runs your program on a single worker and monitors all memory reads and writes. 
When the program terminates, cilkscreen outputs information about read/write and 
write/write conflicts. A race is reported if any possible schedule of the program could produce 
results different from the serial program execution. 

To identify races, run cilkscreen on a Cilk++ program using appropriate test input data sets, 
much as you would do to run regression tests. Test cases should be selected so that you have 
complete code coverage and, ideally, complete path coverage. cilkscreen can only analyze 
code that is executed, and races may only occur under certain data and execution path 
combinations. 

Please note that cilkscreen only detects and reports races that result from parallelism 
created by Cilk++ keywords.  cilkscreen will NOT report races that result from conflicts 
between threads created using other parallel libraries or created explicitly using system calls. 

cilkscreen recognizes and correctly manages many special cases, including: 

 Cilk++ keywords 
 Calls into the Cilk++ runtime 
 Reducers 
 cilk::mutex locks and some operating system locks 
 Miser memory allocation 
 Operating system memory management calls (malloc and others) 
 Program calls to control cilkscreen  

Because cilkscreen understands the parallel structure of your program (that is, which strands 
can run in parallel and which always run in series), the algorithm is provably correct.  For more 
information, see "Additional Resources and Information (Page 7)"). 

In this chapter, we will explain how to use cilkscreen, explain how to interpret the output, 
document calls that your program can make to control cilkscreen, and discuss the 
performance overhead that cilkscreen incurs. 
 

USING CILKSCREEN 

Run cilkscreen from the command line: 

Chapter 14 
Cilkscreen Race Detector 



97 

 

 

cilkscreen [cilkscreen options] [--] your_program [program options] 

Within Visual Studio*, select Run Cilkscreen Race Detector from the Tools menu.  
cilkscreen runs the program using the command arguments specified in the debugging 
property of the project. Remember that the cilkscreen menu items are not available in Visual 
C++ 2008 Express Edition. 

You can run production or debug versions of your program under cilkscreen. Debug builds 
typically contain more symbolic information, while release (optimized) builds may include 
optimizations that make it hard to relate races back to your source code. However, binary code 
differences may lead to races that are seen only in one version or the other. We recommend 
testing with debug builds during development, and verifying that production builds are correct 
before distributing your Cilk++ program.  

To ensure high reliability, we recommend that you run cilkscreen with a variety of input data 
sets, as different input data may expose different code paths in your program. Because the 
resolution of one race may expose or create a previously unreported race, you should run 
cilkscreen after any program changes until you achieve race-free operation. For 
performance reasons, you may choose to use smaller data sets than you might use for other 
regression testing. For example, we test our qsort examples for races using a small array of 
elements, but run performance tests with large arrays. 

Two of the examples include intentional data races. You can build these examples and run them 
under cilkscreen to see the race reports. 

 qsort-race, one of the Quicksort Examples. The race exists because two spawned 
recursive function calls use overlapping data ranges.  

 Using Reducers — a Simple Example (Page 53), in which multiple strands, running in 
parallel, update a single shared variable. A cilk_for statement creates the strands. The 
example is then modified to use a reducer, eliminating the data race. 

Command Line Options 

cilkscreen recognizes the following command line options. These options are not available 
when running cilkscreen from within Visual Studio. 

You can optionally use "--" to separate the name of the program from the cilkscreen options. 

Unless specified otherwise, output goes to the stderr (by default, the console). 

-r reportfile 

Write output in ASCII  format to reportfile. 
Windows GUI applications do not have stderr, so output will be lost unless you use the -r 
option. 

-x xmlfile 

Write cilkscreen output in XML format to xmfile. The -x option overrides the -r option; 
you cannot use both.  

-a 



98 

 

 

Report all race conditions. The same condition may be reported multiple times. Normally, a 
race condition will only be reported once.  

-d 

Output verbose debugging information, including detailed trace information such as DLL 
loading. Unless the -l option is specified, the debug output will be written to stderr. 

-l logfile 

Write ASCII trace information to logfile. This file is created only if the -d option is 
specified. 

-p [n] 

Pause n seconds (default is one second) before starting the cilkscreen process. 
-s 

Display the command passed to PIN. PIN is the dynamic instrumentation package that 
cilkscreen uses to monitor instructions. 

-h, -? 

Display cilkscreen usage and exit. 

-v 

Display version information and exit. 
-w 

Run the Cilkscreen Parallel Performance Analyzer (Page 105). 

 
 

UNDERSTANDING CILKSCREEN OUTPUT 

Consider the following program sum.cilk: 
01    #include <cilk.h> 
02    #include <iostream> 
03 
04    int sum = 0; 
05 
06    void f(int arg) 
07    { 
08        sum += arg; 
09    } 
10 
11    int cilk_main() 
12    { 
13        cilk_spawn f(1); 
14        cilk_spawn f(2); 
15         
16        cilk_sync; 
17        std::cout << "Sum is " << sum << std::endl; 



99 

 

 

18        return 0; 
19    } 

Build the program with debugging information and run cilkscreen  

 for Windows* OS: 
cilkpp /Zi sum.cilk 
cilkscreen sum.exe 

 for Linux* OS: 
cilk++ -g sum.cilk 
cilkscreen sum 

On Windows, cilkscreen generates output similar to this: 
Race condition on location 004367C8 
  write access at 004268D8: (c:\sum.cilk:8, sum.exe!f+0x1a) 
  read access at 004268CF: (c:\sum.cilk:8, sum.exe!f+0x11) 
    called by 004269B4: (c:\sum.cilk:14, sum.exe!cilk_main+0xd0) 
    called by 0042ABED: (c:\program files\microsoft visual studio 
8\vc\include\ostream:786, sum.exe!__cilk_main0+0x3d) 
    called by 100081D5: (cilk_1_1-
x86.dll!__cilkrts_ltq_overflow+0x137) 
Variable: 004367C8 - int sum 
 
Race condition on location 004367C8 
  write access at 004268D8: (c:\sum.cilk:8, sum.exe!f+0x1a) 
  write access at 004268D8: (c:\sum.cilk:8, sum.exe!f+0x1a) 
    called by 004269B4: (c:\sum.cilk:14, sum.exe!cilk_main+0xd0) 
    called by 0042ABED: (c:\program files\microsoft visual studio 
8\vc\include\ostream:786, sum.exe!__cilk_main0+0x3d) 
    called by 100081D5: (cilk_1_1-
x86.dll!__cilkrts_ltq_overflow+0x137) 
Variable: 004367C8 - int sum 
Sum is 3 
2 errors found by Cilkscreen 
Cilkscreen suppressed 1 duplicate error messages 

Here is what the output means: 

There is a race condition detected at memory location 004367C8. 
Race condition on location 004367C8 

The first access that participated in the race was a write access from location 004268D8 in the program. This corresponds to source line 8 in 
sum.cilk, from the instruction at offset 0x1a in the function f() loaded from the executable binary file sum.exe. From the program listing, we see 
that the source code at line 8 is  

sum += arg; 
 
  write access at 004268D8: (c:\sum.cilk:8, sum.exe!f+0x1a) 



100 

 

 

The second access was a read from location 004268CF in the program. This also corresponds to source line 8 in sum.cilk, but from the instruction 
at offset 0x11 in f(). The write access occurs when storing the new value back to sum. The read access occurs when the value of sum is read from 
memory in order to add the value of arg to it. 

  read access at 004268CF: (c:\sum.cilk:8, sum.exe!f+0x11) 

cilkscreen displays a stack trace for the second memory reference involved in the race. It would be very expensive in both space and time to store 
the stack trace for every memory reference. It is much cheaper to record the stack trace only when a race is detected.  Here we see that the caller was 
at line 14 in sum.cilk, called from offset 0xd0 in the file cilk_main. We can see in the source code that line 14 is the cilk_spawn: 

cilk_spawn f(2); 
 
    called by 004269B4: (c:\sum.cilk:14, sum.exe!cilk_main+0xd0) 

The next two lines in the stack trace show that cilk_main() was called from an initializer in ostream, which in turn was called from an address in 
the Cilk++ runtime system that was loaded from cilk_1_1-x86 dll. 

 
    called by 0042ABED: (c:\program files\microsoft visual studio 8\vc\include\ostream:786, 
sum.exe!__cilk_main0+0x3d) 
    called by 100081D5: (cilk_1_1-x86.dll!__cilkrts_ltq_overflow+0x137) 

The last line in the block shows us the name of the variable involved in the race. This information is not always available. 
Variable: 004367C8 - int sum 

The next block of output displays the write/write race that was detected on the same memory location. This race occurs between the two attempts to 
update sum that occur in parallel. The output is very similar to the race we just described: 

Race condition on location 004367C8 
  write access at 004268D8: (c:\sum.cilk:8, sum.exe!f+0x1a) 
  write access at 004268D8: (c:\sum.cilk:8, sum.exe!f+0x1a) 
    called by 004269B4: (c:\sum.cilk:14, sum.exe!cilk_main+0xd0) 
    called by 0042ABED: (c:\program files\microsoft visual studio 8\vc\include\ostream:786, 
sum.exe!__cilk_main0+0x3d) 
    called by 100081D5: (cilk_1_1-x86.dll!__cilkrts_ltq_overflow+0x137) 
Variable: 004367C8 - int sum 

Next we see the output produced by the program itself: 
Sum is 3 

cilkscreen summarizes the results. There were two distinct races reported. A third race was a duplicate of one of the reported races, and so the 
output was suppressed. 

