Mohammad Mahdi Javanmard

Acknowledgement: Contents Courtesy Tim Mattson @ intel

What is OpenMP?

* OpenMP: An API for Writing Multithreaded
Applications on Shared Memory model

A set of compiler directives, library routines and environment
variables for parallel application programmers

» Makes it easy to create multi-threaded (MT) programs in Fortran, C
and C++

» Standardizes last 15 years of SPMD (Single Program Multiple Date)
practice

* But, beforehand ...

 Difference between Concurrent and Parallel Programs

« Concurrent: a condition of a system in which multiple tasks are
logically active at one time (they can be active at one time)

« Parallel: a condition of a system in which multiple tasks are acutally
active at one time (they are active at one time).

What is OpenMP?

* But, beforehand ...
e Difference between Concurrent and Parallel Programs:

.
Concurrent, non-parallel execution (intel)
e |
_ -

Concurrent, parallel execution

What is OpenMP?

* But, beforehand ...

e Process? An instance of a program execution.

e Thread? A path of execution within a process (i.e., light weight processes).

Statkpohtﬂ --------T----------l-n-.- -------------------

Stack funcA() varl : :
Pm- c&Inter L] Stack Pointer [
v Registers - g{’;ﬁf e ::2_, Prgm. Counter !
. Registers J
Tl‘:"x[i bffffflf"'lllllll'l'!lllll JJ}IIIII'IIII*‘
maf:r?can + Thread 1 | funcB() varl Stack Pointer |
funcB(' Stack var2 Prgm. Counter
cB() = var3 Registers "
L]
Pmssm LYY e - .. - - -----------------I
Data array1 User ID
array2 Group ID Text main()
funcA()
funcB() Process ID
Hea Flles User ID
P '§°d‘s Group ID
Data array1
array?2 Files
Locks
Heap Sockets
intel)
Process LJ Multi-threaded Process

P——

= OpenMP Parallel Computing Solution Stack

User layer

Application

Environment

Directives OpenMP library variables

Prog. Layer
(OpenMP API)

Runtime library

OS/system support for shared memory (multithreading)

System layer

L

OpenMP Basic Concepts

* OpenMP Constructs

e General Syntax:
o #pragma omp construct [clause [clause] ...]
- Example:

- #pragma omp parallel num_threads(4)

- All functions, constructs, data types defined in the header file
omp.h

- #include “omp.h”
e Structured Blocks:

* A block of one or more statements with one point of entry at
the top and one point of exit at the bottom.

e However, it is OK to have exit() within the structured block.

Running OpenMP Programs

* As it is widely used, it is already built inside gcc:
e gcc —-fopenmp FILE_NAME.c

e Assuming you are linux/mac user:

* The most important Construct:
e #pragma omp parallel

» Creates bunch of threads and run the code in its
corresponding block (parallel region) in parallel

« Example:; #inctuds <stdio.b> Sample Execution with 8 TH
$include "omp.h"
hello(2)hellc(4)hellco(7)hello(2)world(4)

volid main() { hello(0)world (D)
tpragma omp parallel hello(S)world(s)
i{ world(7)

int id = omp get thread num() ; world (=)

printf ("hello (%d)", id); warld{E_l _

printf ("world(%d)\n", id); hello(c)world(£)

} hello(l)world(l)
1

Running OpenMP Programs

* The most important Construct:

e #pragma omp parallel

» Creates bunch of threads and run the code in its
corresponding block (parallel region) in parallel.

« Without this construct, you can’t get multithreaded
execution.

« Example:

double A[1000]1; // resides in the heap (public, shared among threads)
// omp set num threads(4); // REQUESTING for 4 threads -- default: number of cores
fpragma omp parallel num threads(4) // the only way to create multi-thraded program
{

int id; // resides in stack of each thread (private, local)

id = omp get thread num() ;

pooh (id, &) ;
1
printf ("done!\n");

Running OpenMP Programs

® The parallel program written in OpenMP runs slower

on serial machine than the serial program (without
OpenMP). Why?

Running OpenMP Programs

® The parallel program written in OpenMP runs slower
on serial machine than the serial program (without
OpenMP). Why?
e Having Parallel runtime overhead

e Setting a runtime environment(s) such as number of threads
etc

e Creating threads

OpenMP Parallel Model

* The same as intel cilk, it is based on fork join model:

e Master thread (id = 0) spawns a team of threads as
needed.

