
CSE590: Supercomputing, Spring 2016 Date: March 26

Homework #2
( Due: April 6 )

Task 1. [ 250 Points ] Distributed Sample Sort with Multithreaded Merge Sort inside
Each Compute Node.

This task asks you to implement a distributed sample sort algorithm that runs a multithreaded
merge sort algorithm inside each compute node. You will be sorting double precision floating point
numbers. We will assume that all numbers in the input array are distinct. For simplicity generate
the input array as follows. First initialize the array by storing the number i (as a double precision
float) at location i of the array, where 1 ≤ i ≤ n. Then choose two random locations of the array
and swap their contents, and repeat this swaping step n times. Use this permuted array as input to
your sorting implementations. When timing the implementations do not include the time needed
to generate the input array.

(a) [ 30 Points ] Implement and optimize the shared-memory parallel merge sort algorithm
(Par-Merge-Sort-SM) shown in Figure 1 which uses the standard serial algorithm (Merge)
for merging two sorted sequences.

Optimize for the base case size m1, that is, empirically find a value of m1 that gives you the
best or close to the best performance for large values of n, and use that value of m1 in all
subsequent runs of the algorithm. For this task it is OK to check only powers of 2 for the
potential best value of m1. Use all cores during this base case optimize phase.

Let N be the largest power of 2 such that this algorithm can sort N numbers in less than 5
minutes when run on a single processing core. Find the value of N .

(b) [ 30 Points ] Implement and optimize the shared-memory parallel merge sort algorithm
(Par-Merge-Sort-PM) of Figure 2 which uses a parallel merge algorithm (Par-Merge).

First optimize for the base case size m2 of Par-Merge, and then use that value of m2 when
you optimize for the base case size m3 of Par-Merge-Sort-PM.

(c) [ 30 Points ] Plot the running times of Par-Merge-Sort-SM and Par-Merge-Sort-PM
for 10 equispaced points between n = 1000 and n = N when run on all cores of the compute
node you are using. Compare and explain the results.

(d) [ 30 Points ] Generate Cilkview scalability plots for Par-Merge-Sort-SM and Par-
Merge-Sort-PM assuming n = N . Compare and explain the results.

(e) [ 50 Points ] Implement the distributed-memory parallel sample sort algorithm (Distributed-
Sample-Sort) shown in Figure 3. Make two implementations. In one implementation use
the merge sort algorithm (Par-Merge-Sort-SM) you implemented in part (a) for the local
sorts in steps 2 and 5, and call this Distributed-Sample-Sort-SM. In another implementa-
tion use the merge sort algorithm (Par-Merge-Sort-PM) you implemented in part (b) and
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Merge( A, p, q, r ) {Merge sorted segments A[p : q] and A[q + 1 : r], and store in A[p : r].}

1. n1 ← q − p+ 1, n2 ← r − q

2. create array L[1 : n1 + 1] and R[1 : n2 + 1]

3. L[1 : n1]← A[p : q], R[1 : n2]← A[q + 1 : r]

4. L[n1 + 1]←∞, R[n2 + 1]←∞

5. i← 1, j ← 1

6. for k ← p to r do

7. if L[i] ≤ R[j] then A[k]← L[i], i← i+ 1

8. else A[k]← R[j], j ← j + 1

Par-Merge-Sort-SM( A, p, r ) {Sort the numbers in A[p : r]. All numbers in A are assumed to be distinct.}

1. n← r − p+ 1

2. if n ≤ m1 then {m1 is the global base case size for Par-Merge-Sort-SM}

3. sort A[p : r] using insertion sort

else

4. q ←
⌊
p+r
2

⌋
5. spawn Par-Merge-Sort-SM( A, p, q )

6. Par-Merge-Sort-SM( A, q + 1, r )

7. sync

8. Merge( A, p, q, r ) {merge A[p : q] and A[q + 1 : r], and store in A[p : r]}

Figure 1: Parallel merge sort with serial merge.

call this Distributed-Sample-Sort-PM. In Distributed-Sample-Sort-SM, execute the
two recursive calls to Par-Merge-Sort-SM in steps 5–7 of Par-Merge-Sort-SM serially
(i.e., remove the spawn and sync keyword) instead of calling them in parallel. But do not
change anything inside the Par-Merge-Sort-PM implementation used in Distributed-
Sample-Sort-PM.