 
2 errors found by Cilkscreen 
Cilkscreen suppressed 1 duplicate error messages 
 

 



101 

 

 
 

CONTROLLING CILKSCREEN FROM A CILK++ PROGRAM 

For the advanced user, cilkscreen provides a set of pseudo-calls that you can issue from 
your program. We describe these as pseudo-calls because they have the appearance of function 
calls in the source, but the Cilk++ compiler removes the calls and uses metadata to implement 
the requested operation. This mechanism allows you to customize cilkscreen from within 
your program without measurable cost when you do not run your program under cilkscreen. 
These pseudo-functions are all declared in cilk.h or fake_mutex.h. 

Disable/Enable Instrumentation 
cilkscreen begins instrumenting your program when you enter the Cilk++ context, either 
through a call to cilk::run, or implicitly before cilk_main() is called.  This instrumentation 
is expensive, and there are some cases when it could make sense to disable all instrumentation 
while running part of your program. Enabling instrumentation is very expensive, so these calls 
should only be used to speed up your program under cilkscreen when you have very large 
serial sections of code. For example, it might make sense to disable instrumentation if you have 
a very expensive, serial C++ initialization routine that is called within cilk_main() before any 
parallel constructs are invoked. 

void __cilkscreen_disable_instrumentation( void ); 
void __cilkscreen_enable_instrumentation( void ); 

For example: 
int cilk_main() 
{ 
    __cilkscreen_disable_instrumentation(); 
    very_expensive_initialization(); 
    __cilkscreen_enable_instrumentation(); 
     
    parallel_program(); 
 
    return 0; 
} 
 

Fake Locks 
If you are confident that a race in your program is benign, you can suppress the cilkscreen 
race report by using a fake lock. 

Remember that a data race, by definition, only occurs when conflicting accesses to memory are 
not protected by the same lock. Use a fake lock to pretend to hold and release a lock. This will 
inhibit race reports with very low run-time cost, as no lock is actually acquired. 

cilk::fake_mutex fake; 
fake.lock(); 
fake.unlock(); 



102 

 

 

Do not forget to call unlock() in all paths through your code! Alternately, you can use a 
cilk::lock_guard object, which will automatically release the lock from within the destructor 
that is called when the object goes out of scope. 

For example, cilkscreen will not report a race in this program: 
bool isUpdated = false; 
cilk::fake_mutex fakeUpdateLock; 
 
void f(int arg) 
{ 
    fakeUpdateLock.lock(); 
    isUpdated = true; 
    fakeUpdateLock.unlock(); 
} 
 
int cilk_main() 
{ 
    cilk_spawn f(1); 
    cilk_spawn f(2); 
    cilk_sync; 
 
    return 0; 
} 

Disable/Enable Checking 
You can turn off race checking without disabling instrumentation. This mechanism is not as safe 
as a fake lock, but may be useful in limited circumstances. Enabling and disabling checking is 
much cheaper than enabling instrumentation. However, disabling instrumentation allows your 
program to run at full speed.  With checking disabled, cilkscreen continues to instrument 
your program with all of the corresponding overhead.  While checking is disabled, cilkscreen 
will not record any memory accesses. 

void __cilkscreen_disable_checking( void ); 
void __cilkscreen_enable_checking( void ); 

For example, cilkscreen will not report a race in this program, even though there is in fact a 
race: 

int sum = 0; 
 
void f(int arg) 
{ 
    sum += arg; 
} 
 
int cilk_main() 
{ 
    __cilkscreen_disable_checking(); 
    cilk_spawn f(1); 
    cilk_spawn f(2); 
    __cilkscreen_enable_checking(); 



103 

 

 

    cilk_sync; 
 
    std::cout << "Sum is " << sum << std::endl; 
    return 0; 
} 

Note that enabling and disabling checking is managed with a single counter that starts at 0, is 
decremented when checking is disabled, and incremented when checking is enabled. Therefore, 
these calls may be nested; checking is only re-enabled when the counter returns to 0. Do not 
enable checking if it is not disabled.  This is a fatal runtime error and will abort our program. 

Cleaning Memory 
cilkscreen needs to recognize when memory is allocated and freed. Otherwise, 
cilkscreen would report a race if you allocate a memory block, access it, free it, and then 
allocate another block of memory at the same address.  The early accesses would appear to 
race with the later accesses to the same addresses, even though the memory is logically fresh. 

cilkscreen recognizes memory allocation routines provided by standard system libraries, 
operating system calls, and Miser. If you have routines in your program that act like memory 
allocators (for example, look-aside lists, sub-allocators, or memory pools) then you can inform 
cilkscreen when memory should be considered "clean" and thus any previous accesses to 
that memory should be forgotten. 

void __cilkscreen_clean(void *begin, void *end); 

Typically, your memory allocator will call __cilkscreen_clean just before returning a pointer to 
freshly allocated memory. For example: 

void * myAllocator(size_t bytesRequested) 
{ 
    // find memory from our local pool 
    void *ptr = getPooledMemory(bytesRequested); 
    if (ptr != NULL) { 
        __cilkscreen_clean(ptr, (char *)ptr + bytesRequested); 
    } 
    return ptr; 
} 

 
 

CILKSCREEN PERFORMANCE 

You will notice that cilkscreen requires significantly more time and memory compared to a 
regular, unmonitored run of the program. 

In order to keep track of all memory references, cilkscreen uses approximately 5 times as 
much memory as the program normally need (6x for 64-bit programs.) Thus, a 32-bit program 
that uses 100 megabytes of memory will require a total of about 600 megabytes when run under 
cilkscreen . 

In addition, when you run your program under cilkscreen , it will slow down by a factor of 
about 20-40x or more. There are several factors that lead to the slowdown: 



104 

 

 

 cilkscreen monitors all memory reads and writes at the machine instruction level, adding 
significant time to the execution of each instruction. 

 Programs that use many locks require more processing. 
 Programs with many races will run more slowly. 
 cilkscreen runs the program on a single worker, so there is no multicore speedup. 
 cilkscreen forces the cilk_for grainsize to 1 in order to ensure that all races between 

iterations are detected. 
 cilkscreen runs the program is if a steal occurs at every spawn. This will cause an 

identity view to be created whenever a reducer is first accessed after a spawn, and will cause 
the reduction operation to be called at every sync. 

We've said that cilkscreen recognizes various aspects of your program such as memory 
allocation calls, program calls to cilkscreen , and the Cilk++ keywords.  You may wonder 
whether the performance of your production program is slowed down in order to support this. In 
fact, cilkscreen uses a metadata mechanism that records information about the program 
using symbolic information stored in the executable image, but not normally loaded into memory. 
Thus, cilkscreen calls add virtually no overhead when your program is not run under 
cilkscreen . 

 



105 

 

 

The cilkview scalability and performance analyzer is designed to help you understand the 
parallel performance of your Cilk++ program. cilkview can: 

 Report parallel statistics about a Cilk++ program 
 Predict how the performance of a Cilk++ program will scale on multiple processors 
 Automatically benchmark a Cilk++ program on one or more processors 
 Present performance and scalability data graphically  

Similar to cilkscreen, cilkview monitors a binary Cilk++ application. However, cilkview 
does not monitor and record all memory accesses, and so incurs much less run time. 

In this chapter, we will illustrate how to use cilkview with a sample Cilk++ program, document 
how to control what data is collected and displayed using both API and command line options, 
and explain how to interpret the output.  
 

CILKVIEW ASSUMPTIONS 

Like cilkscreen, cilkview monitors your program as it runs on a single worker. In order to 
estimate performance on multiple cores, cilkview makes some assumptions: 

 If no explicit grain size is set, cilkview analyzes cilk_for loops with a granularity of 1. 
This may lead to misleading results. You can use the cilk_grainsize pragma to force 
cilkview to analyze the program using a larger grainsize. 

 Because the program runs on a single worker, reducer operations such as creating and 
destroying views and the reduction operation are never called. If cilkview does not 
indicate problems but your program uses reducers and runs slowly on multiple workers, 
review the section on Reducer performance considerations. 

 cilkview analyzes a single run of your Cilk++ program with a specific input data set. 
Performance will generally vary with different input data. 

