CSE 590: Special Topics Course (Supercomputing)

Department of Computer Science Stony Brook University Spring 2016

"To put it quite bluntly: as long as there were no machines, programming was no problem at all; when we had a few weak computers, programming became a mild problem, and now we have gigantic computers, programming has become an equally gigantic problem."

— Edsger Dijkstra, The Humble Programmer, CACM

Course Information

- Lecture Time: MoWe 4:00 pm 5:20 pm
- Location: Earth & Space 079, West Campus
- **Instructor:** Rezaul A. Chowdhury
- Office Hours: MoWe 2:00 pm 3:30 pm, 239 New CS Building
- Email: rezaul@cs.stonybrook.edu
- **TA:** TBA
- TA Office Hours: TBA
- **TA Email:** TBA
- Class Webpage:

http://www.cs.sunysb.edu/~rezaul/CSE590-S16.html

Prerequisites

Required: Background in algorithms analysis
 (e.g., CSE 373 or CSE 548)

- Required: Background in programming languages (C / C++)
- Helpful but Not Required: Background in computer architecture
- Please Note: This is not a course on
 - Programming languages
 - Computer architecture
- Main Emphasis: Parallel algorithms (for supercomputing)

Course Organization

- First Part: 11 Lectures (tentative)

- Introduction (2)
- Shared-memory parallelism & Cilk (2)
- Distributed-memory parallelism & MPI (2)
- GPGPU computation & CUDA (2)
- MapReduce & Hadoop (2)
- Cloud computing (1)

– Second Part:

- Paper presentations
- Group projects

Grading Policy

- Programming assignments (best 3 of 4): 15%
- Paper presentation (one): 25%
- Report on a paper presented by another student (one): 10%
- Group project (one): 40%
 - Proposal (in-class): Feb 29
 - Progress report (in-class): April 11
 - Final presentation (in-class): May 4 6
- Class participation & attendance: 10%

Programming Environment

This course is supported by an educational grant from

Extreme Science and Engineering Discovery Environment
 (XSEDE): https://www.xsede.org

We will use XSEDE for homeworks/projects involving

- Shared-memory parallelism
- Distributed-memory parallelism
- GPGPU and Intel MIC

Programming Environment

On XSEDE we have access to

- Stampede: 6,400 nodes with 16 cores/node & Intel MIC / NVIDIA GPU
- Comet: \approx 2,000 compute nodes with 24 cores/node
- SuperMIC: 360 nodes with 20 cores/node & Intel MIC / NVIDIA GPU

<u>World's Most Powerful Supercomputers in November, 2012</u> (www.top500.org)

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)
1	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
2	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	16,324.8	20,132.7	7,890
3	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
4	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,162.4	10,066.3	3,945
5	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	393,216	4,141.2	5,033.2	1,970
6	Leibniz Rechenzentrum Germany	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR IBM/Lenovo	147,456	2,897.0	3,185.1	3,423
7	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5- 2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi Dell	204,900	2,660.3	3,959.0	

