CSE 590: Special Topics Course
(Supercomputing)

Lecture 6
(The Message Passing Interface)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2016

Principles of Message-Passing Programming

— One of the oldest and most
widely used approaches for
programming parallel computers

— Two key attributes

Source: Blaise Barney, LLNL

o Assumes a partitioned address space

o Supports only explicit parallelism

— Two immediate implications of partitioned address space

o Data must be explicitly partitioned and placed to appropriate

partitions

o Each interaction (read-only and read/write) requires
cooperation between two processes: process that has the
data, and the one that wants to access the data

Structure of Message-Passing Programs

Asynchronous
— All concurrent tasks execute asynchronously
— Most general (can implement any parallel algorithm)
— Can be difficult to reason about

— Can have non-deterministic behavior due to races

Loosly Synchronous
— A good compromise between synchronous and asynchronous
— Tasks or subset of tasks synchronize to interact
— Between the interactions tasks execute asynchronously

— Easy to reason about these programs

Structure of Message-Passing Programs

)

Source
Files

—

Processor 1
Multiple Program Multiple Data (MPMD)

— Ultimate flexibility in parallel

SR
Source
Files
Compile to suit _ y
processor
Executables
Processor p

programming

— Unscalable

)

Source
Files

Compile to suit
processor

Executables

Processor 1 Processor p
Single Program Multiple Data (SPMD)

— Most message-passing programs
— Loosely synchronous or
completely asynchronous

The Building Blocks: Send & Receive Operations

send(&data, n, dest):

Send n items pointed to by &data to a processor with id dest

receive(&data, n, src):

Receive n items from a processor with id src to location pointed
to by &data

But wait! What P1 prints when PO and P1 execute the following code?

1 PO Pl

2

3 a = 100; receive(&a, 1, 0)
4 send(&a, 1, 1); printf ("$d\n", a):;
D a=0;

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

Blocking Non-Buffered Send / Receive

Sending operation waits until the matching receive operation is
encountered at the receiving process, and data transfer is complete.

sending recaiving
Procass Procass
sand I request lo send

okay 1o sand raca e

l | data .

Blocking Non-Buffered Send / Receive

May lead to idling:

sending PEHCRI Wiy
Procass PrOCaEs
sand I request 1o send

okay 1o send racaive

- B

(a) Sender comes firsi;
idling at sender

Blocking Non-Buffered Send / Receive

May lead to idling:

sending FECaiving sanding recaiving
AroGas=s PSS PreCeisas ProGass
sand request bo E‘-Er'n.‘l
H rEI'I.'.II.I-B=EI.1I:I- sElnd
-0 1=
. v
(a) Sender comes firsi; (b)) Sender and receiver come
idling at sender at about the same time;

idling minimized

Blocking Non-Buffered Send / Receive

May lead to idling:

sending r&c:ai'.'m sanding rescaiving aar'rulmg recemving
Procass Procass Procass Procass

'HEFIEI rﬂ'l.':|l.-IH$|! t‘:' fﬂﬂﬂ
rEl'ElllﬁlW EE"""J' request 1o 5E|n1:I
okay 1o send r-E-:ﬂll.rLi nka-,- 10 send racanE f'-ﬂr"ﬂ

H okay 1o send send
l | data _'3 I | data I
y y

(a) Sender comes firsi; (b)) Sender and receiver come ic) Receiver comes first:
idling at sender at about the same time; idling at receiver
idling minimized

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

Blocking Non-Buffered Send / Receive

May lead to deadlocks:

1 PO Pl

2

3 send(&a, 1, 1): send(&a, 1, 0):

4 receive (&b, 1, 1): receive (&b, 1, 0):;

— The send at PO waits for the matching receive at P1

— The send at P1 waits for the matching receive at PO

Source: Grama et al.,
“Introduction to Parallel Computing”,

2nd Edition

Blocking Buffered Send / Receive

— Sending operation waits until data is copied into a pre-allocated
communication buffer at the sending process

