
CSE 590: Special Topics Course

( Supercomputing )

Lecture 10

( MapReduce & Hadoop )

Rezaul A. Chowdhury
Department of Computer Science

SUNY Stony Brook

Spring 2016



MapReduce

MapReduce is

― a programming model for expressing distributed computations 

on massive datasets, and

― an execution framework for large-scale data processing on 

commodity clusters

Developed at Google in 2004 ( Jeffrey Dean & Sanjay Ghemawat ).

An open-source version called Hadoop was later developed at Yahoo.

Hadoop is now an Apache project.

Amazon Elastic MapReduce runs Hadoop on Amazon EC2.



MapReduce

MapReduce provides

― Simple API’s, and

― Automatic

o Parallelization

o Data distribution

o Load balancing

o Fault tolerance



Big Ideas behind MapReduce

Scale Out Instead of Scaling Up: A large number of commodity low-

end servers is preferred over a small number of high-end servers.

Be Ready to Tackle Failures: Failures are the norm at warehouse scale 

computing.

Move Code to the Data: Code transfer is much cheaper than 

transferring massive amounts of data.

Process Data Sequentially: Random accesses to data stored on disks 

are much costlier than sequential accesses.

Hide System-Level Details from Programmers: Provide a simple 

abstraction that is easy to reason about.

Seamless Scalability: A simple programming model to approach ideal 

scaling characteristics in many circumstances.



A Simplified View of MapReduce

Input Files

Map

Shuffle

Reduce

Output Files

Input key-

value pairs

Intermediate 

key-value pairs

All values 

associated with 

the same key

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”



A Simple Word Count Example

Count the number of occurrences of every word in a text collection.

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”



Combiner & Partitioner

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”

A mini reducer in 

the map phase

Determines which key 

goes to which reducer



Word Count with In-Mapper Combining

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”



Word Count with Improved In-Mapper Combining

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”



Compute Mean of Values Associated with Each Key

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”



Mean of Values with a Separate Combiner

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”



Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”

Mean of Values with a Separate Combiner



Mean of Values with an In-Mapper Combiner

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”



Computing Word Co-occurrences

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”



Word Co-occurrences ( Stripes Approach )

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”



Baseline Inverted Indexing for Text Retrieval

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”



Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”

Baseline Inverted Indexing for Text Retrieval



Scalable Inverted Indexing for Text Retrieval

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”



Parallel Breadth-First Search

Source: Lin & Dyer, “Data-Intensive Text Processing with MapReduce”



Hadoop Subprojects

Source: Tom White, 

“Hadoop – The Definitive Guide”

Core: A set of components and interfaces for distributed file systems 

and general I/O ( serialization, Java RPC, persistent data structures ).

Avro: A data serialization system for efficient, cross-language RPC, 

and persistent data storage.

MapReduce: A distributed data processing model and execution 

environment that runs on large clusters of commodity machines.

HDFS: A distributed filesystem that runs on large clusters of 

commodity machines.



Hadoop Subprojects

Source: Tom White, 

“Hadoop – The Definitive Guide”

Pig: A data flow language and execution environment for exploring 

very large datasets. Pig runs on HDFS and MapReduce clusters.

HBase: A distributed, column-oriented database. HBase uses HDFS for 

its underlying storage, and supports both batch-style computations 

using MapReduce and point queries ( random reads ).

ZooKeeper: A distributed, highly available coordination service. 

ZooKeeper provides primitives such as distributed locks that can be 

used for building distributed applications.



Hadoop Subprojects

Source: Tom White, 

“Hadoop – The Definitive Guide”

Hive: A distributed data warehouse. Hive manages data stored in 

HDFS and provides a query language based on SQL ( and which is 

translated by the runtime engine to MapReduce jobs ) for querying 

the data.

Chukwa: A distributed data collection and analysis system. Chukwa

runs collectors that store data in HDFS, and it uses MapReduce to 

produce reports.



The Building Blocks of Hadoop

On a fully configured Hadoop cluster a set of daemons or resident 

programs run on the different servers in the network. 

o NameNode

o DataNode

o Secondary NameNode

o JobTracker

o TaskTracker



The Building Blocks of Hadoop

NameNode: The bookkeeper of HDFS: keeps track of how files are 

broken down into file blocks, which nodes store those blocks, and 

the overall health of the distributed filesystem.

DataNode: Each slave machine in the cluster hosts a DataNode

daemon to perform the reading and writing of HDFS blocks to actual 

files on the local filesystem.
S

o
u

rc
e

:
C

h
u

ck
 L

a
m

, 
“H

a
d

o
o

p
in

 A
ct

io
n

”



The Building Blocks of Hadoop

JobTracker: Determines the execution plan for a job by determining 

which files to process, assigns nodes to different tasks, and monitors 

all tasks as they’re running. Should a task fail, the JobTracker will 

automatically relaunch the task, possibly on a different node.

TaskTracker: Manages the execution of individual ( map or reduce ) 

tasks on each slave node. 
S

o
u

rc
e

:
C

h
u

ck
 L

a
m

, 
“H

a
d

o
o

p
in

 A
ct

io
n

”



S
o

u
rc

e
:

C
h

u
ck

 L
a

m
, 

“H
a

d
o

o
p

in
 A

ct
io

n
”

Secondary NameNode: It communicates with the NameNode to 

take periodic snapshots of the HDFS metadata. Does not keep track 

of any real-time changes to HDFS. Can be configured to work as the 

NameNode in the event of the failure of the original NameNode.

The Building Blocks of Hadoop



Hadoop Distributed File System ( HDFS ) Design

HDFS was designed for

― Very large files

― Streaming data access

― Commodity hardware

But not for

― Low latency access

― Lots of small files

― Multiple writes, arbitrary file modifications



Hadoop MapReduce

Source: Tom White, 

“Hadoop – The Definitive Guide”



An Example: Mining Weather Data
Find Maximum Temperature Every Year

Source: Tom White, 

“Hadoop – The Definitive Guide”



Maximum Temperature Every Year ( Java )

Source: Tom White, “Hadoop – The Definitive Guide”

… … …

… … …

… … …



Maximum Temperature Every Year ( Java )

Source: Tom White, “Hadoop – The Definitive Guide”



Maximum Temperature Every Year ( Java )

Source: Tom White, “Hadoop – The Definitive Guide”



Maximum Temperature Every Year ( Java )

Source: Tom White, “Hadoop – The Definitive Guide”



Maximum Temperature Every Year ( Python )

Source: Tom White, “Hadoop – The Definitive Guide”



Maximum Temperature Every Year ( C++ )

Source: Tom White, “Hadoop – The Definitive Guide”



Maximum Temperature Every Year ( C++ )

Source: Tom White, “Hadoop – The Definitive Guide”