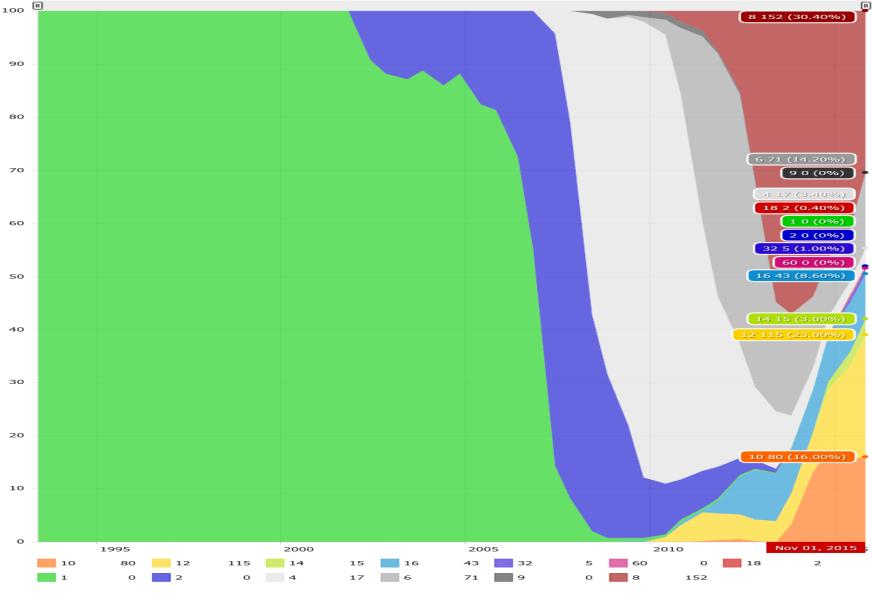
Recommended Texts

No required textbook.

Some useful ones are as follows

- A. Grama, G. Karypis, V. Kumar, and A. Gupta. *Introduction to Parallel Computing* (2nd Edition), Addison Wesley, 2003.
- M. Herlihy and N. Shavit. *The Art of Multiprocessor Programming* (1st Edition), Morgan Kaufmann, 2008.
- P. Pacheco. *Parallel Programming with MPI* (1st Edition), Morgan Kaufmann, 1996.
- D. and W. Hwu. *Programming Massively Parallel Processors: A Hands-on Approach* (1st Edition), Morgan Kaufmann, 2010.
- J. Lin and C. Dyer. *Data-Intensive Text Processing with MapReduce*, Morgan and Claypool Publishers, 2010.
- T. White. *Hadoop: The Definitive Guide* (2nd Edition), Yahoo Press, 2010.
- T. Velte, A. Velte, and R. Elsenpeter. *Cloud Computing, A Practical Approach* (1st Edition), McGraw-Hill Osborne Media, 2009.

