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Parallel Execution Time & Overhead

Parallel running time on � processing elements,

�� = ����  –  ����� ,

where,  ����� = starting time of the processing element

that starts first

���� = termination time of the processing element 

that finishes last
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Sources of overhead ( w.r.t. serial execution )

― Interprocess interaction

― Interact and communicate data ( e.g., intermediate results )

― Idling

― Due to load imbalance, synchronization, presence of serial 

computation, etc.

― Excess computation

― Fastest serial algorithm may be difficult/impossible to parallelize

Parallel Execution Time & Overhead



S
o

u
rc

e
:

G
ra

m
a

e
t 

a
l.

, 

“I
n

tr
o

d
u

ct
io

n
 t

o
 P

a
ra

ll
e

l C
o

m
p

u
ti

n
g

”,

2
n

d
E

d
it

io
n

Parallel Execution Time & Overhead

Overhead function or total parallel overhead, 

�� =  ��� –  � ,

where,  � = number of processing elements

� = time spent doing useful work

( often execution time of the fastest serial algorithm )



Speedup

Speedup, �� =
��

��

Let  �� = running time using � identical processing elements

Theoretically, �� ≤ � ( why? )

Perfect or linear or ideal speedup if �� = �



Speedup
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Consider adding � numbers 

using � identical processing 

elements.

Serial runtime, �� = Θ �

Parallel runtime, ��= Θ log �

Speedup, ��= 

��

��
= Θ

�

��� �

Speedup not ideal.  



Theoretically, �� ≤ �

But in practice superlinear speedup is sometimes observed, 

that is, �� > � ( why? )

Reasons for superlinear speedup

― Cache effects

― Exploratory decomposition

Superlinear Speedup



Superlinear Speedup
( Cache Effects )

DRAM

cache

CPU

core

cache

CPU

core

Let cache access latency = 2 ns

DRAM access latency = 100 ns

Suppose we want solve a problem

instance that executes k FLOPs.

With 1 Core:  Suppose cache hit rate is 80%.

If the computation performs 1 FLOP/memory access, then each 

FLOP will take 2 × 0.8 + 100 × 0.2 = 21.6 ns to execute.

With 2 Cores:  Cache hit rate will improve. ( why? )

Suppose cache hit rate is now 90%.

Then each FLOP will take 2 × 0.9 + 100 × 0.1 = 11.8 ns to execute.

Since now each core will execute only k / 2 FLOPs,

�!= 
"×!�.%

("/!)×��.)
≈3.66 > 2Speedup, 



Superlinear Speedup
( Due to Exploratory Decomposition )

x

A[1] A[2] A[3] A[k] A[2n]… … … … … …

sequential search

Consider searching an array of 2n unordered elements for a specific 

element x.

Suppose x is located at array location k > n and k is odd.

Serial runtime, �� = -

Parallel running time with n

processing elements, �� = 1

Speedup, �� =
��

��
 = - > �

Speedup is superlinear!

x

A[1] A[2] A[3] A[k] A[2n]… … … … … …

P1 P2 P
//0

P
n

… … … … … …

parallel search



Parallelism & Span Law

Parallelism, � =
��

�1

We defined, �� = runtime on � identical processing elements

Parallelism is an upper bound on speedup, i.e., �� ≤ � ( why? )

Then span, �2 = runtime on an infinite number of identical 

processing elements

Span Law

�� ≥ �2



Efficiency

Efficiency, 4� =  
5�

�

Efficiency is a measure of the fraction of time for which a processing 

element is usefully employed.

In an ideal parallel system, �� = � and 4� = 1.

Consider again the example of adding n numbers using n identical 

processing elements.

Speedup, �� =  
�

��
= Θ

�

��� �

Efficiency, 4� =  
5�

�
= Θ

�

��� �



Cost or Work

The cost of solving ( or work performed for solving ) a problem:

On a Serial Computer: is the execution time � of the fastest known 

sequential algorithm for solving the problem.

On a Parallel Computer: is given by ���.

A parallel algorithm is cost-optimal or work-optimal provided

��� = Θ �

For a work-optimal parallel algorithm: 4� =
5�

�
=

�

���
= Θ 1

Our algorithm for adding n numbers using n identical processing 

elements is clearly not cost optimal.



Work Law

The cost of solving ( or work performed for solving ) a problem:

On a Serial Computer: is given by ��

On a Parallel Computer: is given by ���

Work Law

�� ≥
��

�



Work Optimality

Let �6 = runtime of the optimal or the fastest known serial algorithm

A parallel algorithm is cost-optimal or work-optimal provided

��� = Θ �6

Our algorithm for adding � numbers using � identical processing 

elements is clearly not work optimal.