Parallel Regions A Nested
Master } Parallel

Thread region
in red

OpenMP Program, some important notes

* OpenMP program gets translated to pthread program

ultimately:

$pragma omp num threads (4)
1

fool();
}

vold thunk () {
fool();

pthread t tid[4];
for (int 1 = 1; 1 < 4; ++1)
pthread create (&tid[i], 0, thunk, 0); // fork part
thunk() ; // for the master thread
for (int 1 = 1; 1 < 4; ++1)
pthread join(tid[il); // synchronization - join part

* In OpenMP, you always request bunch of threads.
However, environment might give you less !!!

e So, you can't always assume that you have requested
number of threads !!

OpenMP Program, some important notes
* In OpenMP, you always request bunch of threads.

However, environment might give you less !!!

° Example: Mathematically, we know that:

1
4.0

(1+x?)
0

dx =TT

We can approximate the
integral as a sum of
rectangles:

F(x) = 4.0/(1+x2)

N
Z F(x)Ax = T¢
1=0

Where each rectangle has
width Ax and height F(x;) at
the middle of interval i.

intel)

OpenMP Program, some important notes

* Solution in OpenMP [SPMD pattern]:

F(x) = 4.0/(1+x2)

el
o

Mathematically, we know that:

1

4.0

1+2) dx=T0
0

We can approximate the
integral as a sum of
rectangles:

N
Z F(x)Ax ® 70
i=0

Where each rectangle has
width Ax and height F(x;) at
the middle of interval i.

$include "omp.h"

static long num steps = 100000 H

double step;
fdefine NUM THRELDS 4
vold main() {

int i, nthreads;

double pi, sum[NUM THREADS] ;
step = 1.0/ (double) num_steps;

omp_set_num threa
fpragma omp paral
{

ds (NUM_THREADS) ;
lel

gsum[id] = °.0; 1 < num_steps; 1+= nthrds)

int i, id, nthrds;
double x;
id = omp_get_thread num() ;
nthrds = omp_ set num threads() ;
if (id == 0) nthreads = nthrds;
for (i1 = 1d,
{
x = (1 + 0.5) * =ztep;
sum[id] += 2.0/{(1.0 + = * x);

}

/* NUM _THREADS is dangerous to use rather than nthreads
because, you are not sure, if you are given NUM THREADS threads !!

vy

for (1 = 0, p1 = 0.

pli += =sum[i]

7; 1 < nthreads;
* step;

++1)

OpenMP Synchronization Constructs

* Different synchronization constructs:

e #pragma omp barrier:

o All the threads wait until everyone reaches:

¥pragma omp parallel

i
int id = omp get thread num() ;
&[id] = big_calculationl (id);

fpragma omp barrier
E[id] = big calculation2(id);

e #pragma omp critical:

« Only one thread at a time can execute the code in the block of
critical.

OpenMP Synchronization Constructs

* Different synchronization constructs:

e #pragma omp critical:
« Only one thread at a time can execute the code in the block of
critical.
» If someone else is in the critical section, I will wait.

« Used to resolve race condition issue.

- Example:

float res = 0.0;
¥fpragma omp parallel
{
float B = 0.0;
int 1, id, nthrds;
nthrds = omp get num threads();
for (1 = 1d; 1 < nthrds; 1 += nthrds)
B += big calculation(i);
fpragma omp critical
res += consume (B) ;

OpenMP Synchronization Constructs

* Different synchronization constructs:

e #pragma omp critical:
 Use it very carefully. Excessive use of this will serialize your
program and hence, kill the performance of your program:

float res = 0.

g Example Of bad pI‘aCtICEZ fpragma omp pa;:.;llel
{
float B;
int 1, id, nthrds;
nthrds = omp get num threads();

e #pragma omp atomic: e e o - ey e) |
Z ; v ¥fpragma omp critical
 Very similar to the critical. :

res += big calculation(i);
» Search more about it ©

OpenMP Parallel for loop

* One of the work-sharing constructs.

e Always, there is an implied/default barrier at the end of work-
sharing constructs (to be discussed further later)

* Syntax:
e #pragma omp for
for (...) {
}
* Semantic:

e Take the immediately following for loop, split up its iterations
among the threads, give them to execute them.