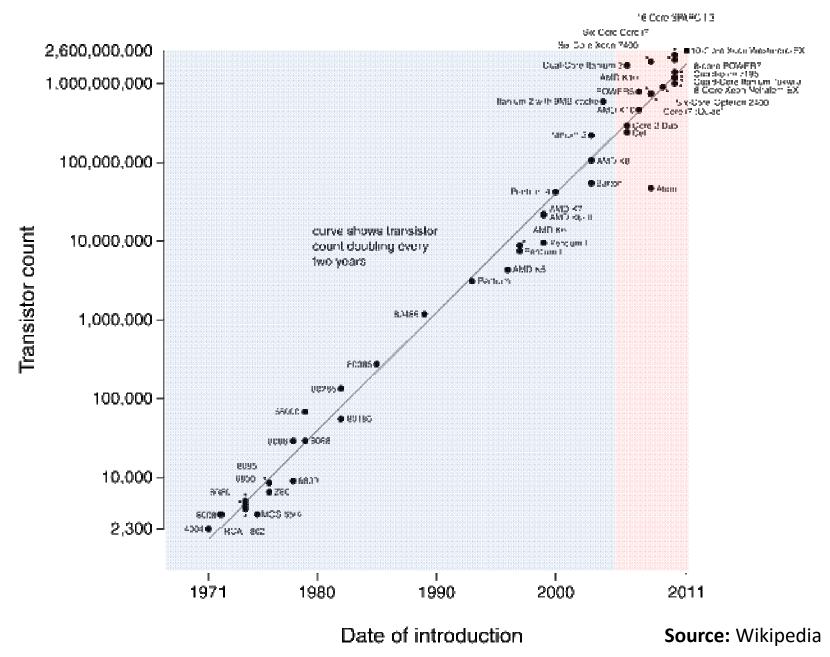
Supercomputing & Parallel Computing

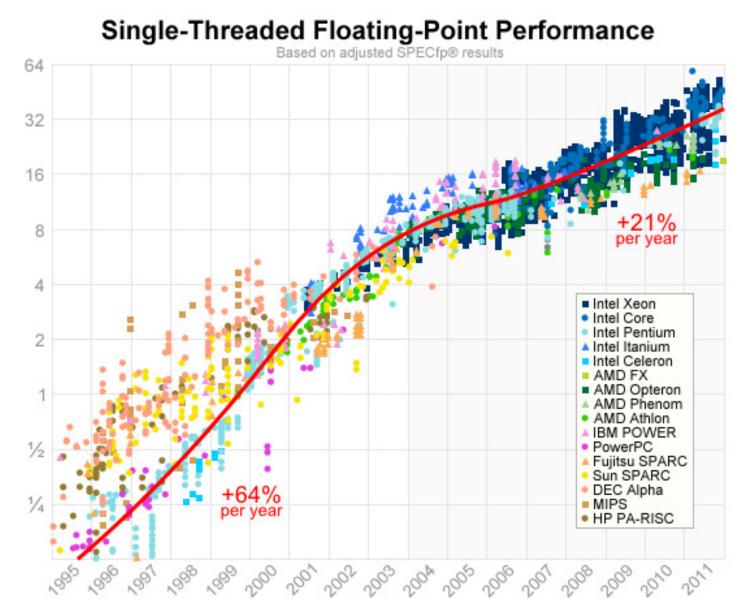

Top 10 Supercomputing Sites in Nov. 2015

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
6	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	301,056	8,100.9	11,078.9	
7	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
8	HLRS - Höchstleistungsrechenzentrum Stuttgart Germany	Hazel Hen - Cray XC40, Xeon E5-2680v3 12C 2.5GHz, Aries interconnect Cray Inc.	185,088	5,640.2	7,403.5	
9	King Abdullah University of Science and Technology Saudi Arabia	Shaheen II - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	196,608	5,537.0	7,235.2	2,834
10	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5- 2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510

Source: www.top500.org

Top 500 Supercomputing Sites


(Cores per Socket – Systems Share)


Source: www.top500.org

Why Parallelism?

Moore's Law

Unicore Performance

Source: Jeff Preshing, 2012, http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

Unicore Performance Has Hit a Wall!

Some Reasons

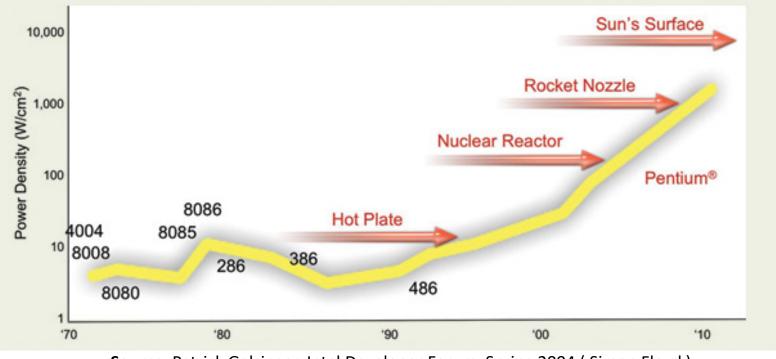
- Lack of additional ILP
 (Instruction Level Hidden Parallelism)
- High power density
- Manufacturing issues
- Physical limits
- Memory speed

Unicore Performance: No Additional ILP

"Everything that can be invented has been invented."

— Charles H. Duell Commissioner, U.S. patent office, 1899

Exhausted all ideas to exploit hidden parallelism?


- Multiple simultaneous instructions
- Instruction Pipelining
- Out-of-order instructions
- Speculative execution
- Branch prediction
- Register renaming, etc.

Unicore Performance: High Power Density

– Dynamic power, $P_d \propto V^2 f C$

- V = supply voltage
- f = clock frequency
- C = capacitance
- But $V \propto f$

- Thus $P_d \propto f^3$

Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 (Simon Floyd)

Unicore Performance: Manufacturing Issues

- Frequency,
$$f \propto 1/s$$


- s = feature size (transistor dimension)

- Transistors / unit area \propto 1 / s^2
- Typically, die size $\propto 1/s$
- So, what happens if feature size goes down by a factor of x?
 - Raw computing power goes up by a factor of x^4 !
 - Typically most programs run faster by a factor of x³
 without any change!

