
CSE 613: Parallel Programming

Lecture 10

(Parallel Minimum Spanning Trees)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2017

Spanning Tree

A spanning tree of a connected undirected graph � � �, � is a

connected subgraph � � �, �′ such that ��⊆� and �′ � � 	 1.

Since � connects all � vertices of the graph and has only � 	 1

edges, �	cannot contain a cycle.

The connectivity algorithms can easily be extended to return a

spanning tree.

― We simply keep track of edges used for hooking

― Since each edge will hook together two components that are

not connected yet, and only one edge will succeed in hooking

the components, the collection of these edges across all steps

will form a spanning tree (i.e., they will connect all vertices and

there will be no cycles)

Minimum Spanning Tree

A minimum spanning tree of a connected weighted undirected graph

� � �, � 	with weights � for ∈ � is a spanning tree � � �, �′

of �	such that � � � ∑ � �
�∈�� is minimized.

Cut Theorem: For any �⊂	� suppose ∈ � is the minimum weight

edge connecting �	and � ∖ �, then 	must be in ��� � .

Let us assume for simplicity that all edge weights are distinct.

Corollary: For every � ∈ 	� the edge �, � ∈ � with the minimum

weight must be in ��� � .

This property can be used to extend the parallel CC algorithms we

have seen to output MST.

Randomized Parallel MST with Priority CW

Par-Randomized-MST-Priority-CW (n, E, MST)

3. parallel for v ← 1 to n do L[v] ← v

1. array L[1 : n], C[1 : n], R[1 : n]

10. if C[u] = Tail and C[v] = Head and R[u] = i then

5. while F = True do

8. parallel for i ← 1 to |E| do

7. parallel for i ← 1 to |E| do R[E[i].u] ← i (priority: |E| ― i)

12. parallel for i ← 1 to |E| do E[i] ← (L[E[i].u], L[E[i].v])

13. F ← False

14. parallel for each (u, v) ∈ E do

15. if u ≠ v then F ← True

Input: n is the number of vertices, E is the set of edges, and MST[1: |E|] are

flags with all of them initially set to 0. For every edge (u, v) both (u, v) and

(v, u) are included in E.

Output: For all i, MST[i] is set to 1 if edge E[i] is included in the MST.

9. u ← E[i].u, v ← E[i].v

11. L[u] ← v, MST[i] ← 1

2. sort the edges in E in non-decreasing order of edge weights

6. parallel for v ← 1 to n do C[v] ← RANDOM{ Head, Tail }

4. F ← (|E| > 0) ? True : False

highest priority

write, i.e., edge

with the smallest

weight wins
smallest weight

edge from u is

chosen for hooking

Let n = #vertices, and m = #edges in original

graph. Then m ≥ n - 1 as graph is connected.

Sorting in step 2 does Θ � log� work and

has Θ log3� 	depth.

Each contraction is still expected to reduce

#vertices by a factor of at least

!
. [why?]

So, the expected number of contraction

steps, " � Ο log � .

For each contraction step span is Θ log � ,

and work is Θ � #� .

Parallelism:
$% &,'

$(&,'
� Θ

'

)*+, &

Work: � �,� � Θ � log� #" � #�

� Θ � log�

Span: �- �,� � Θ log3� # "log �

� Θ log3�

Randomized Parallel MST with Priority CW

Par-Randomized-MST-Priority-CW (n, E, MST)

3. parallel for v ← 1 to n do L[v] ← v

1. array L[1 : n], C[1 : n], R[1 : n]

10. if C[u] = Tail and C[v] = Head and R[u] = i then

5. while F = True do

8. parallel for i ← 1 to |E| do

7. parallel for i ← 1 to |E| do

12. parallel for i ← 1 to |E| do

13. F ← False

14. parallel for each (u, v) ∈ E do

15. if u ≠ v then F ← True

9. u ← E[i].u, v ← E[i].v

11. L[u] ← v, MST[i] ← 1

2. sort the edges in E in non-decreasing

6. parallel for v ← 1 to n do

4. F ← (|E| > 0) ? True : False

order of edge weights

C[v] ← RANDOM{ Head, Tail }

R[E[i].u] ← i (priority: |E| ― i)