 
 

RUNNING CILKVIEW 

Run cilkview from the command line: 

>cilkview [options] program [program options] 

The resulting report looks something like this: 
Cilkscreen Scalability Analyzer V1.1.0, Build 8223 
1) Parallelism Profile 
   Work :                                  53,924,334 instructions 
   Span :                                  16,592,885 instructions 

Chapter 15 
Cilkview Scalability Analyzer 



106 

 

 

   Burdened span :                         16,751,417 instructions 
   Parallelism :                           3.25 
   Burdened parallelism :                  3.22 
   Number of spawns/syncs:                 100,000 
   Average instructions / strand :         179 
   Strands along span :                    83 
   Average instructions / strand on span : 199,914 
   Total number of atomic instructions :   18 
 
2) Speedup Estimate 
   2 processors:         1.31 - 2.00 
   4 processors:         1.55 - 3.25 
   8 processors:         1.70 - 3.25 
   16 processors:        1.79 - 3.25 
   32 processors:        1.84 - 3.25 

The exact number will vary depending on the program input, which compiler is used, and the 
compiler options selected. 

The next section describes what the various numbers mean. 

Windows* OS: You can also run cilkview from within Visual Studio* (not available with 
Visual C++ 2008 Express Edition): 

 Open and build the Cilk++ project. 
 Select Tools -> Run Cilkview Scalability Analyzer to run the program under cilkview 

with the command arguments specified in the project debugging properties. 

cilkview results appear in a Visual Studio window after the program exits and displays a 
graph that summarizes the parallelism and predicted speedup: 

 



107 

 

 

View a copy of the detailed text report by right clicking on the graph and selecting "Show Run 
Details" from the context menu. 

cilkview writes output into a .csv file. Select Tools -> Open Cilkview Log to view the graph 
from a previously created .csv log file. 

Note: The actual numbers will be different on Linux* and Windows systems because of compiler 
differences. Also, the results will vary if the data is shuffled differently, changing the amount of 
work required by the quick sort algorithm. 
 

WHAT THE PROFILE NUMBERS MEAN 

The cilkview report is broken into two sections, the Parallelism Profile and the Speedup 
Estimate. 

Parallelism Profile 
The Parallelism Profile displays the statistics collected during a single run of the program.  In 
order to get a complete picture of the parallel operation of the program, cilkview runs the 
program on a single worker while tracking all spawns. If the program specifies a grain size for a 
cilk_for loop, the analysis is run using that grain size.  For cilk_for loops that use the 
default grain size, the grain size for the analysis is set to 1.  

In this section, we will use the term overhead to mean the overhead associated with parallelism: 
scheduling, stealing and synchronization. 

Note that because the program is run on a single worker, new reducer views are never created 
or merged. Thus, the instruction counts do not include the cost of creating new views, calling the 
reduction function, and destroying the views.  

The following statistics are shown: 

Work The total number of instructions that were executed. Because the program is 
run on a single worker, no parallel overhead is included in the work count. 

Span  The number of instructions executed on the critical path. 

Burdened Span The number of instructions on the critical path when overhead is included. 

Parallelism The Work divided by the Span. This is the maximum speedup you would 
expect if you could run the program on an infinite number of processors with 
no overhead. 

Burdened 
Parallelism 

The Work divided by the Burdened Span. 

Number of 
spawns 

The number of spawns counted during the run of the program. 



108 

 

 

Average 
instructions / 
strand  

The Work divided by the number of strands. A small number may indicate that 
the overhead of using cilk_spawn is high. 

Strands along 
span 

The number of strands in the critical path. 

Average 
instructions / 
strand on span 

The Span divided by the Strands along span. A small number may indicate 
that the scheduling overhead will be high. 

Total number of 
atomic 
instructions 

This correlates with the number of times you acquire and release locks, or use 
atomic instructions directly. 

Speedup Estimate 
cilkview estimates the expected speedup on 2, 4, 8, 16 and 32 processor cores. The 
speedup estimates are displayed as ranges with lower and upper bounds.  

 The upper bound is the smaller of the program parallelism and the number of workers.  
 The lower bound accounts for estimated overhead. The total overhead depends on a number 

of factors, including the parallel structure of the program and the number of workers.  A lower 
bound less than 1 indicates that the program may slow down instead of speed up when run 
on more than one processor. 

 
 

ACTING ON THE PROFILE RESULTS 

The numbers help you understand the parallel behavior of your program. Here are some things 
to look for: 

Work and Span 
These are the basic attributes of a parallel program. In a program without any parallel constructs, 
the work and span will be the same. Even an infinite number of workers will never execute the 
program more quickly than a single worker executing the span. If the two numbers are close 
together, there is very little computation that can be done in parallel. Look for places to add 
cilk_spawn and cilk_for keywords. 

Number of spawns and Strands along span 
These counters provide some insight into how your program executes.  

Low Parallelism 
The parallelism is a key number, as it represents the theoretical speedup limit. In practice, we 
find that you usually want the parallelism to be at least 5-10 times the number of processors you 
will have available. If the parallelism is lower, it may be hard for the scheduler to effectively utilize 
all of the workers. If the parallelism is smaller than the number of processors, additional workers 
will remain idle.  



109 

 

 

Low parallelism can result from several factors: 

 If the granularity of the program is too low, there is not enough work to do in parallel. In this 
case, consider using a smaller grain size for loops or a smaller base case for recursive 
algorithms. 

 In some cases, a low parallelism number indicates that the problem solved in the test run is 
too small. For example, sorting an array of 50 elements will have dramatically lower 
parallelism that an array of 500,000 elements. 

 If only part of your program is written in Cilk++, you may have good parallelism in some 
regions but have limited total speedup because of the amount of serial work that the program 
does. In this case, you can look for additional parts of the program that are candidates for 
parallelization. 

 Reduce the granularity of cilk_for loops by decreasing the gransize. 

Burdened Parallelism Lower than Parallelism 
Burdened parallelism considers the runtime and scheduling overhead, and for typical programs, 
is a better estimate of the speedup that is possible in practice. If the burdened parallelism is 
much lower than the parallelism, the program has too much parallel overhead. Typically, this 
means that the amount of work spawned is too small to overcome the overhead of spawning.  

To take advantage of parallelism, each strand needs to perform more work. There are several 
possible approaches: 

 Combine small tasks into larger tasks. 
 Stop recursively spawned functions at larger base cases (for example, increase the recursion 

threshold that is used in the matrix example. 
 Replace spawns of small tasks with serial calls. 
 Designate small "leaf" functions as C++ rather than Cilk++ functions, reducing calling 

overhead. 
 Increase the granularity of cilk_for loops by increasing the grainsize. 

Average instructions per strand 
This count is the average number of instructions executed between parallel control points. A 
small number may indicate that the overhead of using cilk_spawn is high relative to the 
amount of work done by the spawned function. This will typically also be reflected in the 
burdened parallelism number. 

Average instructions per strand on span 
This count is the average number of instructions per strand on the critical path.  A small number 
suggests that the program has a granularity problem, as explained above.  

Total number of atomic instructions 
This counter is the number of atomic instructions executed by the program. This is correlated 
with the number of locks that are acquired, including those used in libraries and the locks implied 
by the direct use of atomic instructions via compiler intrinsics. If this number is high, lock 
contention may become a significant issue for your program.  See the section on Locks (Page 
92) for more information. 



110 

 

 
 

CILKVIEW EXAMPLE 

In this section, we present a sample Cilk++ program that has a parallel performance issue, and 
show how cilkview can help identify the problem. 

This program uses cilk_for to perform operations over an array of elements in parallel: 

static const int COUNT = 4; 
static const int ITERATION = 1000000; 
long   arr[COUNT]; 
 . . . 
long do_work(long k) 
{ 
    long x = 15; 
    static const int nn = 87; 
 
    for(long i = 1; i < nn; ++i) 
    { 
        x = x / i + k % i; 
    } 
    return x; 
} 
 
void repeat_work() 
{ 
    for (int j = 0; j < ITERATION; j++) 
    { 
        cilk_for (int i = 0; i < COUNT; i++) 
        { 
            arr[i] += do_work( j * i + i + j); 
        } 
    } 
}  
 
int cilk_main(int argc, char* argv[]) 
{ 
    . . . 
    repeat_work(); 
    . . . 
} 

This program exhibits speedup of less than 1, also known as slowdown. Running this program 
on 4 processors takes about 3 times longer than serial execution. 

