
CSE 590: Special Topics Course

(Supercomputing)

Lecture 9

(GPGPU Computing & CUDA)

Rezaul A. Chowdhury
Department of Computer Science

SUNY Stony Brook

Spring 2016

GPU vs CPU: FLOP/s

S
o

u
rc

e
:

N
V

ID
IA

GPU vs CPU: Memory Bandwidth

S
o

u
rc

e
:

N
V

ID
IA

S
o

u
rc

e
:

N
V

ID
IA

CPU’s are designed for general purpose computations requiring

sophisticated control flow and caching mechanisms.

GPU’s are designed for special purpose computations with massive

data-parallelism and high arithmetic intensity.

― Since the same program is executed for each data element there is

a lower requirement of sophisticated flow control

― Because of high arithmetic intensity, the memory access latency

can be hidden with calculations instead of big caches

So GPU’s can devote more transistors to data processing rather than

data caching and flow control.

GPU vs CPU: Design Philosophy

Architecture of a Modern GPU

Source: NVIDIA

CUDA (Compute Unified Device Architecture)

S
o

u
rc

e
:

N
V

ID
IA

A general purpose parallel computing architecture with

― a new parallel programming model, and

― instruction set architecture

that leverages the parallel compute engine in NVIDIA GPUs to

solve data-parallel computations more efficiently than CPUs.

CUDA: a Scalable Programming Model

Three Key abstractions exposed as a minimal set of language

extensions

― A hierarchy of thread groups

― Shared memories

― Barrier synchronization

The programmer partitions

― the problem into coarse sub-

problems that can be solved

independently in parallel by

blocks of threads

― each sub-problem into finer

pieces that can be solved

cooperatively in parallel by all

threads within the block

The thread blocks can be

executed in any order ―

concurrently or sequen-ally ―

leading to automatic scalability.

S
o

u
rc

e
:

N
V

ID
IA

Differences between CPU and CUDA Threads

― CUDA threads are extremely lightweight compared to CPU

threads

― Only a few cycles to create

― Instant switching

― CUDA runs thousands of threads while CPU’s run only a few

CUDA Extensions to C Functional Declarations

Executed on the: Only callable from the:

__device__ float DeviceFunc() device device

__global__ void KernelFunc() device host

__host__ float HostFunc() host host

Kernel Functions

S
o

u
rc

e
:

N
V

ID
IA

― Called from host (CPU)

― Executed on device (GPU)

― Only one kernel runs at a time (for compute capability < 2.0)

― All running threads execute the same kernel (except above)

― All kernel launches are asynchronous (control returns to the

CPU immediately)

Execution Configuration

Kernel Functions (Restrictions)

― Must return void

― Variable number of arguments (i.e., varargs) not allowed

― No static variables

― No access to host memory

― Must be non-recursive

S
o

u
rc

e
:

N
V

ID
IA

Thread Hierarchy: Thread Index

Threads can be identified using a 1, 2 or 3 dimensional thread index

forming a 1, 2 or 3 dimensional thread block.

Source: NVIDIA

Thread Hierarchy: Block Index

Blocks can be identified using a 1, 2 or 3 dimensional block index

forming a 1, 2 or 3 dimensional grid.

Source: NVIDIA

Thread Hierarchy: Grids, Blocks and Threads

S
o

u
rc

e
:

N
V

ID
IA

All __device__ and __global__

functions have access to the

following built-in device

variables

― dim3 gridDim: dimenions of

the grid in blocks

― dim3 blockDim: dimenions of

a block in threads

― dim3 blockIdx: block index

within the grid

― dim3 threadIdx: thread index

within a block

CUDA Memory Model

Host

Source: NVIDIA

Registers

― Very large number of registers per

processor (thread)

― Instant access

Local Memory

― A portion of global memory that is

private to a processor (thread)

― Used for register spills

― Slow (same as global memory)

Shared Memory

― A small (e.g., 16 KB)

block of memory

shared by all processors

(threads) in a multi

-processor (block)

― Divided into Several memory banks

― As fast as registers w/o bank conflicts

CUDA Memory Model

Host

Source: NVIDIA

Global Memory

― A large block (in GB) of memory

shared by all multiprocessors on a

GPU

― High bandwidth (� 100 GB/s)

― Slow (several 100 clock cycles

when not cached)

Constant Memory

― Small (e.g., 64 KB) read-only

memory shared by all multi-

processors

― Cached (per multi

-processor)

― Slow (several 100 clock

cycles on cache miss)

Texture Memory

― Similar to constant memory

― Reads can be samplings (e.g., nearest point of interpolation)

CUDA Memory Model

cudaMalloc(): allocates object in

the devices global memory.

cudaFree(): frees objects from

device global memory.

cudaMemcpy(): memory data

transfer:

― host to host

― host to device

― device to host

― device to device Host

Source: NVIDIA

Synchronization

For the following tasks control is returned to the host before the

device completes the task

― Kernel launches

― Memory copies between two addresses on the same device

― Memory copies of size 64KB or less from host to device

― Memory copies by functions suffixed with Async

― Memory set function calls

However, kernel launches and cudaMemcpy can start only after all

previous CUDA calls have completed.

cudaDeviceSynchronize(): blocks until the device has completed all

previously requested tasks

__syncthreads(): synchronize all threads in a block

Example: CUDA Memory Functions

S
o

u
rc

e
:

N
V

ID
IA

CUDA Variable Type Qualifiers

Memory Scope Lifetime

automatic variables other

than arrays
register thread kernel

automatic array variables local thread kernel

__device__ global grid application

__shared__ shared block kernel

__constant__ constant grid application

Matrix Multiplication w/o Shared Memory

S
o

u
rc

e
:

N
V

ID
IA

S
o

u
rc

e
:

N
V

ID
IA

Matrix Multiplication with Shared Memory

Source: NVIDIA

Matrix Multiplication with Shared Memory

Source: NVIDIA

Matrix Multiplication with Shared Memory

Source: NVIDIA

Some Optimization Tips

― Increase data parallelism

― Keep resource usage (e.g., registers, shared memory) low

enough to allow multiple warps per multiprocessor

― Increase arithmetic intensity

― Recompute on device to avoid costly host to device data

transfers

― Use the fast shared memory more than the slow global memory

― Increase coalesced accesses to global memory

― Avoid bank conflicts in shared memory

― Improve spatial locality for cached memory

― One large data transfer is much faster than many small transfers