E[i] ← (L[E[i].u], L[E[i].v])

Concurrent Writes where the Leftmost Writer Wins

Problem: Consider a set of � processors . , .,, … , .& of which some

are trying to write (not necessarily the same value) to a common

location. Devise a parallel strategy to identify the leftmost writer (i.e.,

the writer with the smallest id) assuming that during concurrent

writes to the same location an arbitrary writer may succeed.

Example: Suppose among the 16 processors below the red ones are

trying to write their ids (i.e., a red .0 is trying to write 1) to a common

location 2.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

2

Eliminating Priority CW by Sorting

(e.g., Using Radix Sort)

Par-Radix-Sort (A, n, b)

1. array F0[1 : n], F1 [1 : n], S0[1 : n], S1 [1 : n], B [1 : n]

8. parallel for i ← 1 to n do

3. parallel for i ← 1 to n do

Input: An array A of n keys, each represented as a b bit integer.

Output: Array A with its keys sorted in non-decreasing order. The output is

stable meaning keys of equal value retain their input order.

4. F1 [i] ← SHIFT-RIGHT(A[i], k) mod 2

2. for k ← 0 to b ― 1 do

9. if F1[i] = 0 then B[S0[i]] ← A[i]

11. parallel for i ← 1 to n do

12. A[i] ← B[i]

5. F0 [i] ← 1 ― F1 [i]

6. S0 ← Par-Prefix-Sum (F0, +)

7. S1 ← Par-Prefix-Sum (F1, +)

10. else B[S0[n] + S1[i]] ← A[i]

extract the k-th bit

and its negation

find ranks of all

keys with bit k = 0,

and of all keys with

bit k = 1 by treating

them as separate

groups

use the ranks to

order the keys

appropriately, and

place all keys with

bit k=0 ahead of all

keys with bit k=1

Par-Radix-Sort (A, n, b)

1. array F0[1 : n], F1 [1 : n],

8. parallel for i ← 1 to n do

3. parallel for i ← 1 to n do

4. F1 [i] ← SHIFT-RIGHT(A[i], k) mod 2

2. for k ← 0 to b ― 1 do

9. if F1[i] = 0 then B[S0[i]] ← A[i]

11. parallel for i ← 1 to n do

12. A[i] ← B[i]

5. F0 [i] ← 1 ― F1 [i]

6. S0 ← Par-Prefix-Sum (F0, +)

7. S1 ← Par-Prefix-Sum (F1, +)

10. else B[S0[n] + S1[i]] ← A[i]

S0[1 : n], S1 [1 : n], B [1 : n]
The serial for loop in line 2 iterates : times,

and each iteration performs Θ � work and

has Θ log2� depth.

Parallelism:
$% &

$(&
� Θ

&

)*+, &

Work: � � � Θ :�

Span: �- � � Θ :log2�

Eliminating Priority CW by Sorting

(e.g., Using Radix Sort)

Par-Simulate-Priority-CW-using-Radix-Sort (n, E, R)

1. array A[1 : |E|]

5. parallel for i ← 1 to |E| do

Input: n is the number of vertices and E is the set of edges.

Output: For 1 ≤ u ≤ n, R[u] is set to the smallest index i such that E[i].u = u.

6. u ← SHIFT-RIGHT(A[i], k)

3. parallel for i ← 1 to |E| do A[i] ← SHIFT-LEFT(E[i].u, k) + i

2. k ← log|E| + 1

8. if i = 1 or u ≠ SHIFT-RIGHT(A[i ― 1], k) then R[u] ← j

4. Par-Radix-Sort (A, |E|, k + logn)

7. j ← A[i] ― SHIFT-LEFT(u, k)

Work: Θ :� � Θ � log�

Span: Θ :log2� � Θ log3�

Assuming, �	 � 	 |�|. For radix sort : � Θ log � .