Here is the relevant cilkview output: 
. . . . . .  
1) Parallelism Profile 
   . . . . . . 
   Span:                          2,281,596,648 instructions 
   Burdened span:                 32,281,638,648 instructions 



111 

 

 

   Parallelism:                   3.06 
   Burdened parallelism:          0.22 
   . . . . . . 
   Average instructions / strand:          698 
   Strands along span:                     5,000,006 
   Average instructions / strand on span:  456 
 
2) Speedup Estimation 
   2 processors:     0.45 - 2.00 
   4 processors:     0.26 - 3.06 
   8 processors:     0.24 - 3.06 
   16 processors:    0.23 - 3.06 
   32 processors:    0.22 - 3.06 

Even though the program has a parallelism measure of 3.06, the burdened parallelism is only 
0.22. In other words, the overhead of running the code in parallel could eliminate the benefit 
obtained from parallel execution. The average instruction count per strand is less than 700 
instructions. The cost of stealing can exceed that value. The tiny strand length is the problem. 

Looking at the source code, we can see that the cilk_for loop is only iterating 4 times, and the 
amount of work per iterations is very small, as we expected from the profile statistics. 

The theoretical parallelism of the program is more than 3. In principle, the 4 iterations could be 
split between 4 processors. However, the scheduling overhead to steal and synchronize in order 
to execute only a few hundred instructions is overwhelms any parallel benefit. 

In this program, we cannot simply convert the outer loop (over j) to a cilk_for loop because 
this will cause a race on arr[i]. Instead, a simple fix is to invert the loop by bringing the loop over i 
to the outside: 

void repeat_work_revised() 
{ 
    cilk_for (int i = 0; i < COUNT; i++) 
    { 
        for (int j = 0; j < ITERATION; j++) 
        { 
            arr[i] += do_work( j * i + i + j); 
        } 
    } 
}   

Here is the cilkview report for the revised code. 
1) Parallelism Profile 
   . . . . . . 
   Span:                             1,359,597,788 instructions 
   Burdened span:                    1,359,669,788 instructions 
   Parallelism:                      4.00 
   Burdened parallelism:             4.00 
   . . . . . . 
   Average instructions / strand:          258,885,669 
   Strands along span:                     11 
   Average instructions / strand on span:  123,599,798 



112 

 

 

The revised program achieves almost perfect linear speedup on 4 processors. As cilkview 
reports, the parallelism and burdened parallelism have both improved to 4.00. 
 

ANALYZING PORTIONS OF A CILK++ PROGRAM 

By default, cilkview reports information about a full run of the program from beginning to end. 
This information may include a significant amount of purely serial code such as initialization and 
output. Often you will want to restrict the analysis to the smaller sections of your code where you 
have introduced parallel constructs. 

The cilkview API allows you to control which portions of your Cilk++ program are analyzed. 
The API is accessed through methods on a cilkview object as defined in cilkview.h. 

If you use the cilkview API, you must link with the cilkutil library. On Windows* systems, 
the appropriate library file (cilkutil-x86.lib) is linked automatically. On Linux* systems, use 
-lcilkutil: 

>cilk++ program.cilk -lcilkutil 

Here is a simple example that analyzes the whole program. When run under cilkview , a 
single graph will be created. If cilkview is not running, the functions do nothing and there is 
no significant performance impact on your program. 

#include "cilk.h" 
#include "cilkview.h" 
 
cilk::cilkview cv;   // create a cilkview object 
 
int cilk_main () 
{ 
   cv.start();    // begin analyzing 
   do_some_stuff();   // execute some parallel work 
   cv.stop();    // stop analyzing 
   cv.dump("main_tag");  // write analysis to file 
 
   return 1; 
} 
 

In a slightly more complex example, we analyze two separate parallel regions. cilkview will 
generate two graphs, labeled first_tag and second_tag. 

   cv.start();    // begin analyzing 
   do_first_stuff();   // execute some parallel work 
   cv.stop();    // stop analyzing 
   cv.dump("first_tag");  // write analysis to file 
 
   cv.start();    // analyze another parallel 
region 
   do_different_stuff();  // execute more parallel work 
   cv.stop(); 
   cv.dump("second_tag"); 



113 

 

 

You can also use the same tag repeatedly.  In this case, cilkview treats the data as 
independent runs of the same region, and chooses the run that finishes in the least time for the 
graph. The following code will analyze the fastest run of do_parallel_stuff(). 

for (int count=0; count<MAX; ++count) 
{ 
   cv.start(); 
   do_parallel_stuff();  
   cv.stop(); 
   cv.dump("stuff_tag"); 
} 

 

BENCHMARKING A CILK++ PROGRAM 

In addition to parallel analysis, cilkview also provides a framework for benchmarking a Cilk++ 
program on various numbers of processors. A benchmark run is a complete run of your Cilk++ 
program using a specified number of workers. cilkview measures the total elapsed time, and 
plots the results. If analysis is enabled, the benchmark data is overlaid on the estimated 
scalability graph. 

To enable benchmarking, use the -trials switch.  As detailed in the reference section below, 
you can specify 0, 1, or multiple trial runs. 
 

CILKVIEW REFERENCE 

cilkview Output 

cilkview prints performance statistics to stdout. When the target program terminates, 
cilkview prints statistics representing the entire program run. In addition, every time a Cilk++ 
program calls the dump(TAGNAME) method, intermediate data is printed to stderr and written 
to the TAGNAME file for plotting. 

cilkview creates the following files: 

 prog.cv.out Raw performance data collected for prog by cilkview . 

 TAGNAME.csv Comma Separated Value file that can be read by most 
plotting/charting programs, including cilkplot. 

 TAGNAME.plt Data files that can be read by gnuplot. 

cilkview Command Line Options 

The cilkview command line has the form: 

cilkview [options] program [program arguments] 

 program [program 
arguments] 

Specify the Cilk++ program to run, and any arguments to that 
program. 



114 

 

 

 [options] Zero or more of the following: 

 -trials none   Do not run any benchmark trials. This is the default. 

 -trials one [k]   Run exactly one trial with k workers (default k = # of cores 
detected) 

 -trials log [k]   Run trials with k, k/2, k/4, .. 1 workers. (default k = # of cores 
detected) 

 -trials all [k]   Run trials with 1..k works. (default k= # of cores detected) 

 -no-workspan 

-nw 
Do not generate work and span scalability analysis. 

 -plot none Do not run any plotting program. 

 -plot gnuplot Run gnuplot to display the output. This is the default behavior 
when cilkview is run on a Linux* system. 

 -plot cilkplot Run cilkplot to display the output (Windows* systems only). This 
is the default behavior when cilkview is run on a Windows 
system. Cilkplot is distributed with the Intel® Cilk++ SDK. 

 -append Append output of this run to existing data files. By default, each run 
creates a new set of data files. When displaying the output, 
cilkview will select the fastest run for each tag and thus display 
the best performance seen. This helps mitigate the indeterminate 
effect of measuring performance while other processes may be 
active on your system. 

 -quiet Do not display banners before each benchmark run. 

 -verbose Display extra information such as the PIN command line. Primarily 
used for debugging. 

 -v, -version Print version information and exit. 

 -h, -?, -help Display usage information and exit. 

cilkview and Visual Studio* 

At this time, cilkview is not fully integrated with Visual Studio. In particular, you cannot specify 
trial runs using the Visual Studio interface. To collect trial benchmark data, run cilkview from 
the command line as described above. 



115 

 

 

cilkview Application Program Interface (API) 

In order for cilkview to measure the parallel performance of your program, you must create a 
cilk::cilkview object and call methods on that object to indicate the region of the program 
to measure.  To use the cilk::cilkview object: 

 #include 
<cilkview.h> 

Bring in the definition of cilkview. 

 cilk::cilkview cv; Create an instance of a cilkview object named cv. 

 cv.start(); Begin measuring parallel performance. 

 cv.stop(); Stop measuring parallel performance. 

 cv.dump("tagname", bReset); 

  Dump the data collected so far and tag it with the specified character string. 
This string must not have white space or any characters that are not allowed 
in file names.  If you call dump() more than once with the same tag, 
cilkview treats the data as representing multiple runs of the same 
program or program region, and selects the shortest (least time) data set for 
analysis and display. If bReset is true (or not specified), then dump() will 
reset data collection. 

 cv.reset(); Reset data collection.  If data collection is not reset, data continues to 
accumulate. 

 cv.accumulated_milliseconds(); 

  Return the number of milliseconds accumulated between start() and 
stop(). Many of the Cilk++ examples use this to print the elapsed time of a 
parallel region. 

View Data with Cilkplot 
The Cilkplot program is provided for Windows systems only. The Cilkplot command line has the 
form: 
 cilkplot TAGNAME.csv 

where TAGNAME.csv is a data file produced by cilkview . This allows you to easily view a 
plot of cilkview data without re-running the measurements. 