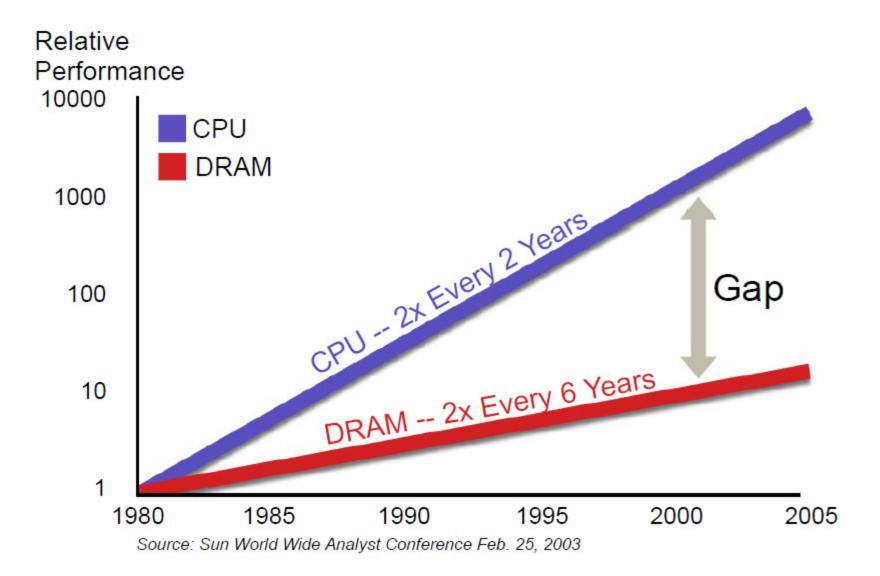
Unicore Performance: Manufacturing Issues

Manufacturing cost goes up as feature size decreases

- Cost of a semiconductor fabrication plant doubles every 4 years (Rock's Law)
- CMOS feature size is limited to 5 nm (at least 10 atoms)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Physical Limits


Execute the following loop on a serial machine in 1 second:

```
for ( i = 0; i < 10<sup>12</sup>; ++i )
z[i] = x[i] + y[i];
```

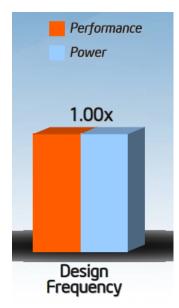
- We will have to access 3×10^{12} data items in one second
- Speed of light is, $c \approx 3 \times 10^8$ m/s
- So each data item must be within c / $3 \times 10^{12} \approx 0.1$ mm from the CPU on the average
- All data must be put inside a 0.2 mm × 0.2 mm square
- Each data item (≥ 8 bytes) can occupy only 1 Å² space!
 (size of a small atom!)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Memory Wall

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems

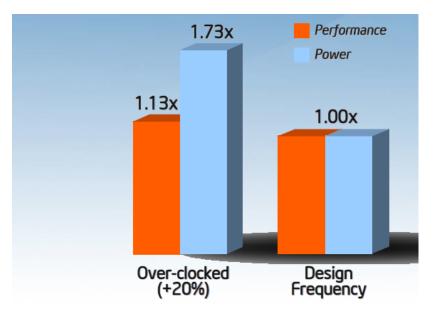
Unicore Performance Has Hit a Wall!


Some Reasons

- Lack of additional ILP
 - (Instruction Level Hidden Parallelism)
- High power density
- Manufacturing issues
- Physical limits
- Memory speed

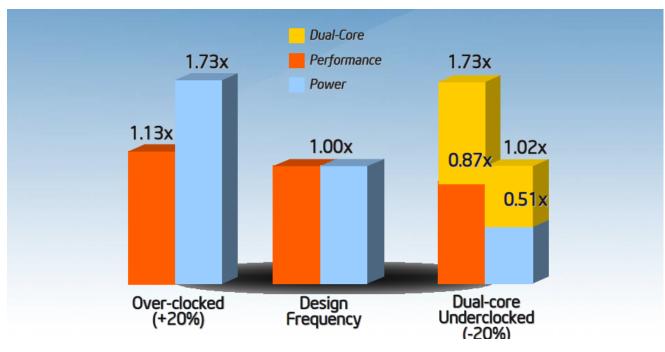
" *"Oh Sinnerman, where you gonna run to?" — Sinnerman (recorded by Nina Simone)*

Where You Gonna Run To?

