CSE 590: Special Topics Course (Supercomputing)

Lecture 2 (Analytical Modeling of Parallel Programs)

Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016

Parallel Execution Time & Overhead

Parallel running time on p processing elements,

$$T_P = t_{end} - t_{start},$$

where, t_{start} = starting time of the processing element that starts first

> t_{end} = termination time of the processing element that finishes last

Parallel Execution Time & Overhead

Sources of overhead (w.r.t. serial execution)

- Interprocess interaction
 - Interact and communicate data (e.g., intermediate results)
- Idling
 - Due to load imbalance, synchronization, presence of serial computation, etc.
- Excess computation
 - Fastest serial algorithm may be difficult/impossible to parallelize

Parallel Execution Time & Overhead

Overhead function or total parallel overhead,

$$T_0 = pT_p - T,$$

where, p = number of processing elements

T = time spent doing useful work

(often execution time of the fastest serial algorithm)

<u>Speedup</u>

Let T_p = running time using p identical processing elements

Speedup,
$$S_p = \frac{T_1}{T_p}$$

Theoretically, $S_p \leq p$ (why?)

Perfect or *linear* or *ideal* speedup if $S_p = p$

<u>Speedup</u>

Consider adding n numbers using n identical processing elements.

Serial runtime, $T_1 = \Theta(n)$

Parallel runtime, $T_n = \Theta(\log n)$

Speedup,
$$S_n = \frac{T_1}{T_n} = \Theta\left(\frac{n}{\log n}\right)$$

Speedup not ideal.

(e) Accumulation of the sum at processing element 0 after the final communication

Superlinear Speedup

Theoretically, $S_p \leq p$

But in practice superlinear speedup is sometimes observed, that is, $S_p > p$ (why?)

Reasons for superlinear speedup

- Cache effects
- Exploratory decomposition

<u>Superlinear Speedup</u> (Cache Effects)

Let cache access latency = 2 ns DRAM access latency = 100 ns

Suppose we want solve a problem instance that executes *k* FLOPs.

With 1 Core: Suppose cache hit rate is 80%.

If the computation performs 1 FLOP/memory access, then each FLOP will take $2 \times 0.8 + 100 \times 0.2 = 21.6$ ns to execute.

With 2 Cores: Cache hit rate will improve. (why?)

Suppose cache hit rate is now 90%.

Then each FLOP will take $2 \times 0.9 + 100 \times 0.1 = 11.8$ ns to execute.

Since now each core will execute only k / 2 FLOPs,

Speedup,
$$S_2 = \frac{k \times 21.6}{(k/2) \times 11.8} \approx 3.66 > 2$$

<u>Superlinear Speedup</u> (Due to Exploratory Decomposition)

Consider searching an array of 2*n* unordered elements for a specific element *x*.

Suppose x is located at array location k > n and k is odd.

Serial runtime, $T_1 = k$

Parallel running time with nprocessing elements, $T_n = 1$

Speedup,
$$S_n = \frac{T_1}{T_n} = k > n$$

Speedup is superlinear!

Parallelism & Span Law

We defined, T_p = runtime on p identical processing elements

Then span, T_{∞} = runtime on an infinite number of identical processing elements

Parallelism, $P = \frac{T_1}{T_{\infty}}$

Parallelism is an upper bound on speedup, i.e., $S_p \leq P$ (why?)

Efficiency

Efficiency,
$$E_p = \frac{S_p}{p}$$

Efficiency is a measure of the fraction of time for which a processing element is usefully employed.

In an ideal parallel system, $S_p = p$ and $E_p = 1$.

Consider again the example of adding *n* numbers using *n* identical processing elements.

Speedup,
$$S_n = \frac{T}{T_n} = \Theta\left(\frac{n}{\log n}\right)$$

Efficiency, $E_n = \frac{S_n}{n} = \Theta\left(\frac{1}{\log n}\right)$

Cost or Work

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is the execution time T of the fastest known sequential algorithm for solving the problem.

On a Parallel Computer: is given by pT_p .

A parallel algorithm is *cost-optimal* or *work-optimal* provided $pT_p = \Theta(T)$

For a work-optimal parallel algorithm: $E_p = \frac{S_p}{p} = \frac{T}{pT_p} = \Theta(1)$

Our algorithm for adding *n* numbers using *n* identical processing elements is clearly not cost optimal.

<u>Work Law</u>

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is given by T_1

On a Parallel Computer: is given by pT_p

Work Law	
$T_p \ge \frac{T_1}{p}$	

Work Optimality

Let T_s = runtime of the optimal or the fastest known serial algorithm

A parallel algorithm is cost-optimal or work-optimal provided

$$pT_p = \Theta(T_s)$$

Our algorithm for adding n numbers using n identical processing elements is clearly not work optimal.

Adding n Numbers Work-Optimality

We reduce the number of processing elements which in turn increases the granularity of the subproblem assigned to each processing element.

Suppose we use p processing elements.

First each processing element locally

adds its
$$\frac{n}{p}$$
 numbers in time $\Theta\left(\frac{n}{p}\right)$.

Then p processing elements adds these p partial sums in time $\Theta(\log p)$.