Eliminating Priority CW by Sorting

(e.g., Using Radix Sort)

Randomized Parallel MST with Priority CW

Par-Randomized-MST-Priority-CW (n, E, MST)

3. parallel for v ← 1 to n do L[v] ← v

1. array L[1 : n], C[1 : n], R[1 : n]

10. if C[u] = Tail and C[v] = Head and R[u] = i then

5. while F = True do

8. parallel for i ← 1 to |E| do

7. parallel for i ← 1 to |E| do R[E[i].u] ← i (priority: |E| ― i)

12. parallel for i ← 1 to |E| do E[i] ← (L[E[i].u], L[E[i].v])

13. F ← False

14. parallel for each (u, v) ∈ E do

15. if u ≠ v then F ← True

Input: n is the number of vertices, E is the set of edges, and MST[1: |E|] are

flags with all of them initially set to 0. For every edge (u, v) both (u, v) and

(v, u) are included in E.

Output: For all i, MST[i] is set to 1 if edge E[i] is included in the MST.

9. u ← E[i].u, v ← E[i].v

11. L[u] ← v, MST[i] ← 1

2. sort the edges in E in non-decreasing order of edge weights

6. parallel for v ← 1 to n do C[v] ← RANDOM{ Head, Tail }

4. F ← (|E| > 0) ? True : False

Randomized Parallel MST w/o Priority CW

Par-Randomized-MST-Priority-CW (n, E, MST)

3. parallel for v ← 1 to n do L[v] ← v

1. array L[1 : n], C[1 : n], R[1 : n]

10. if C[u] = Tail and C[v] = Head and R[u] = i then

5. while F = True do

8. parallel for i ← 1 to |E| do

7. Par-Simulate-Priority-CW-using-Radix-Sort (n, E, R)

12. parallel for i ← 1 to |E| do E[i] ← (L[E[i].u], L[E[i].v])

13. F ← False

14. parallel for each (u, v) ∈ E do

15. if u ≠ v then F ← True

Input: n is the number of vertices, E is the set of edges, and MST[1: |E|] are

flags with all of them initially set to 0. For every edge (u, v) both (u, v) and

(v, u) are included in E.

Output: For all i, MST[i] is set to 1 if edge E[i] is included in the MST.

9. u ← E[i].u, v ← E[i].v

11. L[u] ← v, MST[i] ← 1

2. sort the edges in E in non-decreasing order of edge weights

6. parallel for v ← 1 to n do C[v] ← RANDOM{ Head, Tail }

4. F ← (|E| > 0) ? True : False

Let n = #vertices, and m = #edges in original

graph. Then m ≥ n - 1 as graph is connected.

Expected number of contraction steps, " �

Ο log � .

For each contraction step span is Θ log3� ,

and work is Θ � #�log� .

Parallelism:
$% &,'

$(&,'
� Θ

'

)*+, &

Work:

� �,� � Θ � log� #" � #� log�

� Θ � log2�

Span:

�- �,� � Θ log3� # "log3�

� Θ log4�

Randomized Parallel MST w/o Priority CW

Par-Randomized-MST-Priority-CW (n, E, MST)

3. parallel for v ← 1 to n do L[v] ← v

1. array L[1 : n], C[1 : n], R[1 : n]

10. if C[u] = Tail and C[v] = Head and R[u] = i then

5. while F = True do

8. parallel for i ← 1 to |E| do

7. Par-Simulate-Priority-CW-using-Radix-Sort (n, E, R)

12. parallel for i ← 1 to |E| do

13. F ← False

14. parallel for each (u, v) ∈ E do

15. if u ≠ v then F ← True

9. u ← E[i].u, v ← E[i].v

11. L[u] ← v, MST[i] ← 1

2. sort the edges in E in non-decreasing

6. parallel for v ← 1 to n do

4. F ← (|E| > 0) ? True : False

order of edge weights

C[v] ← RANDOM{ Head, Tail }

E[i] ← (L[E[i].u], L[E[i].v])

Ranking integer Keys Using Counting Sort

Input: An array �>	1: 	�	@ of keys, each represented as an A bit integer.