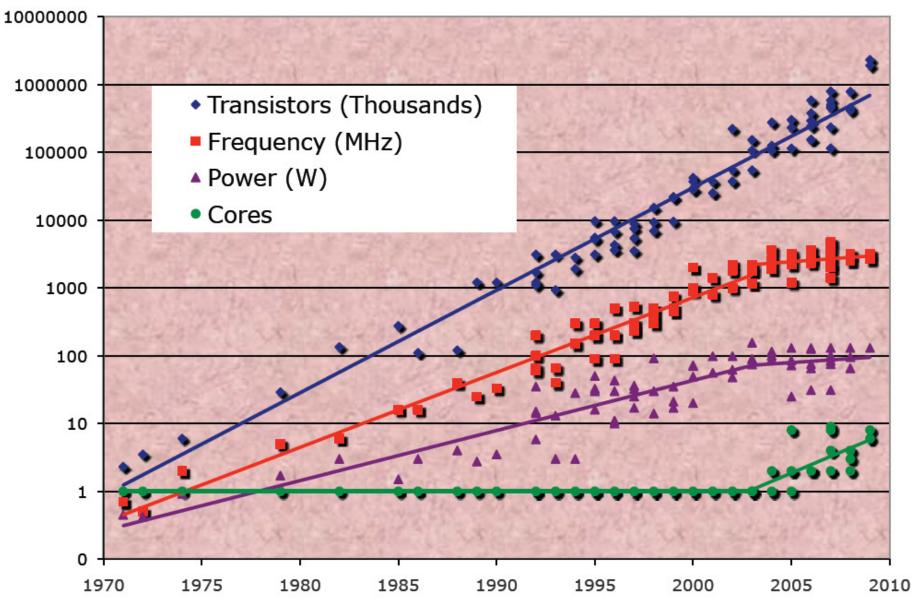

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Where You Gonna Run To?

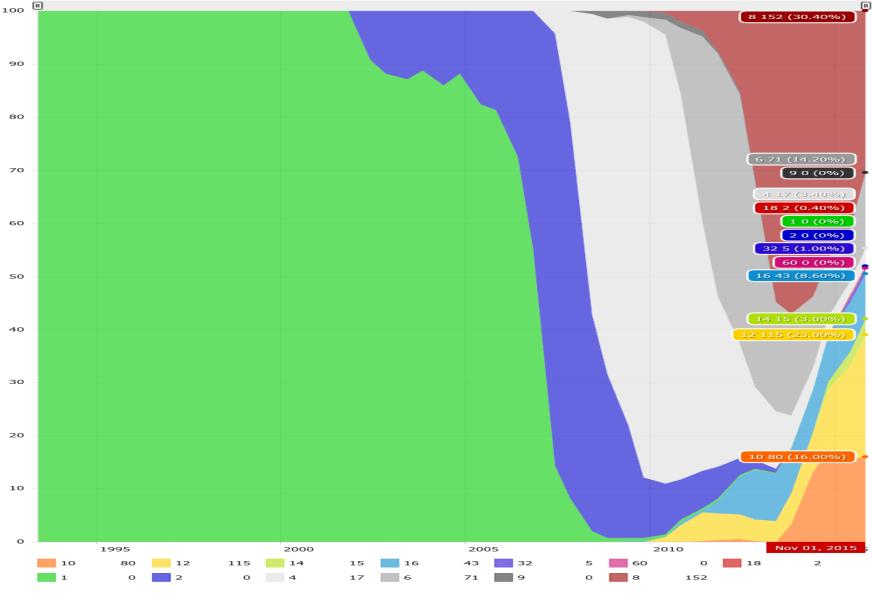

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20%?
- And underclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