° II] o #pragma omp parallel

Exa ple. { #pragma omp parallel for
¥fpragma omp for for (1 = 0; 1 < N; 1++) {
for (1 = 0; 1 < M; i++) { // =statements

// statements 1
1

W

OpenMP Parallel for — Loop Scheduling

* How should OpenMP splits up the iterations of the for
loop among the threads?

e You, as a programmer, should decide.

e How? By using different possible schedule clauses:
» schedule (static[,chunk])
« schedule (dynamic [,chunk])
« schedule (guided [,chunk])
» schedule (runtime)
» schedule (auto)

W

OpenMP Parallel for — Loop Scheduling

* schedule (static[,chunk]) static

e At compile time, you determine the number of
iterations to be given to each of the threads !

e Used when having predictable and similar work per
iterations

e Default chunk size = (# of iterations/# of threads)

e Example:
» #pragma omp parallel for schedule (static, 4)
o Number of threads = 3

0000000000080

OpenMP Parallel for — Loop Scheduling

* schedule (dynamic[,chunk])

e At run time, you take the loop
iterations & put them in the logical
task queue.

e Threads grab the iterations to
execute them at run time.

e Used when having unpredictable,
highly variable work per iteration.

e Default chunk size =

(# of iterations/# of threads)

Lengthy
Lengthy

Lengthy

thread 1

thread 2

schedule(dynamic, 2)

schedule (static, 2)

=

IR B T (T S VR S Yy

number of threads =3

P e

OpenMP Parallel for — Loop Scheduling
* schedule (guided[,chunk])

e Similar to dynamic. However, the size of the blocks of
iterations (to be given to the threads) shrink as the
calculation proceeds. quided(1)

e Search more about it ©

* schedule (runtime)
* You, as the programmer or user, will pass the
schedule information at runtime (either
through runtime library routines or

environment variables)

OE000a0000aa

OpenMP Parallel for — Loop Scheduling

* schedule (auto)

e You rely on the compiler and you give it the permission
to be flexible on how it does the schedule.

OpenMP Parallel loop —Important Point

* Be very careful of loop-carried dependencies.

e Example:

int 1, A[MZX]:

int j = 5;

¥pragma omp parallel for

for (1 = 1; 1 < MZX; ++1i) {
i += 2; // loop-carried dependency
&[i] = big calculation(j):

1

e How to resolve?

int 1, ZA[MEX];

int § = 5;

fpragma omp parallel for

for (1 = 1; 1 <€ MR¥; ++1i) {
i =5+ 2 % (1 + 1); // WO loop-carried dependency
&[1i] = big calculation(j);

1

Reductions

penMP Parallel for loop — Using

* One way to resolve race condition is to use reduction:

e The Problem:

 Variable ave is shared among threads !!

e The solution:

double ave = 0.0,

double ave = 0.0, A[MAX];

int 1i;

fpragma omp parallel for

for (1 = 0; 1 < MAM; ++i)
ave += A[i]:

ave [= MRX:

¥pragma omp parallel for reduction(+:ave)
J; 1o MBX; ++1)

ave += &[1i];

ave [= MBRX:

By having the clause reduction (+:ave), the compiler creates a local
copy of variable ave (for each thread), initialize it with o and does
the required computation. After the thread execution is done, it
combines the local copies to the shared global one !

S

penMP Parallel for loop — Using
Reductions

* One way to resolve race condition is to use reduction:

e Using Reductions:

« List of variables in the reduction clause get initialized with the
identity value:

e +20

)

- Min - largest positive number
- Max = least negative number

penMP Parallel for loop — nowait
clause

* As mentioned before, always, there is an
implied/default barrier at the end of work-sharing
constructs.

e However, by using the clause nowait, you can eliminate
the implied/default barrier.

. ¥ llel sh d({z, B, C) ivate (1d)
® IZ)(ElIIlI)lEE. {pragma omp parallel share private (1

id = omp get thread num() ;
&[id] = big_calculation(id):

¥pragma omp barrier
¥pragma omp for

for (i = 0; i € W; ++i) {C[i] = big calculationZ(i, &) ;}
/{ IMPLIED BARRIER

| ¥pragma omp for nowait
for (1 = 0; 1 €< N; ++1i) {B[i] = big calculation3(C, 1i);}

S/ WO IMPLIED BARRIER

2[id] = big calculation4(id) ;

OpenMP Master Construct

* By using master construct, only the master thread will
do the corresponding block and others will just skip it.

e There is NO barrier for other threads to wait for the
master thread to finish the master block !!!!

fpragma omp parallel

{
do many things () ;

fpragma omp master

{

exchange boundaries() ;

1
S/ MO DEFAULT BAERIFER HERE ! !

fpragma omp barrier

do many other things();

OpenMP work-sharing Constructs

* Emphasizing again: there is an implied/default barrier at
the end of the work-sharing constructs.