Suppose we use � processing elements.

First each processing element locally

adds its 
�

�
numbers in time Θ

�

�
.

Then � processing elements adds these � partial sums in time Θ log � .

Thus �� = Θ
�

�
+ log � , and �6 = Θ � .

So the algorithm is work-optimal provided � = Ω � log � .

Adding n Numbers Work-Optimality

Source: Grama et al., 

“Introduction to Parallel Computing”, 2nd Edition

We reduce the number of processing 

elements which in turn increases the

granularity of the subproblem assigned

to each processing element.



Scaling Laws



Scaling of Parallel Algorithms
( Amdahl’s Law )

Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, �� ≥ 1 − 9 �� + 9
��

�

Speedup, �� =
��

��
≤

�

:; �<: �
=

�

�<: ;
=

�

≤
�

�<:



Scaling of Parallel Algorithms
( Amdahl’s Law )

Suppose only a fraction f of a computation can be parallelized.

Speedup, �� =
��

��
≤

�

�<: ;
=

�

≤
�

�<:

Source: Wikipedia



Scaling of Parallel Algorithms
( Gustafson-Barsis’ Law )

Suppose only a fraction f of a computation was parallelized.

Then serial running time, �� = 1 − 9 �� + �9��

Speedup, �� =
��

��
=

�<: ��;�:��

��
= 1 + � − 1 9



Suppose only a fraction f of a computation was parallelized.

Speedup, �� =
�

��
≤

��

��
=

�<: ��;�:��

��
= 1 + � − 1 9

Source: Wikipedia
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Number of Processors

f = 0.1

f = 0.2

f = 0.3

f = 0.4

f = 0.5

f = 0.6
f = 0.7f = 0.8f = 0.9

Scaling of Parallel Algorithms
( Gustafson-Barsis’ Law )



Strong Scaling

How �� ( or �� ) varies with � when the problem size is fixed.

Strong Scaling vs. Weak Scaling

Weak Scaling

How �� ( or �� ) varies with � when the problem size per 

processing element is fixed.
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A parallel algorithm is called scalable if its efficiency can be 

maintained at a fixed value by simultaneously increasing the number 

of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing 

processing elements effectively.

Scalable Parallel Algorithms

Efficiency,   4� =
5�

�
=

��

���
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A parallel algorithm is called scalable if its efficiency can be 

maintained at a fixed value by simultaneously increasing the number 

of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing 

processing elements effectively.

Scalable Parallel Algorithms

Efficiency,4� =
5�

�
=

��

���
=

��

��;�>
=

�

�;
?>
?�

Observe that if the problem size is fixed, �@ increases with �.  ( why? )

So, 4� drops as p increases.

On the other hand, for many algorithms �@ grows sublinearly w.r.t. ��.

For such algorithms 4� can be kept fixed by increasing the problem 

size and � simultaneously. 



Scalable Parallel Algorithms

Efficiency, 4� =
5�

�
=

�

���
=

�

�;�>
=

�
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?

Observe that if the problem size is fixed, �@ increases with p.  ( why? )

So 4� drops as p increases.

On the other hand, for many algorithms �@ grows sublinearly w.r.t. T.

For such algorithms 4� can be kept fixed by increasing the problem 

size and p simultaneously. 
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In order to keep 4� fixed at a constant k, we need

Scalable Parallel Algorithms

4� = - ⇒
��

���

= - ⇒ �� = -���

Source: Grama et al., “Introduction to Parallel Computing”, 2nd Edition

Fig: Efficiency for adding n numbers using p processing elements

For the algorithm that adds n numbers using p processing elements:

�� = � and  �� =
�

�
+ 2 log �

So in order to keep 4� fixed at k, we must have:

� = -�
�

�
+ 2 log � ⇒ � =

2-

1 − -
� log �



For a given problem, we define problem size W as the number of 

basic computation steps in the fastest sequential algorithm that 

solves the problem on a serial machine.

The Isoefficiency Function

Thus H = �.

We have, 4� =
5�

�
=

�

���
=

�

�;�>
=

�

�;
?>
?

=
�

�;
?> I,�

I

Rearranging, H =
J�

�<J�
�@ H, � = K�@ H, � , where K =

J�

�<J�

We have already seen how to obtain the isoefficiency function for 

adding n numbers using p processing elements.



Suppose, �@ = �L/! + �L/MHL/M. 

We balance H against each term of �@, and the component of �@

that requires H to grow at the highest rate w.r.t. � gives the overall 

asymptotic isoefficiency function for the algorithm.

Isoefficiency for Complex Overhead Functions

Using only the 1st term, H = K�L/!

Hence, the overall isoefficiency function is Θ �L .

Using only the 2nd term, H = KM�L