— Data is first copied into a buffer at the receiving process as well,

from where data is copied to the target location by the receiver

sanding receiving sending receiving
process process process process

sand sand I
- . | data

*, [Data copied to
buffer at receiver

] ._
| data t:*
) receive
L]
recene
§

) With hardware support (b) Without hardware suppornt

Source: Grama et al.,
“Introduction to Parallel Computing”,
2" Edition

Blocking Buffered Send / Receive

Finite buffers lead to delays:

A O W=

PO P1

for (1 = 0; 1 < 1000; 1i++) { for (1 = 0; 1 < 1000; i++) {
produce data(&a); receive(&a, 1, 0);
send(&a, 1, 1): consume data (&a);

} }

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

— What happens if the sender’s buffer can only hold 10 items?

Blocking Buffered Send / Receive

May still lead to deadlocks:

1 PO Pl

2

3 receive(&a, 1, 1): receive(&a, 1, 0):
4 send (&b, 1, 1) send (&b, 1, 0);

Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

— Blocks because the receive calls are always blocking in
order to ensure consistency

Non-Blocking Non-Buffered Send / Receive

— Sending operation posts a pending message and returns
— When the corresponding receive is posted data transfer starts

— When data transfer is complete the check-status operation
indicates that it is safe to touch the data

gafuing recelving gending recelving
Prociss [elpeim i ProcEss ProciEss
sand I requas! 1o El]l_'l_l:l 5-l:=n-|:| reuunsll-:-mnd

Unzale 1o Unsala to

updaie : 2] :
mda ckay 1o send aeahms upda ckay 1o send recahve

data being data being I
e - dat : -. sant | Unsale o read
i . data being received

(o) Without hardware support (b With hardware support
Source: Grama et al., “Introduction to Parallel Computing”, 2" Edition

Non-Blocking Buffered Send / Receive

Sending operation initiates a DMA (Direct Memory Access)
operation and returns immediately

Data becomes safe as soon as the DMA operation completes

The receiver initiates a transfer from sender’s buffer to receiver’s
target location

Reduces the time during which the data is unsafe to touch

Possible Protocols for Send & Receive Operations

Buffered

Mon-Bufferad

Blocking Operations

Sending process
returns after data
has been copled
into communication
buffer

Sending process
blocks until
matching receive
operation has been
encountered

Send and Receive

semantics assured by

corresponding oparation

Non-Blocking Operations

Sending process
returns after initiating
DMA transfer to
buffer. This operation
may not be
completed on return

Frogrammer must
explicitly ensure
semantics by polling
to verify completion

Source: Grama et al.,
“Introduction to Parallel Computing”,
2"d Edition

The Minimal Set of MPI Routines

— The MPI library contains over 125 routines

— But fully functional message-passing programs can be written
using only the following 6 MPI routines

MPI Init Initializes MPL.

MPI Finalize Terminates MPI.

MPI_Comm size Determines the number of processes.

MPI Comm rank Determines the label of the calling process.
MPI Send Sends a message.

MPI Recv Receives a message.

— All 6 functions return MP|_SUCCESS upon successful completion,
otherwise return an implementation-defined error code

— All MPI routines, data-types and constants are prefixed by MP|_
— All of them are defined in mpi.h (for C/C++)

Starting and Terminating the MPI Library

. #include < mpi.h >

1
2
3. main(int argc, char *argv[])
4. {

5 MPI_Init(&argc, &argv);

6. e // do some work
7. MPI_Finalize();

8. }

— Both MPI_Init and MPI_Finalize must be called by all processes
— Command line should be processed only after MPI_Init

— No MPI function may be called after MPI_Finalize

Communicators

— A communicator defines the scope of a communication operation

— Each process included in the communicator has a rank associated
with the communicator

— By default, all processes are included in a communicator called
MPI_COMM_WORLD, and each process is given a unique rank
between 0 and p — 1, where p is the number of processes

— Additional communicator can be created for groups of processes
— To get the size of a communicator:

int MPI_Comm_size(MPI_Comm comm, int *size)
— To get the rank of a process associated with a communicator:

int MPI_Comm_rank(MPI_Comm comm, int *rank)

Communicators

1. #include < mpi.h >
2.