View Data with gnuplot 
cilkview writes TAGNAME.csv and TAGNAME.plt files that can be read by gnuplot. To 
display the data with gnuplot on Linux or Windows systems run gnuplot (or wgnuplot) as: 
 gnuplot TAGNAME.plt 



116 

 

 

where TAGNAME.plt is the gnuplot script file produced by cilkview. This allows you to easily 
view a plot of cilkview data without re-running the measurements. 

 
 



117 

 

 

The previous chapter showed how to use cilkview to increase and exploit program 
parallelism. However, parallel programs have numerous additional performance considerations 
and opportunities for tuning and improvement. 

In general, the Intel Cilk++ runtime scheduler uses processor resources efficiently. The work-
stealing algorithm is designed to minimize the number of times that work is moved from one 
processor to another. 

Additionally, the scheduler ensures that space use is bounded linearly by the number of workers. 
In other words, a Cilk++ program running on N workers will use no more than N times the 
amount of memory that is used when running on one worker. 

While program performance is a large topic and the subject of numerous papers and books, this 
chapter describes some of the more common issues seen in multithreaded applications such as 
those written in Cilk++. 
 

GRANULARITY 

Divide-and-conquer is an effective parallelization strategy, creating a good mix of large and small 
sub-problems. The work-stealing scheduler can allocate chunks of work efficiently to the cores, 
provided that there are not too many very large chunks or too many very small chunks. 

 If the work is divided into just a few large chunks, there may not be enough parallelism to 
keep all the cores busy.  

 If the chunks are too small, then scheduling overhead may overwhelm the advantages of 
parallelism. The Intel® Cilk++ SDK provides cilkview to help determine if the chunk size 
(or granularity) is optimal. 

Granularity can be an issue with parallel programs using cilk_for or cilk_spawn. If you are 
using cilk_for, you can control the granularity by setting the grain size of the loop. In 
addition, if you have nested loops, the nature of your computation will determine whether you will 
get best performance using cilk_for for inner or outer loops, or both. If you are using 
cilk_spawn,  be careful not to spawn very small chunks of work. While the overhead of 
cilk_spawn is relatively small, performance will suffer if you spawn very small amounts of 
work. 
 

OPTIMIZE THE SERIAL PROGRAM FIRST 

The first step is to assure that the C++ serial program has good performance and that normal 
optimization methods, including compiler optimization, have already been used. 

As one simple, and limited, illustration of the importance of serial program optimization, consider 
the matrix_multiply example, which organizes the loop with the intent of minimizing cache 
line misses. The resulting code is: 

Chapter 16 
Performance Issues in Cilk++ Programs 



118 

 

 

cilk_for(unsigned int i = 0; i < n; ++i) { 
    for (unsigned int k = 0; k < n; ++k) { 
        for (unsigned int j = 0; j < n; ++j) { 
            A[i*n + j] += B[i*n + k] * C[k*n + j]; 
        } 
    } 
} 

In multiple performance tests, this organization has shown a significant performance advantage 
compared to the same program with the two inner loops (the k and j loops) interchanged. This 
performance difference shows up in both the serial and Cilk++ parallel programs. The matrix 
example has a similar loop structure. Be aware, however, that such performance improvements 
cannot be assured on all systems as there are numerous architectural factors that can affect 
performance. 

The following article: Making Your Cache Go Further in These Troubled Times 
(http

) also discusses this topic. 
://software.intel.com/en-us/articles/Making-Your-Cache-Go-Further-in-These-Troubled-

Times

The wc-cilk example in another instance showing the advantages of code optimization; using 
an inline function to detect alphanumeric characters and removing redundant function calls 
produced significant serial program gains which are reflected in the Cilk++ parallel program. 
 

TIMING PROGRAMS AND PROGRAM SEGMENTS 

You must measure performance to find and understand bottlenecks. Even small changes in a 
program can lead to large and sometimes surprising performance differences. The only reliable 
way to tune performance is to measure frequently, and preferably on a mix of different systems. 
The Cilk++ examples use the cilkview object to measure performance. Use any tool or technique 
at your disposal, but only true measurements will determine if your optimizations are effective. 

Performance measurements can be misleading, however, so it is important to take a few 
precautions and be aware of potential performance anomalies. Most of these precautions are 
straight-forward but may be overlooked in practice. 

 Other running applications can affect performance measurements. Even an idle version of a 
program such as Microsoft Word can consume processor time and distort measurements. 

 If you are measuring time between points in the program, be careful not to measure elapsed 
time between two points if other strands could be running in parallel with the function 
containing the starting point.  

 Dynamic frequency scaling (http ) on 
multicore laptops and other systems can produce unexpected results, especially when you 
increase worker count to use additional cores. As you add workers and activate cores, the 
system might adjust clock rates to reduce power consumption and therefore reduce overall 
performance. 

://en.wikipedia.org/wiki/Dynamic_frequency_scaling

 

COMMON PERFORMANCE PITFALLS 

If a program has sufficient parallelism and burdened parallelism but still doesn't achieve good 
speedup, the performance could be affected by other factors. Here are a few common factors, 
some of which are discussed elsewhere. 

http://software.intel.com/en-us/articles/Making-Your-Cache-Go-Further-in-These-Troubled-Times�
http://software.intel.com/en-us/articles/Making-Your-Cache-Go-Further-in-These-Troubled-Times�
http://en.wikipedia.org/wiki/Dynamic_frequency_scaling�


119 

 

 

 cilk_for Grainsize Setting (Page 43). If the grain size is too large, the program's logical 
parallelism decreases. If the grain size is too small, overhead associated with each spawn 
could compromise the parallelism benefits. The Cilk++ compiler and runtime system use a 
default formula to calculate the grain size. The default works well under most circumstances. 
If your Cilk++ program uses cilk_for, experiment with different grain sizes to tune 
performance. 

 Lock contention (Page 94). Locks generally reduce program parallelism and therefore affect 
performance.  cilkview does not account for lock contention when calculating parallelism. 
Lock usage can be analyzed using other performance and profiling tools. 

 Cache efficiency and memory bandwidth (Page 119). See the next section. 
 False sharing (Page 120). See the section later in this chapter. 
 Atomic operations (Page 122). Atomic operations, provided by compiler intrinsics, lock 

cache lines. Therefore, these operations can impact performance the same way that lock 
contention does. Also, since an entire cache line is locked, there can be false sharing. 
cilkview report counts the number of atomic operations; this count can vary between 
Windows* and Linux* versions of the same program. 

 

CACHE EFFICIENCY AND MEMORY BANDWIDTH 

Good cache efficiency is important for serial programs, and it becomes even more important for 
parallel programs running on multicore machines. The cores contend for bus bandwidth, limiting 
how quickly data that can be transferred between memory and the processors. Therefore, 
consider cache efficiency and data and spatial locality when designing and implementing parallel 
programs. For example code that considers these issues, see the following article: Making Your 
Cache Go Further in These Troubled Times http

 or the matrix and matrix_multiply 
examples cited in the "Optimize the Serial Program First (Page 

://software.intel.com/en-us/articles/Making-
Your-Cache-Go-Further-in-These-Troubled-Times

117)" section. 

A simple way to identify bandwidth problems is to run multiple copies of the serial program 
simultaneously—one for each core on your system. If the average running time of the serial 
programs is much larger than the time of running just one copy of the program, it is likely that the 
program is saturating system bandwidth. The cause could be memory bandwidth limits or, 
perhaps, disk or network I/O bandwidth limits. 

These bandwidth performance effects are frequently system-specific. For example, when 
running the matrix example on a specific system with two cores (call it "S2C"), the "iterative 
parallel" version was considerably slower than the "iterative sequential" version (4.431 seconds 
compared to 1.435 seconds). On other systems, however, the iterative parallel version showed 
nearly linear speedup when tested with as many as 16 cores and workers. Here are the results 
on S2C: 

1) Naive, Iterative Algorithm. Sequential and Parallel. 
Running Iterative Sequential version... 
  Iterative Sequential version took 1.435 seconds. 
Running Iterative Parallel version... 
  Iterative Parallel version took   4.431 seconds. 
  Parallel Speedup: 0.323855 

http://software.intel.com/en-us/articles/Making-Your-Cache-Go-Further-in-These-Troubled-Times�
http://software.intel.com/en-us/articles/Making-Your-Cache-Go-Further-in-These-Troubled-Times�


120 

 

 

There are multiple, often complex and unpredictable, reasons that memory bandwidth is better 
on one system than another (e.g.; DRAM speed, number of memory channels, cache and page 
table architecture, number of CPUs on a single die, etc.). Be aware that such effects are possible 
and may cause unexpected and inconsistent performance results. This situation is inherent to 
parallel programs and is not unique to Cilk++ programs. 
 

FALSE SHARING 

False sharing (Page 123) is a common problem in shared memory parallel processing. It occurs 
when two or more cores hold a copy of the same memory cache line. 