* If you want to skip the implied barrier, use nowait clause.

* You already know one of them:
e #pragma omp parallel for
e Single Construct:
« With #pragma omp single
e Sections/Section construct:
« With:
- #pragma omp sections
- #pragma omp section

OpenMP Single Construct

* By using this construct in parallel region, only one
thread (not necessarily the master thread) will execute
the corresponding code:

* Example:
| master thread

fpragma omp parallel
{

do many things(); FORK

fpragma cmp =single
{p gm 12 g SINGLE | feam
exchange _boundaries() ;

}
// THERE IS A DEFAULT BLRRIER HERE !!

JOIN

do many other things();

} | master thread

OpenMP Sections/Section Construct

* The Sections work-sharing construct gives a different
structured block to each thread.

* Example:
{

fpragma omp parallel

fpragma omp sections
{
fpragma omp section
¥ calculations () ;

fpragma omp section
¥ calculations();

fpragma omp section
Z calculations () ;
1
// DEFAULT/IMPLIED BARRIER HERE
other stuff();

master thread

.0 =

JOI

—

-
Q
=
~

I master thread

ow level Synchronization in OpenMP -
Locks

* Constructs such as barrier, critical and atomic provide synchronization
facility in OpenMP.
* OpenMP also provides lock mechanism which is a lower level

synchronization mechanism than the previous constructs, hence, it is
more powerful. Programmer has greater control over his/her program.

* How?
1. First, defining variable(s) of type lock_t
>. Initializing them by the function omp_initi_lock(&lock variable)

3. Trying to grab the lock by calling the function omp_set_lock(&lock
variable) =¥ If other thread has the lock, you sit and wait until it
becomes available !

4. Releasing the lock by calling the function omp_unset_lock(&lock
variable)

5. Freeing the lock resource (when you are done with the locks) by
calling the function omp_destroy_lock(&lock variable)

ow level Synchronization in OpenMP -
Locks

* Lock Example:
e Histogram example:

e Assumption: chances of having contention on the lock is
low if the histogram is large enough !

® Th1n1< about hOW to lock t hist locks [NEUCEETS] ;
int hist [NBUCEETS] ;
implement with e T apvemezss ey
i omp init lock(&hist locks[i]):;
critical construct !! [omeEl =

¥pragma omp parallel for

-

for (1 = 0; 1 < WNVRALS; ++1) {

ival = (int) sample{arr[il);

omp set lock(&hist lock=[iVall]);
hist[1Val]l++;

omp unset lock(&hist locks[ivall);

}

for(i = 0; 1 < MNBUCEETS; ++1)

omp destroy lock(&hist locks[i]);

OpenMP Runtime Library

* Some useful OpenMP Runtime Library Routines:
e omp_set_num_threads(...)
« //you could use clause num_threads(...) instead
e omp_get_num_threads():

- Be very careful where using this routine !! If it is called outside
the parallel region, the value returned is obviously 1 !!

e omp_get_thread_num()
e omp_get_max_thread()
e omp_in_parallel()
» Returns true if the function is called inside a parallel region

« Used mainly inside the functions which might be called from the
parallel region

OpenMP Runtime Library

* Some useful OpenMP Runtime Library Routines:

omp_num_procs(): returns number of processors
omp_set_dynamic(...)

« When set, the compiler might give you different number of
threads from one parallel region to another parallel region in
your program (runtime has the power to choose the number
of threads for you)

omp_get_dynamic(): boolean
Example: void main() {

omp set dynamic (0) ;
ff ...

omp set num threads(omp num proc());

OpenMP Environment Variables

* Environment variables %
requirement to recompi
* Examples:
e OMP_NUM_THREADS
e OMP_POLICY_WAIT
« Either ACTIVE or PASSIVE

ive the facility to change the execution environment without a
e the program:

Used in case of having barrier and critical sections and locks:
+ If thread needs to wait:

- If ACTIVE:

Though the thread is awake and burns up the CPU cycles, it does nothing !!
» Burning the CPU cycles is cheap.

- If PASSIVE:

The thread is suspended, put to sleep, hence not burning up the CPU cycles.
Suspending and then, waking up the thread is expensive.
« A trade-off in using the policy:

« Which policy do you choose if you have huge functions in critical sections?

e OMP_STACKSIZE
e OMP_PROC_BIND
« Search more about them ©
* How to set?

e In bash shell: export OMP_NUM_THREADS=8

OpenMP Data Storage Attribute

* Data can reside either in the heap or stack.

e If it is in the heap, it is public and shared among the threads. Hence,
race condition is possible if using in the parallel region.

e If it in the stack, it is private and local to the thread. In other words, the

thread has its own local copy.
e Example:
« A, index and count are public,
sitting on the heap ! They are alive
even after the parallel region.