3. main(int argc, char *argv[])

4. {

5. int p, myrank;

6. MPI_Init(&argc, &argyv);

7. MPI_Comm_size(MPI_COMM_WORLD, &p);

8. MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

9. printf(“This is process %d out of %d!\n”, p, myrank);

10. MPI_Finalize();
1. }

MPI Standard Blocking Send Format

data parameters

A
| \
address of number of datatype of
send buffer items to send each item

N / |

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

(A N

rank of message tag communicator
destination process

\

|

envelope parameters

MPI Standard Blocking Receive Format

data parameters

A
|]
address of number of datatype of
receive buffer items to receive each item

N / |

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int src, int tag, MPI_Comm comm, MPI_Status *status)

! N N !

rank of message tag communicator status after
source process operation

\ J
1

envelope parameters

MPI Datatype

MPT CHAR
MPI SHORT

MPI_INT

MPT_LONG
MPI_UNSIGNED CHAR
MPT UNSIGNED SHORT
MPI_UNSIGNED

MPTI UNSIGNED LONG
MPI_ FLOAT

MPT DOUBLE

MPI LONG DOUBLE
MPI BYTE

MPI PACEED

MPI Datatypes

C Datatype

signed char
signed short int
signed int

signed long int
unsigned char
unsigned short int
unsigned int
unsigned long int
float

double

long double

Blocking Send/Receive between Two Processes

1. #include < mpi.h >

2.

3. main(int argc, char *argv[])

4. {

5. int myrank, v = 121;

6. MPI_Status status;

7. MPI_Init(&argc, &argyv);

8. MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

9. if (myrank==0) {
10. MPI_Send(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD);

11. printf(“Process %d sent %d!\n”, p, myrank, v);
12. } elseif (myrank==1) {

13. MPI_Recv(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD , &status);
14. printf(“Process %d received %d!\n”, p, myrank, v);
15. }

16. MPI_Finalize();
17. }

Non-Blocking Send / Receive

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *req)

int MPI_lrecv(void *buf, int count, MPI_Datatype datatype,
int src, int tag, MPI_Comm comm, MPI_Request *req)

The MPI_Request object is used as an argument to the following two
functions to identify the operation whose status we want to query or
to wait for its completion.

int MPI_Test(MPI_Request *req, int *flag, MPI_Status *status)
— Returns *flag = 1, if the operation associated with *req has
completed, otherwise returns *flag =0

int MPI_Wait(MPI_Request *req, MPI_Status *status)

— Waits until the operation associated with *req completes

Non-Blocking Send and Blocking Receive

1. #include < mpi.h >

2.

3. main(int argc, char *argv[])
4. {

5. int myrank, v = 121;

6. MPI_Status status;

7. MPI_Request req;

8. MPI_Init(&argc, &argyv);

9. MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

10. if (myrank ==0) {

11. MPI_Isend(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD, &req);
12. compute(); /* but do not modify v */
13. MPI_Wait(&req, &status);

14. } else if (myrank == 1) MPI_Recv(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
15. MPI_Finalize();
16. }

Non-Blocking Send/Receive

1. #include < mpi.h >

2. main(int argc, char *argv[])

3. §
4.

10.

11.
12.

13.
14.
15.
16.

17.
18.
19. }

int myrank, v = 121;
MPI_Status status;
MPI_Request req;
MPI_Init(&argc, &argyv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank ==0) {
MPI_Isend(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD, &req);

compute(); /* but do not modify v */

MPI_Wait(&req, &status);
} elseif (myrank==1) {
MPI_Irecv(&v, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD, &req);
compute(); /* but do not read or modify v */
MPI_Wait(&req, &status);

3
MPI_Finalize();

MPI Collective Communication & Computation

Operations

Synchronization
— Barrier

Data Movement
— Broadcast These routines must be
_ Scatter called by all processes in
_ Gather the communication group
— All-to-all

Global Computation
— Reduce

— Scan

Barrier Synchronization

int MPI_Barrier(MPI_Comm comm)

