
Introduction to

Concurrent Collections

(CnC)

Introduction - Motivation

 Why should chemists/physicists care about parallelism? Can they take

benefit of parallelism without having knowledge of parallelism?

 The main motivation: Targeting large community of non-professional

programmers to use parallelism. How?

 By Separation of concerns between application logic (domain expert takes

care of it) and parallel implementation (tuning expert takes care of it). How?

 By Avoiding explicit parallelism/threading.

 Avoiding exposing too many of the hardware details.

 Successful stories: MapReduce, Nvidia CUDA, etc.

 CnC is a mean to reach such a purpose.

What is CnC?

 Stands for Concurrent Collections.

 Falls into the family of dataflow and stream-processing paradigms:

 A program is a graph of computation nodes, communicating with one another.

 Computations are called step collections and are related by control and data
dependencies.

 CnC is simultaneously a dataflow-like parallel model and a simple specification
language that facilitates communication between the domain and expert
experts.

 Domain experts:

 Takes care of application logic. E.g., Chemist/Physicist/etc

 Having (almost) no knowledge about parallelism.

 Tuning experts:

 Given the maximum possible freedom to map the computation onto the target architecture.

 Having (almost) no knowledge about the domain (chemistry/physics/etc)

Burgers with Fries and Pies for Dessert -

CnC in a Nutshell

 (As a catering service,) Let’s make Burgers and French Fries for serving the

IACS opening ceremony …

 Ready-to-process ingredients: cut potatoes and prepared meat  get

delivered to a service hatch.

 In CnC, such hatches are called item-collections, which store input/output
data/items. So, out hungry guests can pick up the food from the output

hatches.

 Tasks? Frying the potatoes and barbecuing the meat.

 In CnC, such tasks are called step-collections. The steps are basically just normal

functions.

 to be implemented mainly by the domain expert

 Each instance of such step-collections is a function call with different parameters

passed to it.

Burgers with Fries and Pies for Dessert -

CnC in a Nutshell – (Cont)’

 Tasks? Frying the potatoes and barbecuing the meat.

 Is there any dependency between these two steps? No. So, there is no ordering

required.

 [producer/consumer Dependency] Let’s assume university president asks

to add mini cherry pies to the meal for dessert. Tasks for making mini-pie

are: preparing the pies and baking them.

 Is there any dependency between these two steps (prepare_pie and

bake_pie)? Yes. So, there is producer/consumer dependency: the producer

needs to be executed before the consumer can use the produced item.

Burgers with Fries and Pies for Dessert -

CnC in a Nutshell – (Cont)’’

 [Controller/Controlee Dependency] Let’s assume guests are individuals
and not all of them want the same menu. Some might want the full menu
(a burger, fries and a pie). Some might prefer two burgers, no fries but a
pie and so on.

 So, let’s first take orders (take_orders) first. When taking orders, we must assign a
unique identifier (a tag) to each order so that we later know burgers, fries and
pies are for which guest.

 To communicate the orders with the kitchen, we use special bowls, one for
each step (“barbecue_burger”, “fry_potatoes”, “bake_pie” and
“prepare_pie”).

 Whenever a step needs to be executed for a given order, the waiter (controller)
simply puts the corresponding guest-tag into the step’s bowl.

 Is there any dependency between “taking_order” step and other steps? Yes. In
CnC, this is controller/controlee relationship. “taking_order” step decides which
steps need to be executed.

Burgers with Fries and Pies for Dessert -

CnC in a Nutshell – (Cont)”’

 Now, we have full specification:

 Step collections: (barbecue_burger), (fry_potatoes), (bake_pie), (prepare_pie and
(take_orders).

 Data/item collections: [meat], [potatoes], [fries], [burgers], [pies]

 Control tags: guest-id

 Consumer/producer dependency: (prepare_pie)  [pies]  (bake_pie)

 Controller/controlee dependency: (take_orders)  xxx_bowls  other steps

 The dependencies imply a partial ordering. This partial ordering allows the CnC
runtime engine to determine a legal scheduling of the step instances
(computation units), be it serial or parallel.

 Constraints:

 Computation units must execute statelessly, e.g., they must not access or even alter
any global data.

 Data is immutable. Once put, data items can’t be altered. Instead of changing a
value, in CnC, you put a new value with a new tag !

CnC Constructs

 CnC has three main collections. These collections and their relationships

are defined statically. However, for each static collection, a set of

dynamic instances is generated at runtime. Collections are :

 Step collections: a step collection corresponds to a specific computation (a

procedure) and its instances correspond to invocations of that procedure with

different arguments/inputs.