« Temp and p are local/private to each
thread, each copy of temp and p are
sitting in the stack of each thread.
They vanish after the thread is done
with its execution !!

f/f filel.c
double A[10];
int main() {
int index[12];
fpragma omp parallel
{
int p = work(index) ;
1
printf ("%=d\n", index[2]);
1

// another file

extern double A[10];

int work(int * index) {
doukble temp[10];
=ztatic int count;

I

OpenMP Data Storage Attribute

* However, OpenMP provides a way to change the
storage attribute:

e SHARED
e PRIVATE
e FIRSTPRIVATE
e LASTPRIVATE

e DEFAULT(SHARED|NONE)

OpenMP Data Storage Attribute

* However, OpenMP provides a way to change the
storage attribute, through the following clauses:

e SHARED

» As its name indicate, the variable is considered to be shared
among the threads (on the process heap)

e PRIVATE

« As its name indicates, the variable is considered to be private
for the thread (on the thread stack)

void wrong () {

o Example: int temp = 0;
fpragma omp parallel for private (temp)
for (int 7 = 0; 7 < 1000; ++7)

temp += J;
printf ("%d\n", temp); // it will print the global one which is 0
1

OpenMP Data Storage Attribute

* However, OpenMP provides a way to change the storage
attribute, through the following clauses:

e PRIVATE - FIRSTPRIVATE

« How to fix the problem with un-initialized private variable?

- Either initialize it in the parallel region
« Or, use the FIRSTPRIVATE clause rather than PRIVATE clause.
- Example:

int incr = 0;
fpragma omp parallel for firstprivate (incr)
for(i = 0; 1 €= MZ¥: ++1i) {
if ((i % 2} = 0} incrit;
&[1] = inecr;

}

- The private variable incr is allocated in the thread stack and it is
initialized to zero.

OpenMP Data Storage Attribute

* However, OpenMP provides a way to change the
storage attribute, through the following clauses:

vold =q2 (int n, double * lastTerm)

e LASTPRIVATE:

« Example:

}

double x;
int 1i;
fpragma cmp parallel for lastprivate (=)
{
for (1 = 0; 1 < n; ++1) {
x = af[i] * a[i] + b[1] * b[1];
b[i] = =grt(=);
}
}

*lastTerm = x;

« Among the threads, whoever does the iteration (n-1), i.e., the
last iteration, the value of x that it has is copied to the global

scope !!!

P———

OpenMP Data Storage Attribute

* However, OpenMP provides a way to change the
storage attribute, through the following clauses:

e For the variables defined outside the parallel region, the
default storage attribute is SHARED.

e However, you can also change the default by using the
clause DEFAULT(SHARED | NONE).

- If DEFAULT (NONE) is used, the programmer should
determine the storage attribute of each and every variable
explicitly.

- It is handy for debugging purposes !

OpenMP Data Storage Attribute

* Summary of Data Storage Attributes:

%Sallel

shared firstprivate
;}-E" *J*-n; xn;la omp parallel shared(x) r %Ent o lel
Rl e s i
X x| |= b g m! Tml TTm
i x x x x
private
reduction
x |)
j}_#ﬁEaéma omp parallel private(x) x lint x:
#pr ’a_omp P
2 [m]E [ectadictiont
- 0 o
X !! _,/;g!,~='%!'
N Hl

[
=]
i
=¥
=
=]
%
=3
=
~
7]
[
=]
:
2
~
s
=}
N
~
=1
(7]
=
=
-
=1
e
P
2]
o
o~}
_I
]
=
[y}
Tl
<
(]
~~
]
el
=
pet
o
[
—
~
=
¢
v
~
A
J
%
E
(=]
ST
2
o
o
=
72}
[=]
=]
o
<
E
=]
)
=
=

Source of Image:

— ST

arallelizing Linked List based
operations — OpenMP task parallelism

* Based on the current knowledge of OpenMP, how can
parallelize the following program?

p = head; :>

while (p) {
big ugly calculation(p);

p = p —» next;
}

Time

Serial Parallel

------- S

araIIeIizing Linked List ba
operations — OpenMP task parallelism

* Based on the current knowledge of OpenMP, how can
parallelize the following program?