Returns only after all processes in the communication group
have called this function

Broadcast

Process 0 Process 1 Process n — 1
[data \ (data \ [data \ < .-
— ¥
Action °2 E S
buf . 2 &=
beast (); bcas:t (); bcaslt() ; g :;?
Code ; ; : § s
int MPI_Bcast(void *buf, Sends the data stored in the
int count
’ buffer buf of process src to all
MPI_Datatype datatype, .
. the other processes in the
int src,

MPI_Comm comm) group

Process 0

]

data
A

Y but
A

scattér(};
Code '

t

int MPI_Scatter(void *sendbuf,
int sendcount,

MPI_Datatype sendtype,

void *recvbuf,
int recvcount,

MPI_Datatype recvtype,

int src,

MPI_Comm comm)

Scatter

Action *’*’ﬁrﬂﬂf;ﬂdrﬂi

Process 1

data

scatﬁer();

Process n — 1

(data \
>]

scatﬁer{);

Source: Wilkinson & Allen.,
“Parallel Programming”,
2"d Edition

__/

The src process sends a

different part of sendbuf to
each process, including itself.

Process i receives sendcount
contiguous elements starting
from i x sendcount.

The received data are stored
in recvbuf.

Gather

Process 0 Process 1 Process n — 1
A (data \ data { data \
11 | g -
S
Action / fz, € C
s 59
Y buf _‘é’ gga
A ! ! ! 23N
gather () ; gather () ; gather () ; 9 <
Code ' ' ' 5o
3

The opposite of scatter.

int MPI_Gather(void *sendbuf, Every process, including dest
int sendcount,

MPI_Datatype sendtype,

:

sends data stored in sendbuf

void *recvbuf, to dest.
int recvcount, Data from process i occupy
MPI_Datatype recvtype, | sendcount contiguous

int dest,

locations of recvbuf starting
MPI_Comm comm)

from i x sendcount.

Process 0

IR

O—

Action
buf | [J= +

reduée{};
Code ;

N

int MPI_Reduce(void *sendbuf,

void *recvbuf,
int count,
MPI_Datatype
MP1_Op op,
int dest,

MPI_Comm comm)

Reduce

Process 1

N

reduée[);

__

datatype,

T

Process n — 1
data \

%

reduée(};

___J

Source: Wilkinson & Allen.,
“Parallel Programming”,
2"d Edition

Combines the elements stored
in sendbuf of each process
using the operation op, and
stores the combined values in
recvbuf of the process with
rank dest.

Reduce

MPI_Reduce(vals, sums, 4, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD)

Predefined Reduction Operations

Operation

MPI MAX
MPI MIN
MPI SUM
MPI PROD
MPI LAND
MPI BAND
MPI LOR
MPI EOR
MPI LXOR
MPI BXOR
MPI MAXLOC

MPI MINLOC

Meaning
Maximum
Minimum
sum
Product
Logical AND
Bit-wise AND
Logical OR
Bit-wise OR
Logical XOR
Bit-wise XOR
max-min value-location
min-min value-location

Datatypes

C integers and floating point
C integers and floating point
C integers and floating point
C integers and floating point
C integers

C integers and byte

C integers

C integers and byte

C integers

C integers and byte
Data-pairs

Data-pairs

Scan / Prefix

int MPI_Scan(void “"sendbuf, Performs a prefix reduction of
Ymd recvbuf, the data stored in sendbuf at
Nt count,
MPI_Datatype datatype, each process and returns the
MPI_Op op, results in recvbuf of the
MPI_Comm comm) process with rank dest.

Pol Qo | bo | Co | do do b, Co do
P,lais| by]| ¢ | d; aot 0, bot b, Cot €y dot d;
P,la, | b, | ¢, | d, aot 0t a, byt b+ b, Cot 1+ G dot di+d,
P,las | bs|c | ds apt a+ a,+ a;| byt by+ b+ by | cot €1+ €+ €3 | dot di+ dot ds

MPI_Scan(vals, sums, 4, MPL_INT, MPI_SUM, MPI_COMM_WORLD)