Output: Stable ranking of the keys in � when sorted in non-decreasing order.

Approach:

― Suppose . , .,, … , .B are the available processing elements.

― Split � into C segments of approximately
&

B
keys each.

Let �0 denote the 1-th (1 D 1 D C) such segment.

― Assign �0 to .0.

― Since the ranking must be stable, all occurrences of � in �0 must be

ranked ahead of all occurrences of � in �0E .

― For � ∈ >0,2G 	 1@, let H � 1 be the frequency of � in . , .,, … , .0.

― Then ∑ H � CIJ
KL9 is the total number of keys in � with value M �.

― Clearly, the first occurrence of � in .0 must have a global rank of 1 #
∑ H � C # H � 1 	 1IJ
KL9 (assuming H � 0 � 0).

Ranking integer Keys Using Counting Sort

Par-Counting-Rank (S, n, d, r) { p = #processing elements }

1. array f[0 : 2d ― 1][1 : p], r1[0 : 2d ― 1][1 : p],

2. parallel for i ← 1 to p do

Input: An array S[1: n] of keys, each represented as an d bit integer.

Output: Array r[1: n] with r[i] giving the rank of S[i] when the keys in S are

sorted in non-decreasing order. The ranking is stable.

4. js[i] ← (i ― 1) n / p + 1, je[i] ← (i < p) ? (i n / p) : n

3. for j ← 0 to 2d ― 1 do f[j][i] ← 0

js[1 : p], je[1 : p], ofs[1 : p]

5. for j ← js[i] to je[i] do f[S[j]][i] ← f[S[j]][i] + 1

6. for j ← 0 to 2d ― 1 do

7. f[j][1 : p] ← Par-Prefix-Sum (f[j][1 : p], +)

8. parallel for i ← 1 to p do

9. ofs[i] ← 1

10. for j ← 0 to 2d ― 1 do

11. r1[j][i] ← (i = 1) ? ofs[i] : (ofs[i] + f[j][i ― 1])

12. ofs[i] ← ofs[i] + f[j][p]

13. for j ← js[i] to je[i] do

14. r[j] ← r1[S[j]][i]

15. r1[S[j]][i] ← r1[S[j]][i] + 1

for each key j ∈[0,

2d – 1] count the

frequency of j in

processors ≤ i

processor i counts

frequency of each

key ∈[0, 2d – 1]

processor i finds

the overall rank of

the first

occurrence of each

key ∈[0, 2d – 1] in

its segment

find the ranks of all

occurrences of

each key based on

the ranks of their

first occurrences

Ranking integer Keys Using Counting Sort

Par-Counting-Rank (S, n, d, r) { p = #proc elements }

1. array f[0 : 2d ― 1][1 : p], r1[0 : 2d ― 1][1 : p],

2. parallel for i ← 1 to p do

4. js[i] ← (i ― 1) n / p + 1

3. for j ← 0 to 2d ― 1 do f[j][i] ← 0

js[1 : p], je[1 : p], ofs[1 : p]

5. for j ← js[i] to je[i] do

6. for j ← 0 to 2d ― 1 do

7. f[j][1 : p] ← Par-Prefix-Sum (f[j][1 : p], +)

8. parallel for i ← 1 to p do

9. ofs[i] ← 1

10. for j ← 0 to 2d ― 1 do

11. r1[j][i] ← (i = 1) ? ofs[i]

12. ofs[i] ← ofs[i] + f[j][p]

13. for j ← js[i] to je[i] do

14. r[j] ← r1[S[j]][i]

15. r1[S[j]][i] ← r1[S[j]][i] + 1

je[i] ← (i < p) ? (i n / p) : n

f[S[j]][i] ← f[S[j]][i] + 1

: (ofs[i] + f[j][i ― 1])

We will analyze running time on p processing

elements.