 Data/item collections: step collection dynamically reads/writes data collection

instances.

 Control collections: a control collection is said to prescribe a step collection –

adding an instance to the control collection will cause a corresponding step

instance to eventually execute with that control instance as input (REMEMBER:

In CnC, step collections are NEVER called explicitly)

Fibonacci in CnC (1)

 Fibonacci computation is defined as follows:

 Fib(n) = Fin(n-1) + Fib(n-2)

 Defining a new data type as the values of Fibonacci grow very large:

 Identifying Computation Unit (step collection):

 There is only one computation unit which simply adds the values of the two

previous Fibonacci numbers. Let’s call it “fib_step” (to be defined later).

Declaring an instance of such step is done as follows:

 Determining the data entities (data/item collection):

 There is only one data item we seem to care about regarding Fibonacci

computation: the Fibonacci number that we compute.

typedef unsigned long long fib_type;

CnC::step_collection< fib_step > m_steps;

https://icnc.github.io/api/class_cn_c_1_1step__collection.html

Fibonacci in CnC (2)

 Determining the data entities (data/item collection):

 There is only one data item we seem to care about regarding Fibonacci

computation: the Fibonacci number that we compute.

 The only way in CnC to read values from a computation is through item-

collections. Here, in case of recursive computation, as Fibonacci, we can use

one item-collection for the intermediate results and for the final result. Defining

an item-collection is straight forward:

In this definition:

 The first-type argument is the tag-type for identifying each data-instance (just like traditional

key/value pair, the value of our item is accessible (only) through its identifier, the tag).

 The second-type argument is the type of the data to be stored.

CnC::item_collection< int, fib_type > m_fibs;

https://icnc.github.io/api/class_cn_c_1_1item__collection.html

Fibonacci in CnC (3)

 Defining the step collection fib_step:

 In CnC, the step collections are as a class/struct with an execute method which
accepts two argument: a control tag and a second argument, which usually is
a the context (to be defined later):

 Note that the execute(…) function should be “const” and is not allowed to
have side-effects.

 The control tag distinguishes between different execution instances of the same
step.

 In CnC literature, context is referred to as “graph”. It brings together the
different collections (to be defined later for this case study).

struct fib_step {

// declaration of execute method goes here

int execute(const int & tag, fib_context & c) const;

};

Fibonacci in CnC (4)

 Determining the Control Tags (Control Collections):

 In CnC, steps are NEVER called explicitly. If a step needs to be executed with a

given tag, this tag is put into a so called tag-collection. The tag-collection

makes sure that the step gets executed eventually. So, for the Fibonacci case

study, the definition is as follows:

 The context:

 As mentioned, it is referred to as “graph”. It brings together the different collections

(tags, items and steps) by defining them as members.

 Each content must be derived from a base class, which again is a template.

CnC::tag_collection< int > m_tags;

https://icnc.github.io/api/class_cn_c_1_1tag__collection.html

Fibonacci in CnC (5)

 The context:

 As mentioned, it is referred to as “graph”. It brings together the different collections

(tags, items and steps) by defining them as members.

 Each content must be derived from a base class, which again is a template.

 For the Fibonacci case study, it is as follows:

// derive from CnC::context

struct fib_context : public CnC::context< fib_context >

{

// the step collection for the instances of the compute-kernel

CnC::step_collection< fib_step > m_steps;

// item collection holding the fib number(s)

CnC::item_collection< int, fib_type > m_fibs;

// tag collection to control steps CnC::tag_collection< int > m_tags;

// constructor

fib_context();

};

https://icnc.github.io/api/class_cn_c_1_1step__collection.html
https://icnc.github.io/api/class_cn_c_1_1item__collection.html
https://icnc.github.io/api/class_cn_c_1_1tag__collection.html

Fibonacci in CnC (6)

 The context constructor function:

 In the constructor of the context, we

define the relations (producer/consumer

and controller/controlee) between the

different collections:

 Producer/Consumer dependency is

defined by calling consumes() and

produces() functions.

 For each tag which is put into a tag

collection m_tags, a step from m_steps is

executed. This is defined by invoking the

method prescribe on m_tags.