If one core writes, the cache line holding the memory line is invalidated on other cores. This 
means that even though another core may not be using that data (reading or writing), it might be 
using another element of data on the same cache line. The second core will need to reload the 
line before it can access its own data again. 

Thus, the cache hardware ensures data coherency, but at a potentially high performance cost if 
false sharing is frequent. A good technique to identify false sharing problems is to catch 
unexpected sharp increases in last-level cache misses using hardware counters or other 
performance tools. 

As a simple example, consider a spawned function with a cilk_for loop that increments array 
values. The array is volatile to force the compiler to generate store instructions rather than 
hold values in registers or optimize the loop. 

volatile int x[32]; 
 
void f(volatile int *p) 
{ 
    for (int i = 0; i < 100000000; i++) 
    { 
        ++p[0]; 
        ++p[16]; 
    } 
} 
 
int cilk_main() 
{ 
    cilk_spawn f(&x[0]); 
    cilk_spawn f(&x[1]); 
    cilk_spawn f(&x[2]); 
    cilk_spawn f(&x[3]); 
    cilk_sync; 
    return 0; 
} 



121 

 

 

The a[] elements are four bytes wide, and a 64-byte cache line (normal on x86 systems) would 
hold 16 elements. There are no data races, and the results will be correct when the loop 
completes. cilkview shows significant parallelism. However, cache line contention as the 
individual strands update adjacent array elements can degrade performance, sometimes 
significantly. For example, one test on a 16-core system showed one worker performing about 
40 times faster than 16 workers, although results can vary significantly on different systems. 
 



122 

 

 

A 
About the Glossary 

The Glossary is an alphabetical list of 
important terms used in this 
programmer's guide and gives brief 
explanations and definitions. 
Terms in bold italic occur elsewhere in 
the glossary. 

 

atomic 
Indivisible. An instruction sequence 
executed by a strand is atomic if it 
appears at any moment to any other 
strand as if either no instructions in the 
sequence have been executed or all 
instructions in the sequence have been 
executed. 

 

C 
chip multiprocessor 

A general-purpose multiprocessor 
implemented as a single multicore chip. 

 

Cilk 
A simple set of extensions to the C 
programming language that allow a 
programmer to express concurrency 
easily. For more information, see MIT's 
Cilk website 
(http ). ://supertech.csail.mit.edu/cilk/

 

Cilk Arts, Inc. 
An MIT-spinoff founded in 2006 to 
commercialize the Cilk technology. The 
assets of Cilk Arts, Inc. were acquired by 
Intel® Corporation in July, 2009. 

 

cilk_for 

A keyword in the Cilk++ language that 
indicates a for loop whose iterations 
can be executed independently in 
parallel. 

 

cilk_spawn 
A keyword in the Cilk++ language that 
indicates that the named subroutine can 
execute independently and in parallel 
with the caller. 

 

cilk_sync 
A keyword in the Cilk++ language that 
indicates that all functions spawned 
within the current function must complete 
before statements following the 
cilk_sync can be executed.  

 

Cilk++ 
A simple set of extensions to the C++ 
programming language that allow a 
programmer to express concurrency 
easily. The Cilk++ language is based on 
concepts developed for the Cilk 
programming language at MIT. 

 

Cilkscreen 
The cilkscreen race detector is a tool 
provided in the Intel® Cilk++ SDK for 
finding race condition defects in Cilk++ 
code. 

 

commutative operation 
An operation (op), over a type (T), is 
commutative if a op b = b op a for 
any two objects, a and b, of type T. 
Integer addition and set union are 
commutative, but string concatenation is 
not. 

 

concurrent agent 

Glossary of Terms 

http://supertech.csail.mit.edu/cilk/�


123 

 

 

A processor, process, thread, strand, or 
other entity that executes a program 
instruction sequence in a computing 
environment containing other such 
entities. 

 

core 
A single processor  unit of a multicore 
chip. The terms "processor" and "CPU" 
are often used in place of "core", 
although industry usage varies. 
Archaic: A solid-state memory made of 
magnetized toroidal memory elements. 

 

CPU 
"Central Processing Unit"; we use this 
term as a synonym for "core", or a single 
processor of a multicore chip.  

 

critical section 
The code executed by a strand while 
holding a lock. 

 

critical-path length 
See span. 

 

D 
data race 

A race condition that occurs when two or 
more parallel strands, holding no lock in 
common, access the same memory 
location and at least one of the strands 
performs a write. Compare with 
determinacy race. 

 

deadlock 
A situation when two or more strand 
instances are each waiting for another to 
release a resource, and the "waiting-for" 
relation forms a cycle so that none can 
ever proceed. 

 

determinacy race 
A race condition that occurs when two 
parallel strands access the same 
memory location and at least one strand 
performs a write. 

 

determinism 

The property of a program when it 
behaves identically from run to run when 
executed on the same inputs. 
Deterministic programs are usually 
easier to debug. 

 

distributed memory 
Computer storage that is partitioned 
among several processors. A distributed-
memory multiprocessor is a computer in 
which processors must send messages 
to remote processors to access data in 
remote processor memory. Contrast with 
shared memory. 

 

E 
execution time 

How long a program takes to execute on 
a given computer system. Also called 
running time. 

 

F 
fake lock 

A construct that cilkscreen treats as 
a lock but which behaves like a no-op 
during actual running of the program. A 
fake lock can be used to suppress the 
reporting of an intentional race condition. 

 

false sharing 
The situation that occurs when two 
strands access different memory 
locations residing on the same cache 
block, thereby contending for the cache 
block.For more information, see the 
Wikipedia entry 
http  
. 

://en.wikipedia.org/wiki/False_sharing

 

G 
global variable 

A variable that is bound outside of all 
local scopes. See also nonlocal variable. 

 

H 
hyperobject 

http://en.wikipedia.org/wiki/False_sharing�


124 

 

 

A linguistic construct supported by the 
Cilk++ runtime that allows many strands 
to coordinate in updating a shared 
variable or data structure independently 
by providing each strand a different view 
of the hyperobject to different strands at 
the same time. The reducer is the only 
hyperobject currently provided by the 
Intel® Cilk++ SDK. 

 

I 
instruction 

A single operation executed by a 
processor. 

 

K 
knot 

A point at which the end of one strand 
meets the end of another. If a knot has 
one incoming strand and one outgoing 
strand, it is a serial knot. If it has one 
incoming strand and two outgoing 
strands, it is a spawn knot. If it has 
multiple incoming strands and one 
outgoing strand, it is a sync knot. A 
Cilk++ program does not produce serial 
knots or knots with both multiple 
incoming and multiple outgoing strands. 

 

L 
linear speedup 

Speedup proportional to the processor 
count. See also perfect linear speedup. 

 

lock 
A synchronization mechanism for 
providing atomic operation by limiting 
concurrent access to a resource. 
Important operations on locks include 
acquire (lock) and release (unlock). 
Many locks are implemented as a mutex, 
whereby only one strand can hold the 
lock at any time. 

 

lock contention 

The situation wherein multiple strands 
vie for the same lock. 

 

M 
multicore 

A semiconductor chip containing more 
than one processor core. 

 

multiprocessor 
A computer containing multiple general-
purpose processors. 

 

mutex 
A "mutually exclusive" lock that only one 
strand can acquire at a time, thereby 
ensuring that only one strand executes 
the critical section protected by the 
mutex at a time. Windows* OS supports 
several mutually exclusive locks, 
including the CRITICAL_SECTION. 
Linux* OS supports Pthreads 
pthread_mutex_t objects. 

 

N 
nondeterminism 

The property of a program when it 
behaves differently from run to run when 
executed on exactly the same inputs. 
Nondeterministic programs are usually 
hard to debug. 

 

nonlocal variable 
A program variable that is bound outside 
of the scope of the function, method, or 
class in which it is used. In Cilk++ 
programs, we also use this term to refer 
to variables with a scope outside a 
cilk_for loop. 

 

P 
parallel loop 

A for loop all of whose iterations can be 
run independently in parallel. The 
cilk_for keyword designates a parallel 
loop. 

 

parallelism 



125 

 

 

The ratio of work to span, which is the 
largest speedup an application could 
possibly attain when run on an infinite 
number of processors. 

 

perfect linear speedup 
Speedup equal to the processor count. 
See also linear speedup. 

 

process 
A self-contained concurrent agent that by 
default executes a serial chain of 
instructions. More than one thread may 
run within a process, but a process does 
not usually share memory with other 
processes. Scheduling of processes is 
typically managed by the operating 
system. 

 

processor 
A processor implements the logic to 
execute program instructions 
sequentially; we use the term "core" as a 
synonym. This document does not use 
the term "processor" to refer to multiple 
processing units on the same or multiple 
chips, although other documents may 
use the term that way. 