Thus
$$T_p = \Theta\left(\frac{n}{p} + \log p\right)$$
, and $T_s = \Theta(n)$.

So the algorithm is work-optimal provided $n = \Omega(p \log p)$.

Scaling Laws

<u>Scaling of Parallel Algorithms</u> (Amdahl's Law)

Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, $T_p \ge (1 - f)T_1 + f\frac{T_1}{p}$

Speedup,
$$S_p = \frac{T_1}{T_p} \le \frac{p}{f + (1 - f)p} = \frac{1}{(1 - f) + \frac{f}{p}} \le \frac{1}{1 - f}$$

<u>Scaling of Parallel Algorithms</u> (<u>Amdahl's Law</u>)

Suppose only a fraction *f* of a computation can be parallelized.

<u>Scaling of Parallel Algorithms</u> (Gustafson-Barsis' Law)

Suppose only a fraction f of a computation was parallelized.

Then serial running time, $T_1 = (1 - f)T_p + pfT_p$

Speedup,
$$S_p = \frac{T_1}{T_p} = \frac{(1-f)T_p + pfT_p}{T_p} = 1 + (p-1)f$$

<u>Scaling of Parallel Algorithms</u> (Gustafson-Barsis' Law)

Suppose only a fraction f of a computation was parallelized.

Speedup,
$$S_p = \frac{T}{T_p} \le \frac{T_1}{T_p} = \frac{(1-f)T_p + pfT_p}{T_p} = 1 + (p-1)f$$

Source: Wikipedia

Strong Scaling vs. Weak Scaling

Strong Scaling

How T_p (or S_p) varies with p when the problem size is fixed.

Weak Scaling

How T_p (or S_p) varies with p when the problem size per processing element is fixed.

Scalable Parallel Algorithms

A parallel algorithm is called *scalable* if its efficiency can be maintained at a fixed value by simultaneously increasing the number of processing elements and the problem size.

Scalability reflects a parallel algorithm's ability to utilize increasing processing elements effectively.

Scalable Parallel Algorithms

A parallel algorithm is called *scalable* if its efficiency can be maintained at a fixed value by simultaneously increasing the number of processing elements and the problem size.

Scalability reflects a parallel algorithm's ability to utilize increasing processing elements effectively.

Efficiency,
$$E_p = \frac{S_p}{p} = \frac{T_1}{pT_p} = \frac{T_1}{T_1 + T_0} = \frac{1}{1 + \frac{T_0}{T_1}}$$

Observe that if the problem size is fixed, T_0 increases with p. (why?) So, E_p drops as p increases.

On the other hand, for many algorithms T_O grows sublinearly w.r.t. T_1 .

For such algorithms E_p can be kept fixed by increasing the problem size and p simultaneously.

Observe that if the problem size is fixed, T_O increases with p. (why?) So E_p drops as p increases.

On the other hand, for many algorithms T_O grows sublinearly w.r.t. T.

For such algorithms E_p can be kept fixed by increasing the problem size and p simultaneously.

Scalable Parallel Algorithms

In order to keep E_p fixed at a constant k, we need

$$E_p = k \Rightarrow \frac{T_1}{pT_p} = k \Rightarrow T_1 = kpT_p$$

For the algorithm that adds *n* numbers using *p* processing elements:

$$T_1 = n$$
 and $T_p = \frac{n}{p} + 2\log p$

So in order to keep E_p fixed at k, we must have:

$$n = kp\left(\frac{n}{p} + 2\log p\right) \Rightarrow n = \frac{2k}{1-k}p\log p$$

n	<i>p</i> = 1	<i>p</i> = 4	<i>p</i> = 8	<i>p</i> = 16	<i>p</i> = 32
64	1.0	0.80	0.57	0.33	0.17
192	1.0	0.92	0.80	0.60	0.38
320	1.0	0.95	0.87	0.71	0.50
512	1.0	0.97	0.91	0.80	0.62

Fig: Efficiency for adding *n* numbers using *p* processing elements **Source:** Grama et al., "Introduction to Parallel Computing", 2nd Edition

The Isoefficiency Function

For a given problem, we define *problem size W* as the number of basic computation steps in the fastest sequential algorithm that solves the problem on a serial machine.

Thus
$$W = T$$
.
We have, $E_p = \frac{S_p}{p} = \frac{T}{pT_p} = \frac{T}{T+T_0} = \frac{1}{1+\frac{T_0}{T}} = \frac{1}{1+\frac{T_0(W,p)}{W}}$
Rearranging, $W = \frac{E_p}{1-E_p}T_0(W,p) = KT_0(W,p)$, where $K = \frac{E_p}{1-E_p}$

We have already seen how to obtain the isoefficiency function for adding *n* numbers using *p* processing elements.

Isoefficiency for Complex Overhead Functions

Suppose, $T_0 = p^{3/2} + p^{3/4}W^{3/4}$.

We balance W against each term of T_0 , and the component of T_0 that requires W to grow at the highest rate w.r.t. p gives the overall asymptotic isoefficiency function for the algorithm.

Using only the 1st term, $W = Kp^{3/2}$

Using only the 2nd term, $W = K^4 p^3$

Hence, the overall isoefficiency function is $\Theta(p^3)$.