// derive from CnC::context

struct fib_context : public CnC::context< fib_context >

{

// the step collection for the instances of the compute-kernel

CnC::step_collection< fib_step > m_steps;

// item collection holding the fib number(s)

CnC::item_collection< int, fib_type > m_fibs;

// tag collection to control steps CnC::tag_collection< int > m_tags;

// constructor

fib_context();

};

fib_context::fib_context()

: CnC::context< fib_context >(),

// pass context to collection constructors

m_steps(*this),

m_fibs(*this),

m_tags(*this)

{ // prescribe compute steps with this (context) as argument

m_tags.prescribes(m_steps, *this);

// step consumes m_fibs

m_steps.consumes(m_fibs);

// step also produces m_fibs

m_steps.produces(m_fibs);

}

https://icnc.github.io/api/class_cn_c_1_1step__collection.html
https://icnc.github.io/api/class_cn_c_1_1item__collection.html
https://icnc.github.io/api/class_cn_c_1_1tag__collection.html
https://icnc.github.io/api/class_cn_c_1_1context.html
https://icnc.github.io/api/class_cn_c_1_1tag__collection.html#a83f2782bc18578a2018851f0356c8b2a
https://icnc.github.io/api/class_cn_c_1_1step__collection.html#aa91192651c08408d430829b6e4bca8b0
https://icnc.github.io/api/class_cn_c_1_1step__collection.html#a7e5f64f200a66bba4228f17bfded35ca

Fibonacci in CnC (7)

 Writing the Step by the domain expert:

 For the step collection fib_step which has been defined as follows

struct fib_step {

// declaration of execute method goes here

int execute(const int & tag, fib_context & c) const;

};

int fib_step::execute(const int & tag, fib_context & ctxt) const {

switch(tag) {

case 0 : ctxt.m_fibs.put(tag, 0); break;

case 1 : ctxt.m_fibs.put(tag, 1); break;

default :

// get previous 2 results

fib_type f_1; ctxt.m_fibs.get(tag - 1, f_1);

fib_type f_2; ctxt.m_fibs.get(tag - 2, f_2);

// put our result

ctxt.m_fibs.put(tag, f_1 + f_2);

}

return CnC::CNC_Success;

}

https://icnc.github.io/api/namespace_cn_c.html#ae34016c7f648af87668a0d8115b03860

Fibonacci in CnC (8)

 The Main Program:

int main(int argc, char* argv[]) {

int n = 42;

// eval command line args

if(argc < 2) {

std::cerr << "usage: " << argv[0] << " n\nUsing default value " << n << std::endl;

} else n = atol(argv[1]);

// create context

fib_context ctxt;

// put tags to initiate evaluation

for(int i = 0; i <= n; ++i) ctxt.m_tags.put(i);

// wait for completion

ctxt.wait();

// get result

fib_type res2;

ctxt.m_fibs.get(n, res2);

// print result

std::cout << "fib (" << n << "): " << res2 << std::endl;

return 0;

}

They explain that: You might

have noticed that the fib(n-

1) will not become available

until a corresponding step-

instances has been

executed. Hence, it will not

be sufficient to prescribe

only the desired step-

instances, that's why we

need to put all tags up to

that number.

Implementation

 Implementations of CnC need to provide a translator and runtime.

 They have implemented CnC for C++, Java, .NET and Haskell.

 For C++, they use C++ Threading Building Blocks (TBB) and also recently,

Habanero-C.

 For Java, they uses Habanero-Java (an extension of X10 language).

 For Haskell, they use the work stealing features of the Glasgow Haskell

Compiler to implement CnC.

Main Feature of Haabnero-C

 Habanero-C:

 C-based task-parallel programming language

developed at Rice University.

 Main (parallelism) Feature:

 The async and finish constructs, which define

lightweight dynamic task creation and termination

(originally defined in the X10 language):

 The statement “async <stmt>” causes the parent task to

crate a new child task to execute <stmt> asynchronously

(i.e., before, after or in parallel) with the remainder of the

parent task. So, in the figure, STMT1 in task T1 can

potentially execute in parallel with STMT2 in task T0.

 The statement “finish <stmt>” causes the parent task to

execute <stmt> and then wait until all async tasks

created within <stmt> have completed, including

transitively spawned tasks. So, in the figure, child task T1

has completed executing STMT1 before T0 executes

STMT3.

Further investigations regarding CnC

 Formal description of an execution semantics for CnC with a proof of

determinism [3] :

 Since parallelism provides inherent un-determinism in the execution, they have

proved that the ultimate state of the two executions of the same program will

lead to the same result (though the order of execution of the step collection

instances might be different).

 Reasons for using Habanero-C and C++ TBB for the implementation.

 Other extensions of CnC such as HC-CnC [1]

References

 [1] Mapping a Data-Flow Programming Model onto Heterogeneous

Platforms, Alina Sbirlea et al.

 [2] https://icnc.github.io/api/fib.html

 [3] Concurrent Collections, Zoran Budimlic, et al.

https://icnc.github.io/api/fib.html