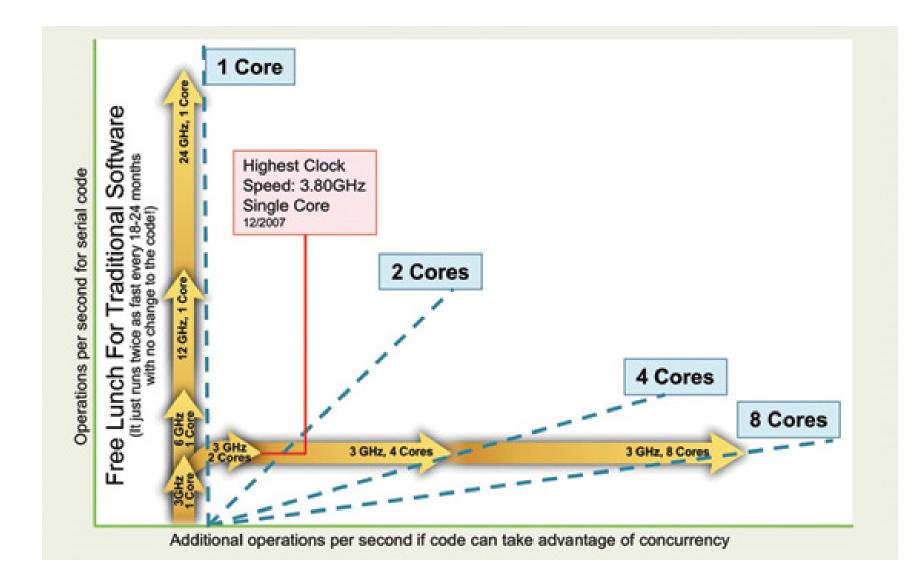

Where You Gonna Run To?

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20%?
- And underclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation


Moore's Law Reinterpreted

Source: Report of the 2011 Workshop on Exascale Programming Challenges

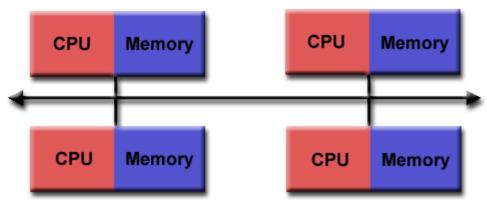

Top 500 Supercomputing Sites

(Cores per Socket – Systems Share)

Source: www.top500.org

No Free Lunch for Traditional Software

Insatiable Demand for Performance

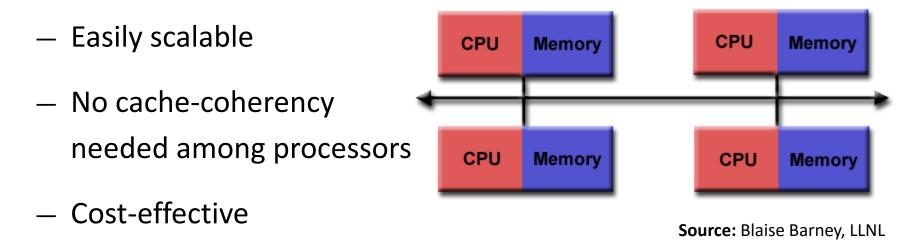


Source: Patrick Gelsinger, Intel Developer Forum, 2008

Some Useful Classifications of Parallel Computers

Parallel Computer Memory Architecture (Distributed Memory)

- Each processor has its own
 local memory no global
 address space
- Changes in local memory by one processor have no effect on memory of other processors

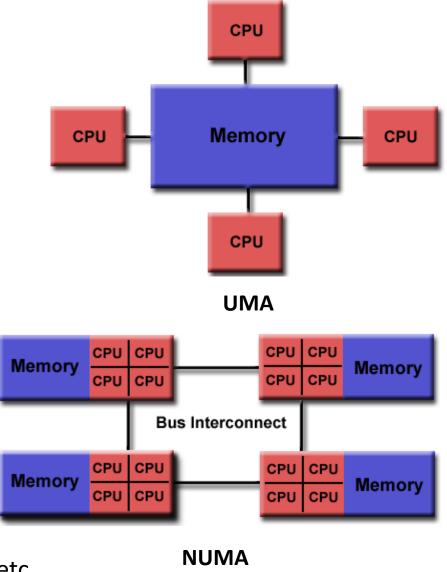


Source: Blaise Barney, LLNL

- Communication network to connect inter-processor memory
- Programming
 - Message Passing Interface (MPI)
 - Many once available: PVM, Chameleon, MPL, NX, etc.

