CSE 590: Special Topics Course
(Supercomputing)

Lecture 2
(Analytical Modeling of Parallel Programs)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2016

Parallel Execution Time & Overhead

Execution Time —= :u;

£

=

0 [5

£ A— £

© S

]

P2 E— 59
2 | o2 O
E o E
P g g 3
o
P25] 2 3 2

O C

it 5 0

tm— o -+

2 (8]

FPr 2 g

(o]

=

£

B Essential/Excess Computation 1 Interprocessor Communication

[1atling

Parallel running time on p processing elements,

TP = lend ~ Cstares
where, t., .., = starting time of the processing element
that starts first
t.,q = termination time of the processing element

that finishes last

Parallel Execution Time & Overhead

Execution Time =m;

£

S)

20 | g_

~f o— - €

E © S

]

/2 | —] r - c
Pk | c= 2
. € © =
P g & S
©
P3 g S

O c

L 59

e o=

FP7 3 S

yel

@]

—

e

£

B Essential/Excess Computation 1 Interprocessor Communication

[1atling
Sources of overhead (w.r.t. serial execution)

— Interprocess interaction
— Interact and communicate data (e.g., intermediate results)
— Idling
— Due to load imbalance, synchronization, presence of serial
computation, etc.

— Excess computation

— Fastest serial algorithm may be difficult/impossible to parallelize

Parallel Execution Time & Overhead

Execution Time —= :u;

£

=

0 [5

£ A— £

© S

]

P2 E— 59
2 | o2 O
E o E
P g g 3
o
P25] 2 3 2

O C

it 5 0

tm— o -+

2 (8]

FPr 2 g

(o]

=

£

B Essential/Excess Computation 1 Interprocessor Communication

[1atling

Overhead function or total parallel overhead,
Ty = pT,-T,

where, p = number of processing elements
T = time spent doing useful work
(often execution time of the fastest serial algorithm)

Speedup

Let T, = running time using p identical processing elements

Speedup, 5, = ;—1
p

Theoretically, S, <p (why?)

Perfect or linear or ideal speedup if Sp=Dp

Speedup

Consider adding n numbers

using n identical processing

elements.

Serial runtime, T; = O(n)

Parallel runtime, T,,= ®(logn)

o

Speedup, S, = ;1 =

n

Speedup not ideal.

n

logn

)

E (LH 1 12 13 14 1%

@@@@@@@@@@@@@@@@

(a) Initial data distribution and the first commuanication step

1 _l. * T 11 z 3
-7 b3 Eﬁ EII:- I EI-I.

E@_@@@@@@@@@@@@_@_@@

(b} Second communication step

z, ¥

E@@@@@@@@@@@@@@@@

ic) Third communication step

“Introduction to Parallel Computing”, 2"d Edition

e

@@@@@@@@ @@@@@@@

(d} Fourth communication step

Source: Grama et al.,

EIII'?
ONONONONONONONONONORONONCNCNCH®)

(&) Accumulation of the sum ot processing element O after the final commumicatior

Superlinear Speedup

Theoretically, S, < p

But in practice superlinear speedup is sometimes observed,
thatis, S, > p (why?)

Reasons for superlinear speedup
— Cache effects

— Exploratory decomposition

Superlinear Speedup
(Cache Effects)

Let cache access latency = 2 ns ,‘ SRAM L
DRAM access latency = 100 ns o il T
| cache | | cache |
Suppose we want solve a problem
instance that executes k FLOPs. |l—L| %
CPU CPU
With 1 Core: Suppose cache hit rate is 80%. core core

If the computation performs 1 FLOP/memory access, then each
FLOP will take 2 x 0.8 + 100 x 0.2 = 21.6 ns to execute.

With 2 Cores: Cache hit rate will improve. (why?)
Suppose cache hit rate is now 90%.
Then each FLOP will take 2 x 0.9 + 100 x 0.1 = 11.8 ns to execute.
Since now each core will execute only k / 2 FLOPs,

kx21.6 ~3.66 > 2

(k/2)x11.8

Speedup, S,=

l...