 

R 
race condition 

A source of nondeterminism whereby the 
result of a concurrent computation 
depends on the timing or relative order of 
the execution of instructions in each 
individual strand. 

 

receiver 
A variable to receive the result of the 
function call. 

 

reducer 

A hyperobject with a defined (usually 
associative) reduce() binary operator 
which the Cilk++ runtime system uses to 
combine the each view of each separate 
strand. 
A reducer must have two methods:  

 A default constructor which initializes the 
reducer to its identity value 

 A reduce() method which merges the 
value of right reducer into the left (this) 
reducer. 

 

response time 
The time it takes to execute a 
computation from the time a human user 
provides an input to the time the user 
gets the result. 

 

running time 
How long a program takes to execute on 
a given computer system. Also called 
execution time. 

 

S 
scale down 

The ability of a parallel application to run 
efficiently on one or a small number of 
processors. 

 

scale out 
The ability to run multiple copies of an 
application efficiently on a large number 
of processors. 

 

scale up 
The ability of a parallel application to run 
efficiently on a large number of 
processors. See also linear speedup. 

 

sequential consistency 



126 

 

 

The memory model for concurrency 
wherein the effect of concurrent agents is 
as if their operations on shared memory 
were interleaved in a global order 
consistent with the orders in which each 
agent executed them. This model was 
advanced in 1976 by Leslie Lamport 
http

  
://research.microsoft.com/en-

us/um/people/lamport/
 

serial execution 
Execution of the serialization of a Cilk++ 
program. 

 

serial semantics 
The behavior of a Cilk++ program when 
executed as the serialization of the 
program. See the following article: "Four 
Reasons Why Parallel Programs Should 
Have Serial Semantics". 

 

serialization 
The C++ program that results from 
stubbing out the keywords of a Cilk++ 
program, where cilk_spawn and 
cilk_sync are elided and cilk_for is 
replaced with an ordinary for. The 
serialization can be used for debugging 
and, in the case of a converted C++ 
program, will behave exactly as the 
original C++ program. The term "serial 
elision" is used in some of the literature. 
Also, see "serial semantics". 

 

shared memory 
Computer storage that is shared among 
several processors. A shared-memory 
multiprocessor is a computer in which 
each processor can directly address any 
memory location. Contrast with 
distributed memory. 

 

span 

The theoretically fastest execution time 
for a parallel program when run on an 
infinite number of processors, 
discounting overheads for 
communication and scheduling. Often 
denoted by T∞ in the literature, and 
sometimes called critical-path length. 

 

spawn 
To call a function  without waiting for it to 
return, as in a normal call. The caller can 
continue to execute in parallel with the 
called function. See also cilk_spawn. 

 

speedup 
How many times faster a program is 
when run in parallel than when run on 
one processor. Speedup can be 
computed by dividing the running time TP 
of the program on P processors by its 
running time T1 on one processor. 

 

strand 
A concurrent agent consisting of a serial 
chain of instructions without any parallel 
control (such as a spawn, sync, return 
from a spawn, etc.). 

 

sync 
To wait for a set of spawned functions to 
return before proceeding. The current 
function is dependent upon the spawned 
functions and cannot proceed in parallel 
with them. See also cilk_sync. 

 

T 
thread 

A concurrent agent consisting of a serial 
instruction chain. Threads in the same 
job share memory. Scheduling of threads 
is typically managed by the operating 
system. 

 

throughput 
A number of operations performed per 
unit time. 

 

V 
view 

http://research.microsoft.com/en-us/um/people/lamport/�
http://research.microsoft.com/en-us/um/people/lamport/�


127 

 

 

The state of a hyperobject as seen by a 
given strand. 

 

W 
work 

The running time of a program when run 
on one processor, sometimes denoted 
by T1. 

 

work stealing 
A scheduling strategy where processors 
post parallel work locally and, when a 
processor runs out of local work, it steals 
work from another processor. Work-
stealing schedulers are notable for their 
efficiency, because they incur no 
communication or synchronization 
overhead when there is ample 
parallelism. The Cilk++ runtime system 
employs a work-stealing scheduler. 

 

worker 
A thread that, together with other 
workers, implements the Cilk++ runtime 
system's work stealing scheduler. 

 



128 

 

 

A 
Additional Resources and Information • 97 
Associative Function 

Steal • 51, 128 
ASSOCIATIVE FUNCTION • 64 
atomic • 120, 123 

B 
BENCHMARK • 114 
Benign Races • 102 
BOOST LIBRARIES AND CILK++ • 49 
Build, Run, and Debug a Cilk++ Program • 9, 24 

C 
C++ • 13, 23, 46 
CACHE EFFICIENCY • 120 
Cache Efficiency and Memory Bandwidth • 120 
Calling C++ Functions from Cilk++ • 24, 85 
chip multiprocessor • 123 
cilk 

context • 82 
run • 82 

Cilk • 123 
CILK • 8 

CONTEXT • 76 
CURRENT_WORKER_COUNT • 77 
RUN • 77 
MUTEX • 78 

MIT CILK • 8 
Cilk Arts, Inc. • 7, 123 
CILK ARTS, INC. • 8 
CILK_BEGIN_CPLUSPLUS_HEADERS • 84 
cilk_for • 123 
CILK_FOR • 40 
cilk_for Grain Size • 30, 118, 120 
CILK_GRAINSIZE PRAGMA • 44 
CILK_SET_WORKER_COUNT • 9, 16 
cilk_spawn • 123 
CILK_SPAWN • 15, 37 
cilk_sync • 123 
CILK_SYNC • 39 
Cilk++ • 29, 32, 36, 82 
Cilk++ and C++ Language Linkage • 19, 37, 63 
Cilk++ Concepts • 7 
Cilk++ Examples • 45, 55, 64 
Cilk++ Runtime System • 76 

Cilkscreen • 97, 123 
CILKSCREEN • 9, 106 
Cilkscreen Performance • 102 
Cilkscreen Race Detector • 7, 13, 18, 27, 36 
Cilkview Assumptions • 99 
Cilkview Scalability Analyzer • 106 
commutative operation • 94 
COMPILE CILK++ • 15, 18, 21, 23 
context •  See cilk::context 
Converting Windows* DLLs to Cilk++ • 31, 82 
core • 124 
critical path • 124 
CRITICAL PATH • 99 
critical section • 124 
current_worker_count •  See cilk::current_worker_count 
CV OBJECT • 114 

D 
data race • 40, 78, 97 
DATA RACE • 88 
deadlock • 78 
Debugging Strategies • 18, 25, 26 
DETERMINACY RACE • 89, 94 
DLL • 72 

E 
Examples • 29 
EXCEPTION HANDLING • 49 

F 
false sharing • 79, 121 
False Sharing • 120 
for loop •  See cilk_for 
FRIGO, MATTEO • 8 

G 
General Interaction with OS Threads • 66 
Getting Started • 7, 9, 30, 72, 73 
GRAINSIZE - CILK_FOR LOOP • 44 

GRAINSIZE AND FALSE SHARING • 121 
GRANULARITY • 44, 118 

H 
HOLDER REDUCER • 66 

Index 



129 

 

 

Holding a Lock Across a Strand Boundary • 71 
Hyperobjects •  See Reducers 

K 
Knots • 125 

L 
LANGUAGE LINKAGE (CILK++ AND C++) • 46 
LEISERSON, CHARLES E. • 8 
LINKAGE • 46 
Linux considerations • 70 
List Reducer (With User-Defined Type) • 67, 68 
Locks • 78, 79, 91, 93, 110,  See cilk::mutex 
LOCKS • 70, 94, 95 
Locks Cause Determinacy Races • 89 
Locks Contention Reduces Parallelism • 120 

M 
MACROS - CILK++ PREDEFINED • 49 
MEASURING APPLICATION PARALLELISM • 106 
MEASURING APPLICATION PERFORMANCE • 119 
MEMORY MANAGEMENT IN CILK++ • 79 
MFC •  See Microsoft Foundation Classes 
MICROSOFT FOUNDATION CLASSES • 71 
Microsoft Foundation Classes and Cilk++ Programs • 77, 82 
MISER • 79 
Mixing C++ and Cilk++ Code • 7, 46, 77 
MONOID • 64 
mutext •  See cilk::mutex 

N 
Nested #include Statements • 48 
nonlocal variable • 40 

O 
Operating system considerations • 70 
Optimize the Serial Program First • 120 

P 
PARALLEL PERFORMANCE ANALYZER • 106 
PARALLELISM MEASUREMENT • 106 
Performance • 118 

CPPA - Cilkscreen Parallel Performance Analyzer • 106 
PERFORMANCE 

CACHE EFFICIENCY • 120 
MEASURING CILK++ PROGRAM PERFORMANCE • 119 
PERFORMANCE AND FALSE SHARING • 121 
PERFORMANCE PTIFALLS • 119 