Parallel Computer Memory Architecture (Distributed Memory)

Advantages



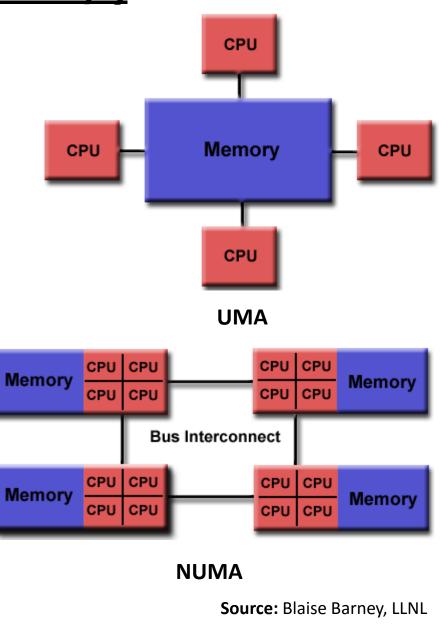
Disadvantages

- Communication is user responsibility
- Non-uniform memory access
- May be difficult to map shared-memory data structures to this type of memory organization

Parallel Computer Memory Architecture (Shared Memory)

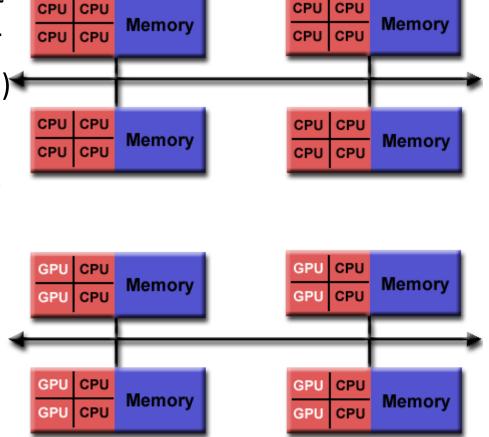
- All processors access all memory as global address space
- Changes in memory by one processor are visible to all others
- Two types
 - Uniform Memory Access
 (UMA)
 - Non-Uniform Memory Access
 (NUMA)
- Programming
 - Open Multi-Processing (OpenMP)
 - Cilk/Cilk++ and Intel Cilk Plus
 - Intel Thread Building Block (TBB), etc.

Source: Blaise Barney, LLNL


Parallel Computer Memory Architecture (Shared Memory)

Advantages

- User-friendly programming perspective to memory
- Fast data sharing


Disadvantages

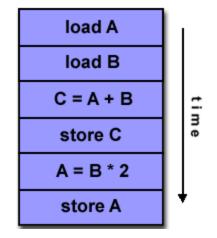
- Difficult and expensive to scale
- Correct data access is user responsibility

<u>Parallel Computer Memory Architecture</u> (<u>Hybrid Distributed-Shared Memory</u>)

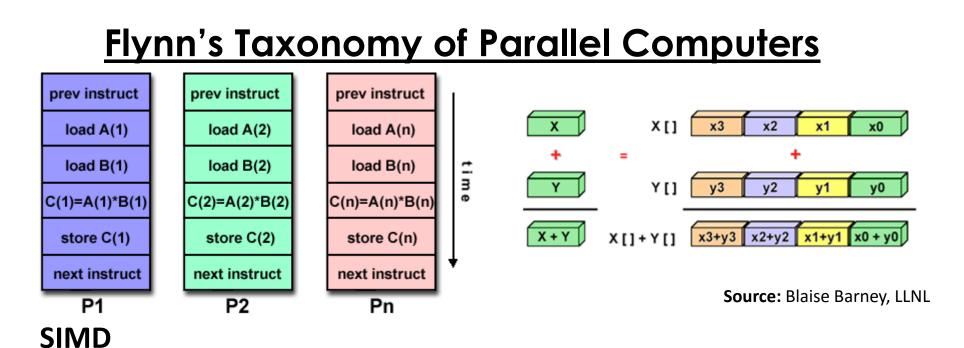
- The shared-memory component can be a cache-coherent SMP or a Graphics Processing Unit (GPU)
- The distributed-memory component is the networking of multiple SMP/GPU machines
- Most common architecture
 for the largest and fastest
 computers in the world today
- Programming
 - OpenMP / Cilk + CUDA / OpenCL + MPI, etc.