L]

Superlinear Speedup
(Due to Exploratory Decomposition)

Consider searching an array of 2n unordered elements for a specific

element x.

Suppose x is located at array location kK > n and k is odd.

Serial runtime, T; = k ALl AZIABL AR Alzn)
X
Parallel running time with n sequential search
processing elements, T,, = 1
5 _ ALl AZIAB] A Alzn)
Speedup, S;, == =k >n
Ty, X
\ Y) Y J \ J \ J
Speedup is superlinear! P, Py e e Plg e P,

parallel search

Parallelism & Span Law

We defined, T}, = runtime on p identical processing elements

Then span, Ty, = runtime on an infinite number of identical

processing elements

. T
Parallelism, P = —=

Teo

Parallelism is an upper bound on speedup, i.e., S, < P (why?)

Span Law
Tp > T

Efficiency

S
Efficiency, E, = ?p

Efficiency is a measure of the fraction of time for which a processing
element is usefully employed.

In an ideal parallel system, §,, = pand E, = 1.

Consider again the example of adding n numbers using n identical

processing elements.

Speedup, §,, = T1=®(=)

n

Efficiency, E,, = — = @(-)

Cost or Work

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is the execution time T of the fastest known
sequential algorithm for solving the problem.

On a Parallel Computer: is given by pT,,.

A parallel algorithm is cost-optimal or work-optimal provided
pr = O(T)

S
For a work-optimal parallel algorithm: E}, = ?p = p% =0(1)
p

Our algorithm for adding n numbers using n identical processing
elements is clearly not cost optimal.

Work Law

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is given by T,

On a Parallel Computer: is given by pT,,

Work Law

Work Optimality

Let T = runtime of the optimal or the fastest known serial algorithm

A parallel algorithm is cost-optimal or work-optimal provided
pr = O(Ty)

Our algorithm for adding n numbers using n identical processing

elements is clearly not work optimal.

Adding n Numbers Work-Optimality

We reduce the number of processing
elements which in turn increases the N

granularity of the subproblem assigned @ & 6 & 5008
to each processing element. @ o

. EI'J; Ei‘i E|]:.5
Suppose we use p processing elements.)0 6 0 30006
First each processing element locally € @

Source: Grama et al.,
“Introduction to Parallel Computing”, 2" Edition

adds its g numbers in time ® (g)

Then p processing elements adds these p partial sums in time ®(logp).

ThusT, = © (g + logp), and T, = ©(n).

So the algorithm is work-optimal provided n = Q(p logp).

Scaling Laws

Scaling of Parallel Algorithms
(Amdahl’s Law)

(1=)T, e /1

serial section

A

7] 1processing

element

P processing
elements

fri/p R

o
=

Ty

Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, T, = (1-1)T, + f%

Ty < p _ 1 < 1
T, — f+(1-f)p (1—f)+£ ~1-f

Speedup, 5, =

Scaling of Parallel Algorithms
(Amdahl’s Law)

Suppose only a fraction f of a computation can be parallelized.

Ty 1 1
Speedup, §p =~ < 7 < -
r (1-f)+5
Amdahl's Law
20.C0
18.00 '/,f
/ Parallel Portion
16.00 - 50% i
/ —75%
14.C0O 90% o
/ —95%
12.00 Vi
[=R
= /
@ 10.C0
a /]
[F5]
8.00 ///
.00 //
4.00 /] L
V -.________———
____.--"
_.-"""’."
2.00 —
0.00
~ ™ ok — =4 -+ =+ ﬂ H E
Mumber of Processors

Source: Wikipedia

Scaling of Parallel Algorithms
(_ Gustafson-Barsis’ Law)

r,

(1- T, pfT,
serial section parallelizable section

1 processing
element

p processing
elements

(1-1)T, fTy

T,

Suppose only a fraction f of a computation was parallelized.

Then serial running time, Ty = (1 — f)T, + pfT,

SDGEdUp, Sp — Z:l — (1—f)Tp+prP — 1 + (p _ 1)]6‘

p Tp

Scaling of Parallel Algorithms
(_ Gustafson-Barsis’ Law)

Suppose only a fraction f of a computation was parallelized.