PRECOMPILED HEADERS (WINDOWS) • 23 
Preprocessor Macros •  See Macros - Cilk++ Predefined 

R 
race condition • 78 
Race Conditions • 7, 13, 55, 88, 97, 124, 126 
RACE CONDITIONS • 94 
Race Detector • 97 
RANDALL, KEITH H. • 8 
receiver • 37 
Reducers • 7, 13, 29, 36, 53, 91 
RELEASE NOTES • 8 
Resolving Data Races • 13, 27 
Runtime System •  See Cilk++ Runtime System 
Runtime System and Libraries • 26, 36, 37, 71 

S 
Safety and Performance Cautions • 106 
Scheduler • 128 
SECURE SCL • 21 
serialization • 13, 18, 20, 21, 25, 26, 40, 47 
Serialization • 70 
SERIALIZATION • 26, 86 
Serializing Cilk++ Programs •  See Serialization 
SHARED LIBRARIES • 72 
Source File Layout • 84 
span • 45 
spawn •  See cilk_spawn 
Speculation • 36 
Strand • 127 
SUPPORT • 7 
sync •  See cilk_sync 

T 
TECHNICAL SUPPORT • 7 
The Cilk++ Language • 7 
THREAD LOCAL STORAGE (TLS) • 66, 70 
Threads •  See Worker 
THREADS • 70 
TUNING - CILK_FOR LOOP • 44 

U 
Using Reducers — A Simple Example • 98 

V 
VALGRIND • 70 

W 
Windows considerations • 70 
work • 45 
Work stealing • 128 
worker • 51 
Worker • 128 



130 

 

 

WORKER • 25 
WORKER COUNT 

SET WORKER COUNT - ENVIRONMENT • 25 
WORKER COUNT - COMMAND LINE • 9 
WORKER COUNT - GET • 77 
WORKER COUNT - SET • 76 

 


	Legal Information
	Introduction
	Target audience
	Getting started
	Typographic conventions
	Technical Support
	Release Notes
	Additional Resources and Information

	Getting Started
	Overview of the Cilk++ language
	Using the Intel® Cilk++ SDK
	Build and Run a Cilk++ Example
	Building qsort
	Running qsort
	Observe speedup on a multicore system
	Check for data races
	Measure scalability and parallel metrics

	Convert a C++ Program
	Start with a Serial Program
	Convert to a Cilk++ program
	Add Parallelism Using cilk_spawn
	Build, Execute and Test
	Run qsort from the command line
	Observe speedup on a multicore system



	Build, Run, and Debug a Cilk++ Program
	Build from the Linux* Command Line
	Compiler Options for cilk++ for Linux* OS

	Build from the Windows* Command Line
	cilkpp options
	cilkpp options
	CL options not supported by the Cilk++ compiler


	Build within Microsoft Visual Studio*
	Convert C++ to Cilk++ within Visual Studio*
	Set Cilk++ Compiler Options within Visual Studio*
	Issues Building Cilk++ Programs Within Visual Studio*

	Set Worker Count
	Command Line
	Environment
	Program Control

	Serialization
	How to Create a Serialization

	Debugging Strategies

	Cilk++ Examples
	General Examples
	Matrix Multiplication and Transpose Examples
	Quicksort Examples

	Cilk++ Concepts
	Strands and Knots
	Work and Span
	Work
	Span
	Speedup and Parallelism
	Estimating performance and scalability


	The Cilk++ Language
	Entering a Cilk++ Context
	cilk_main
	Cilk++ Context and cilk::run
	cilk_main

	cilk_spawn
	Spawning a Function that Returns a Value
	cilk_spawn Restrictions (Windows* OS only)

	cilk_sync
	cilk_for
	Serial/parallel structure of cilk_for
	Serial/parallel structure when spawning within a serial loop
	cilk_for Syntax
	cilk_for Type Requirements
	cilk_for Restrictions
	cilk_for Grain Size
	Setting the Grain Size
	Loop Partitioning at Run Time
	Selecting a Good Grain Size Value


	Cilk++ and C++ Language Linkage
	Declarative Regions and Language Linkage
	Calling C++ Functions from Cilk++
	Language Linkage Rules for Templates

	Cilk++ and the C++ boost Libraries
	Preprocessor Macros
	Exception Handling

	Cilk++ Execution Model
	Reducers
	Using Reducers — A Simple Example
	How Reducers Work
	No steal
	Steal
	Example: Using reducer_opadd<>
	If no steal occurs...
	If a steal occurs...
	Lazy semantics
	Safe operations

	Safety and Performance Cautions
	Safety
	Determinism
	Performance

	Reducer Library
	Using Reducers — Additional Examples
	String Reducer
	List Reducer (With User-Defined Type)
	Reducer with User-Defined Type

	Reducers in Recursive Functions

	How to Develop a New Reducer
	Examples
	Components of a Reducer
	The Identity Value
	The Monoid
	Writing Reducers — A "Holder" Example
	Writing Reducers — A Sum Example


	Operating System Specific Considerations
	Using Other Tools with Cilk++ Programs
	General Interaction with OS Threads
	Cilk++ programs do not really always use 100% of all available processors
	Use caution when using native threading interfaces

	Microsoft Foundation Classes and Cilk++ Programs
	Shared Cilk++ Libraries in Linux* OS
	Converting Windows* DLLs to Cilk++
	Use the Cilk++ Compiler
	Modify the C++ Source Code
	Note: Detecting Races in DLLs
	Modify the DLL Header File


	Runtime System and Libraries
	cilk::context
	Getting the Worker Id

	cilk::current_worker_count
	cilk::run
	cilk::mutex and Related Functions
	Miser Memory Manager
	Memory Management Limitations
	Miser Memory Management
	Miser Initialization
	Miser Limitations


	Mixing C++ and Cilk++ Code
	Mixing C++ and Cilk++: Three Approaches
	Header File Layout
	Nested #include Statements
	Source File Layout
	Serializing Mixed C++/Cilk++ Programs

	Race Conditions
	Data Races
	Determinacy Races
	Benign Races
	Resolving Data Races
	Fix a bug in your program
	Use local variables instead of global variables
	Restructure your code
	Change your algorithm
	Use reducers
	Use locks


	Locks
	Locks Cause Determinacy Races
	Deadlocks
	Locks Contention Reduces Parallelism
	Holding a Lock Across a Strand Boundary

	Cilkscreen Race Detector
	Using Cilkscreen
	Command Line Options

	Understanding Cilkscreen Output
	Controlling Cilkscreen From a Cilk++ Program
	Disable/Enable Instrumentation
	Fake Locks
	Disable/Enable Checking
	Cleaning Memory

	Cilkscreen Performance

	Cilkview Scalability Analyzer
	Cilkview Assumptions
	Running Cilkview
	What the Profile Numbers Mean
	Parallelism Profile
	Speedup Estimate

	Acting on the Profile Results
	Work and Span
	Number of spawns and Strands along span
	Low Parallelism
	Burdened Parallelism Lower than Parallelism
	Average instructions per strand
	Average instructions per strand on span
	Total number of atomic instructions

	Cilkview Example
	Analyzing Portions of a Cilk++ Program
	Benchmarking a Cilk++ Program
	Cilkview Reference
	cilkview Output
	cilkview Command Line Options
	cilkview and Visual Studio*
	cilkview Application Program Interface (API)
	View Data with Cilkplot
	View Data with gnuplot


	Performance Issues in Cilk++ Programs
	Granularity
	Optimize the Serial Program First
	Timing Programs and Program Segments
	Common Performance Pitfalls
	Cache Efficiency and Memory Bandwidth
	False Sharing

	Glossary of Terms
	About the Glossary
	atomic
	chip multiprocessor
	Cilk
	Cilk Arts, Inc.
	cilk_for
	cilk_spawn
	cilk_sync
	Cilk++
	Cilkscreen
	commutative operation
	concurrent agent
	core
	CPU
	critical section
	critical-path length
	data race
	deadlock
	determinacy race
	determinism
	distributed memory
	execution time
	fake lock
	false sharing
	global variable
	hyperobject
	instruction
	knot
	linear speedup
	lock
	lock contention
	multicore
	multiprocessor
	mutex
	nondeterminism
	nonlocal variable
	parallel loop
	parallelism
	perfect linear speedup
	process
	processor
	race condition
	receiver
	reducer
	response time
	running time
	scale down
	scale out
	scale up
	sequential consistency
	serial execution
	serial semantics
	serialization
	shared memory
	span
	spawn
	speedup
	strand
	sync
	thread
	throughput
	view
	work
	work stealing
	worker

	Index