8 : int count = 0;
* Solution: while () (
P = p —> next;
count++;
}
p = head;
p = head; int i; .
while {P] { f/f allocate an array of =ize count, called parr

int *parr=(int*)malloc{count*=zizeof (int)) ;

big ugly calculation(p);

for (1 = 0; 1 € count; ++1) {
P =p —& next; parr[il = p;
} P = p —> next;
}

fpragma omp parallel for
for (1 = 0; 1 € count; ++1)
big ugly calculation(parr[il);

arallelizing Linked List based

operations — OpenI\/IP task parallelism

e Solution:

p = head;
while (p) {

big ugly calculation(p):;

p = p —> next;

e But ...

int count =
while (p) {
P = p —# next;

count++;
1
p = head;
int 1i;

/{ allocate an array of size count, called parr
int *parr=(int*)malloc{count*sizecf (int));
for (1 = 0; 1 < count; ++1) {
parrl[i] = p;
P = p —» next;
1

¥pragma omp parallel for
for (1 = 0; 1 € count; ++1i)

big ugly calculation(parr[il);

* Do you really want to traverse the list 3 times???

e It doesn’t seem to be efficient. Right?

* Can be easily done in cilk by using cilk_spawn ...

arallelizing Linked List based
operations — OpenMP task parallelism

* Can be easily done in cilk by using cilk_spawn

* OpenMP provids a construct called task which does
almost the same as cilk_spawn:

« Code to execute.

e Task is an independent unit of work. f', o
e It is composed of: et N g

« Data environment
« Internal Control Variables (ICVs):

« Certain features of the environment that constructs control.
E.g., number of threads, etc.

e Created by using the construct #pragma omp task

arallelizing Linked List based

operations — OpenMP task parallelism

* Task is an independent unit of work.

e Tasks are added to the task queue (by the thread which
encounters the #pragma omp task construct) and

e The runtime system decides when tasks are executed.

e Example:
- In this example, the programmer

asks for bunch of threads, then,
each thread is creating a task, called
foo and add it to the task queue (to be
executed).
In #...single, only one thread is making
the task called bar.

{

¥pragma omp prallel

¥fpragma omp task
fool);

¥fpragma omp barrier
// BILL foo TRASES ARE
// GUARANTEED TC BE CCMPLETED
// HERE
fpragma omp single
{
¥fpragma omp task
bar();
} // IMPLIED ELARRIER HERE

} // IMPLIED ERLERIER HERE

arallelizing Linked List based
operations — OpenMP task parallelism

* Task is an independent unit of work.
e Example2 - divide and conquer pattern:

« This method will be called inside a parallel region (#pragma
omp parallel).

int fib{int n) {
int %, v;

« Why are x and y defined to be

if (n € 2) return n;

shared for calculation of
fpragma omp task shared (x)

fib(n-1) and fib(n-2) ? x = £ib(a—1) ;

fpragma omp task shared(y)
v = fib(n—-2) ;

fpragma omp taskwait

return (x + y);

arallelizing Linked List based
operations — OpenMP task parallelism

* Task is an independent unit of work.

e Example2 - divide and conquer pattern:
« This method will be called inside a parallel region (#pragma omp parallel).

« Whyare x and y defined to be int fib(int n) {
shared for calculation of int x, y;
fib(n‘l) andﬁb(n‘z) ? if (n € 2) return n;
Because, otherwise, they are
considered to be private inside ¥fpragma omp task shared (x)
the tasks and never written x = fib(n-1) ;
back to the global x and y defined
at the beginning of the function !! fpragma omp task shared(y])
In other words, If we did not declare y = £ib(n-2);

the variables shared, each task
would set its own local variable,
then throw away the results.
 Just 2 emphasize once again: !

» Automatic variables defined inside the subroutines (within a parallel region) are
considered as private to each task !!

¥fpragma omp taskwait
return (x + vy);

mmm————

arallelizing Linked List based
operations = Openlvls Lack paralie 5

* Solution, using openMP task construct:

Single Thri Thr2 Thr3 Thrd
Threaded

fpragma omp parallel
fpragma omp single
{ // block 1

p = head;

while{p) { Block 3

fpragma omp task firstprivate (p)

big ugly calculation(p); //block 2
p =p —» next; // block 3

1
} // DEFAULT ELRERIER

L Time

<

Advanced topics about openMP tasks:
https://www.archer.ac.uk/training/course-material/2014/05/AdvancedOpenMP_Oxford/Slides/Los-Tasks.pdf