(1_f)Tp+prp .

T T,
Speedup, S, = - < — = =14+ @(p—-1f
T. T. T.
p p p
f=09 f=08%-07
60 |- _ f=0.6
—
Q 4| .f”’fﬁ f=0.4
) ______.--“'
° -
o A
20 | P f=0.2
= o
P = __________————————‘___}201
0 .—-—"f—-} —_— iR [1]] J
0 20 40 60 80 100 120

Number of Processors

Source: Wikipedia

Strong Scaling vs. Weak Scaling

Strong Strong
Weak Weak
1k
Number of Processors (p) Number of Processors (p)
Strong Scaling
How T, (or S,) varies with p when the problem size is fixed.
Weak Scaling

How T, (or S,) varies with p when the problem size per

processing element is fixed.

Source: Martha Kim, Columbia University

Scalable Parallel Algorithms

Efficiency, £, = — =

Fixed problem size (W) ' Fixed number of processors ip)

Lo
Source: Grama et al.,
“Introduction to Parallel Computing”,
2nd Edition

P W

A parallel algorithm is called scalable if its efficiency can be
maintained at a fixed value by simultaneously increasing the number
of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing
processing elements effectively.

Scalable Parallel Algorithms

A parallel algorithm is called scalable if its efficiency can be
maintained at a fixed value by simultaneously increasing the number
of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing
processing elements effectively.

. . S T T 1
Efficiency,E, =+ = 2 = ——=—
p pTp, T1+To 1+T—0
1

Observe that if the problem size is fixed, Ty increases with p. (why?)

So, E,, drops as p increases.

On the other hand, for many algorithms T; grows sublinearly w.r.t. T;.

For such algorithms E, can be kept fixed by increasing the problem

size and p simultaneously.

Scalable Parallel Algorithms

Fixed problem size (W) ' Fixed number of processors ip)

Lo
Source: Grama et al.,
“Introduction to Parallel Computing”,
2nd Edition

P W

. s T T 1
Efficiency, E, = - = — = = —
p pTp T+To 1+?0

Observe that if the problem size is fixed, T, increases with p. (why?)

So E, drops as p increases.

On the other hand, for many algorithms T, grows sublinearly w.r.t. T.

For such algorithms E;, can be kept fixed by increasing the problem

size and p simultaneously.

Scalable Parallel Algorithms

In order to keep E,, fixed at a constant k, we need

T;
E,=k — =k T; = kpT,
:>pr =T p

For the algorithm that adds n numbers using p processing elements:
T, = dT,==+21
1 =N and 1, - + Z210gp
So in order to keep E), fixed at k, we must have:

o2+ 21 2k
n=kp|>+2logp |=n=1—7plogy

n p=1 p=4 p==8 p =16 p =32
54 1.0 0.80 0.57 0.33 0.17
192 1.0 0.92 0.80 0.60 0.38
320 1.0 0.95 0.87 0.71 0.50
E12 1.0 0.97 0.91 0.80 0.62

Fig: Efficiency for adding n numbers using p processing elements

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

The Isoefficiency Function

For a given problem, we define problem size W as the number of
basic computation steps in the fastest sequential algorithm that

solves the problem on a serial machine.

ThusW =T.
Wehave . o2 T T _ 1 _ 1
e nave, p p _ pr _ T+To _ 1+TTO _ 1+T0€3/,p)
E E
Rearranging, W = —2T,(W,p) = KT,(W,p), where K = —L
1_Ep 1—Ep

We have already seen how to obtain the isoefficiency function for
adding n numbers using p processing elements.

Isoefficiency for Complex Overhead Functions

Suppose, T, = p3/? + p3/4W3/4,

We balance W against each term of T, and the component of T,
that requires W to grow at the highest rate w.r.t. p gives the overall
asymptotic isoefficiency function for the algorithm.

Using only the 1st term, W = Kp3/?

Using only the 2nd term, W = K*p3

Hence, the overall isoefficiency function is @(p3).