Flynn's Taxonomy of Parallel Computers

Flynn's classical taxonomy (1966):


Classification of multi-processor computer architectures along two independent dimensions of *instruction* and *data*.

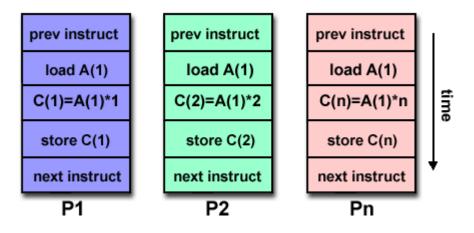
	Single Data (SD)	Multiple Data (MD)
Single Instruction (SI)	SISD	SIMD
Multiple Instruction (MI)	MISD	MIMD


Flynn's Taxonomy of Parallel Computers

SISD

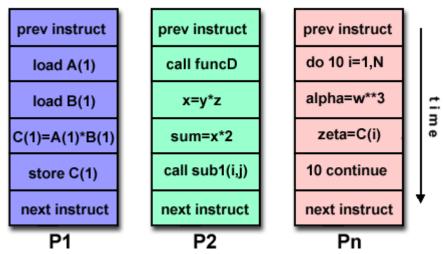
- A serial (non-parallel) computer
- The oldest and the most common type of computers
- Example: Uniprocessor unicore machines

Source: Blaise Barney, LLNL



- A type of parallel computer
- All PU's run the same instruction at any given clock cycle
- Each PU can act on a different data item
- Synchronous (lockstep) execution
- Two types: processor arrays and vector pipelines
- Example: GPUs (Graphics Processing Units)

Flynn's Taxonomy of Parallel Computers


MISD

- A type of parallel computer
- Very few ever existed

MIMD

- A type of parallel computer
- Synchronous /asynchronous
 execution
- Examples: most modern
 supercomputers, parallel
 computing clusters,
 multicore PCs

Parallel Algorithms Warm-up

"The way the processor industry is going, is to add more and more cores, but nobody knows how to program those things. I mean, two, yeah; four, not really; eight, forget it."

— Steve Jobs, NY Times interview, June 10 2008

Parallel Algorithms Warm-up (1)

Consider the following loop:

for i = 1 to n do $C[i] \leftarrow A[i] \times B[i]$

- Suppose you have an infinite number of processors/cores
- Ignore all overheads due to scheduling, memory accesses, communication, etc.
- Suppose each operation takes a constant amount of time
- How long will this loop take to complete execution?

Parallel Algorithms Warm-up (1)

Consider the following loop:

for i = 1 to n do $C[i] \leftarrow A[i] \times B[i]$

- Suppose you have an infinite number of processors/cores
- Ignore all overheads due to scheduling, memory accesses, communication, etc.
- Suppose each operation takes a constant amount of time
- How long will this loop take to complete execution?

- O(1) time

Parallel Algorithms Warm-up (2)

Now consider the following loop:

 $c \leftarrow 0$
for i = 1 to n do
 $c \leftarrow c + A[i] \times B[i]$

— How long will this loop take to complete execution?

Parallel Algorithms Warm-up (2)

Now consider the following loop:

 $c \leftarrow 0$
for i = 1 to n do
 $c \leftarrow c + A[i] \times B[i]$

— How long will this loop take to complete execution?

 $-O(\log n)$ time

Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort(A) $if |A| \le 1 return A$ $else \ p \leftarrow A[rand(|A|)]$ $return QSort(\{x \in A: x < p\})$ $\#\{p\}\#$ $QSort(\{x \in A: x > p\})$

— Assuming that A is split in the middle everytime, and the two recursive calls can be made in parallel, how long will this algorithm take?

Parallel Algorithms Warm-up (3)

Now consider quicksort:

QSort(A) $if |A| \le 1 return A$ $else \ p \leftarrow A[rand(|A|)]$ $return QSort(\{x \in A: x < p\})$ $\#\{p\}\#$ $QSort(\{x \in A: x > p\})$

- Assuming that A is split in the middle everytime, and the two recursive calls can be made in parallel, how long will this algorithm take?
 - $O(\log^2 n)$ (if partitioning takes logarithmic time)
 - $O(\log n)$ (but can be partitioned in constant time)