
CSE590: Supercomputing, Spring 2016 Date: April 23

Homework #4
( Due: May 6 )

Task 1. [ 160 Points ] Sequence Alignment with General Gap Penalty.

The problem of sequence alignment with general gap penalty (gap problem) is a generalization of
the edit distance problem that arises in molecular biology, geology, and speech recognition. When
transforming a string X = x1x2 . . . xm into another string Y = y1y2 . . . yn, a sequence of consecutive
deletes corresponds to a gap in X, and a sequence of consecutive inserts corresponds to a gap in
Y . An affine gap penalty function is predominantly used in bioinformatics. However, in many
applications the cost of such a gap is not necessarily equal to the sum of the costs of each individual
deletion (or insertion) in that gap. In order to handle this general case, two new cost functions wins

and wdel are defined, where wdel(p, q) (0 ≤ p < q ≤ m) is the cost of deleting xp+1 . . . xq from X,
and wins(p, q) (0 ≤ p < q ≤ n) is the cost of inserting yp+1 . . . yq into X. The substitution function
s(xi, yj) is the same as that of the standard edit distance problem. Let G[i, j] denote the minimum
cost of transforming Xi = x1x2 . . . xi into Yj = y1y2 . . . yj (where 0 ≤ i ≤ m and 0 ≤ j ≤ n) under
this general setting. Then G[0, 0] = 0, G[0, j] = wdel(0, j) for 1 ≤ j ≤ n, and G[i, 0] = wins(0, i) for
1 ≤ i ≤ m. Otherwise,

G[i, j] = min


G[i− 1, j − 1] + s(xi, yj),

min0≤q<j { G[i, q] + wdel(q, j) },
min0≤p<i { G[p, j] + wins(p, i) }

. (1)

Figures 2 and 3 show two different approaches for evaluating the entries of G[1 : m, 1 : n]. While
the pull-based approach shown in Figure 2 is the standard way of evaluating Recurrence 1, the
non-standard push-based approach shown in Figure 3 seems more suitable for a MapReduce im-
plementation.

Figure 1: Dependency structure of the gap DP: cell G[i, j] depends on the green cells.
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Loop-Gap-Pull(G, x, m, y, n ) {Inputs are sequences X = x1x2 . . . xm and Y = y1y2 . . . yn, and an (m+ 1)× (n+ 1)
matrix G[0 : m, 0 : n]. Row 0 and column 0 of G are assumed to be appropriately initialized.}

1. for t← 1 to m+ n− 1 do

2. for i← max {1, t+ 1− n} to min {t,m} do

3. j ← t+ 1− i

4. G[i, j]← G[i− 1, j − 1] + s(xi, yj)

5. for q ← 0 to j − 1 do

6. G[i, j]← min {G[i, j], G[i, q] + wins(q, j)}

7. for p← 0 to i− 1 do

8. G[i, j]← min {G[i, j], G[p, j] + wins(p, i)}

9. return G[m,n]

Figure 2: [Pull-based Approach] Looping code implementing Recurrence 1 in which each cell G[i, j]

pulls values from the cells it depends on.

Loop-Gap-Push(G, x, m, y, n ) {Inputs are sequences X = x1x2 . . . xm and Y = y1y2 . . . yn, and an (m+ 1)× (n+ 1)
matrix G[0 : m, 0 : n]. Row 0 and column 0 of G are assumed to be appropriately initialized.}

1. for i← 1 to m do

2. for j ← 1 to n do

3. G[i, j]← min {G[i, 0] + wdel(0, j), G[0, j] + wins(0, i)}

4. for i← 1 to m do

5. G[i, 1]← min {G[i, 1], G[i− 1, 0] + s(xi, y1)}

6. for j ← 1 to n do

7. G[1, j]← min {G[1, j], G[0, j − 1] + s(x1, yj)}

8. for t← 1 to m+ n− 1 do

9. for i← max {1, t+ 1− n} to min {t,m} do

10. j ← t+ 1− i

11. if i < m and j < n then G[i+ 1, j + 1]← min {G[i+ 1, j + 1], G[i, j] + s(xi+1, yj+1)}

12. for q ← j + 1 to n do

13. G[i, q]← min {G[i, q], G[i, j] + wins(j, q)}

14. for p← i+ 1 to m do

15. G[p, j]← min {G[p, j], G[i, j] + wins(i, p)}

16. return G[m,n]

Figure 3: [Push-based Approach] Looping code implementing Recurrence 1 in which each cell G[i, j]

pushes its finalized value to all cells that depend on it. This approach is better suited for MapReduce.
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In the rest of the task we will assume m = n for simplicity. We will also assume wins(i, j) = j2− i2,
wdel(i, j) = j3 − i3, and s(xi, yj) = 0 when xi = yj and 1 otherwise.

Figure 4: The dashed arrows show the cells that push their finalized values to other cells for various
values of t in the approach given in Figure 3. For each value of t all cells to the right and below of
the corresponding dashed arrow get updated due to the pushes.

(a) [ 80 Points ] Design a MapReduce algorithm for solving Recurrence 1 based on the push-
based approach given in Figure 3. Write pseudocode, and analyze its time and space com-
plexities. Modify your algorithm to reduce space complexity.

(b) [ 80 Points ] Implement your algorithm from part (a) on Hadoop. As a practical performance
optimzation you may want to avoid executing the last few values of t as MapReduce rounds
because the number of emits will be very low. Similarly for the first few values of t. Find
the smallest value of n for which you are unable to allocate the entire matrix G on a single
machine. Let n′ be that value. Now use your Hadoop implementation for solving the problem
for n = n′ and n = 2n′. Report running times using 10 data nodes.

Task 2. [ 90 Points ] Floyd-Warshall’s All-Pairs Shortest Path (APSP).

This task is an extension of Task 1 of Homework 1.

Consider a directed graph G = (V,E), where V = {v1, v2, . . . , vn}, and each edge (vi, vj) is labeled
by a real-valued length l(vi, vj). If (vi, vj) /∈ E, l(vi, vj) is assumed to have a value +∞. The length
of a path is defined as the sum of the lengths of the edges in the path, taken in order. For each
pair vi, vj ∈ V , δ[i, j] is defined to be the smallest of the lengths of all paths going from vi to vj .
We assume that G does not have any negative length cycle.
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Floyd-Warshall’s algoithm for computing the length of the shortest path between every pair of
vertices of G has a standard iterative implementation as shown in Figure 5. The input is an n× n
matrix D[1 . . . n, 1 . . . n] in which for every pair i, j ∈ [1, n], D[i, j] is initialized with l(vi, vj). After
the algorithm terminates D[i, j] = δ[i, j] for all i, j ∈ [1, n].

Loop-Floyd-Warshall-APSP-Pull(D,n)

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. D[i, j]← min (D[i, j], D[i, k] +D[k, j])

Figure 5: [Pull-based Approach] Looping code implementing Floyd-Warshall’s APSP algorithm.

(a) [ 90 Points ] Design a MapReduce algorithm for Floyd-Warshall’s APSP shown in Figure
5. Write pseudocode, and analyze its time and space complexities. Modify your algorithm to
reduce space complexity.

APPENDIX 1: What to Turn in

One compressed archive file (e.g., zip, tar.gz) containing the following items.

– Source code, makefiles and job scripts.

– A PDF document containing all answers and plots.
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