(f) [ 40 Points ] Plot the running times of Distributed-Sample-Sort-SM and Distributed-
Sample-Sort-PM for 10 equispaced points between n = 1000 and n = N when run on 5
compute nodes. For Distributed-Sample-Sort-PM use all cores inside each compute node.
Compare and explain the results. Also plot the speedups w.r.t. Par-Merge-Sort-SM run
on a single core of a single compute node.

(g) [ 40 Points ] Repeat part (f), but without including the time needed for the initial distribu-
tion of input (step 1 of Distributed-Sample-Sort) and the final collection of output (step
6) in the running time.
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Par-Merge( T, p1, r1, p2, r2, A, p3 ) {Merge disjoint sorted segments T [p1 : r1] and T [p2 : r2], and store
result in A[p3 : r3], where r3 = p3 + n1 + n2 − 1, n1 = r1 − p1 + 1,

and n2 = r2 − p2 + 1. All numbers in T are assumed to be distinct.}

1. n1 ← r1 − p1 + 1, n2 ← r2 − p2 + 1, r3 = p3 + n1 + n2 − 1

2. if n1 + n2 ≤ m2 then {m2 is the global base case size for Par-Merge}

3. use the standard serial merge algorithm to merge T [p1 : r1] and T [p2 : r2], and store result in A[p3 : r3]

else

4. if n1 < n2 then p1 ↔ p2, r1 ↔ r2, n1 ↔ n2

5. q1 ←
⌊
p1+r1

2

⌋
6. q2 ← Binary-Search( T [q1], T, p2, r2 ) {each number in T [p2 : q2 − 1] is smaller than T [q1]

and each in T [q2 : r2] is larger than T [q1]}

7. q3 ← p3 + (q1 − p1) + (q2 − p2)

8. A[q3]← T [q1]

9. spawn Par-Merge( T, p1, q1 − 1, p2, q2 − 1, A, p3 )

10. Par-Merge( T, q1 + 1, r1, q2, r2, A, q3 + 1 )

11. sync

Par-Merge-Sort-PM( A, p, r ) {Sort the numbers in A[p : r]. All numbers in A are assumed to be distinct.}

1. n← r − p+ 1

2. if n ≤ m3 then {m3 is the global base case size for Par-Merge-Sort-PM}

3. sort A[p : r] using insertion sort

else

4. q ←
⌊
p+r
2

⌋
5. spawn Par-Merge-Sort-PM( A, p, q )

6. Par-Merge-Sort-PM( A, q + 1, r )

7. sync

8. T [p : r]← A[p : r] {T is a global array of the same size as A}

9. Par-Merge( T, p, q, q + 1, r, A, p ) {merge T [p : q] and T [q + 1 : r], and store in A[p : r]}

Figure 2: Parallel merge sort with parallel merge.
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Distributed-Sample-Sort( n, p, q ) {Sort n distinct numbers using p processors. One
node contains all n input numbers initially, and

also the numbers in the final sorted order.}

1. Initial Distribution: The master node scatters the n keys among p processing nodes as evenly as possible.

2. Pivot Selection: Each node sorts its local keys, and selects q − 1 evenly spaced keys from its sorted sequence.
The master node gathers these local pivots from all nodes, locally sorts those p(q−1) keys, selects p−1 evenly
spaced global pivots from them, and broadcasts them to all nodes.

3. Local Bucketing: Each node inserts the global pivots into its local sorted sequence using binary search, and thus
divides the keys among p buckets.

4. Distribute Local Buckets: For 1 ≤ i ≤ p, each node sends bucket i to node i.

5. Local Sort: Each node locally sorts the elements it received in step 4.

6. Final Collection: The master node collects all sorted keys from all nodes, and for 1 ≤ i < p, places all keys from
node i ahead of all keys from node i+ 1.

Figure 3: Distributed sample sort.

APPENDIX 1: What to Turn in

One compressed archive file (e.g., zip, tar.gz) containing the following items.

– Source code, makefiles and job scripts.

– A PDF document containing all answers and plots.

APPENDIX 2: Things to Remember

– Please never run anything that takes more than a minute or uses multiple cores
on TACC login nodes. TACC policy strictly prohibits such usage. They reserve the right
to suspend your account if you do so. All runs must be submitted as jobs to compute nodes
(even when you use Cilkview or PAPI).

– Please store all data in your work folder ($WORK), and not in your home folder ($HOME).

– When measuring running times please exclude the time needed for reading the input and
writing the output. Measure only the time needed by the algorithm.
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