�′B �, A � Θ log C # 1 # 2G #
&

B
[L: 2-5]

#	Θ 2G log2 C # 1 [L: 6-7]

	#	Θ log C # 1 # 2G #
&

B
[L: 8-15]

														� Θ
�

C
2G log2 C # 1

Radix Sort with Ranking Using Counting Sort

Par-Radix-Sort-with-Counting-Rank (A, n, b)

1. array S[1 : n], r [1 : n], B [1 : n]

8. parallel for i ← 1 to n do

5. parallel for i ← 1 to n do

Input: An array A of n keys, each represented as a b bit integer.

Output: Array A with its keys sorted in non-decreasing order. The output is

stable meaning keys of equal value retain their input order.

6. S [i] ← EXTRACT-BIT-SEGMENT(A[i], k, k + q ― 1)

3. for k ← 0 to b ― 1 by d do

10. parallel for i ← 1 to n do

11. A[i] ← B[i]

4. q ← (k + d ≤ b) ? d : (b ― k)

7. Par-Counting-Rank (S, n, q, r)

9. B[r[i]] ← A[i]

2. d ← log(n / (p logn))

Radix Sort with Ranking Using Counting Sort

Par-Radix-Sort-with-Counting-Rank (A, n, b)

1. array S[1 : n], r [1 : n], B [1 : n]

8. parallel for i ← 1 to n do

5. parallel for i ← 1 to n do

6. S [i] ← EXTRACT-BIT-SEGMENT(A[i], k, k + q ― 1)

3. for k ← 0 to b ― 1 by d do

10. parallel for i ← 1 to n do

11. A[i] ← B[i]

4. q ← (k + d ≤ b) ? d : (b ― k)

7. Par-Counting-Rank (S, n, q, r)

9. B[r[i]] ← A[i]

2. d ← log(n / (p logn))

We assume that 1 D C D
&

,)*+ &
,

and : � Ο log � .

We will analyze running time on p

processing elements.

�B � � Θ
:

A

�

C
�′B �, A

� Θ
:

A

�

C
2G log2 C # 1

Then work: � � � Θ
N

)*+ &	J)*+)*+ &
� #

&

)*+ &
� Θ

N&

)*+ &
� Ο �

and span: �- � � � O

P QRS O
� � Θ : log � # log2� � Θ : log2� � Ο log3�

Then parallelism:
$% &

$(&
� Θ

&

)*+3 &

Par-Simulate-Priority-CW-using-Radix-Sort-2 (n, E, R)

1. array A[1 : |E|]

5. parallel for i ← 1 to |E| do

Input: n is the number of vertices and E is the set of edges.

Output: For 1 ≤ u ≤ n, R[u] is set to the smallest index i such that E[i].u = u.

6. u ← SHIFT-RIGHT(A[i], k)

3. parallel for i ← 1 to |E| do A[i] ← SHIFT-LEFT(E[i].u, k) + i

2. k ← log|E| + 1

8. if i = 1 or u ≠ SHIFT-RIGHT(A[i ― 1], k) then R[u] ← j

4. Par-Radix-Sort-with-Counting-Rank (A, |E|, k + log n)

7. j ← A[i] ― SHIFT-LEFT(u, k)

Work: Θ � � Θ �

Span: Θ log3�

Assuming, �	 � 	 |�|. For radix sort : � Θ log � .

Eliminating Priority CW by Sorting

(Using Radix Sort with Ranking by Counting Sort)

Randomized Parallel MST with Priority CW

Par-Randomized-MST-Priority-CW (n, E, MST)

3. parallel for v ← 1 to n do L[v] ← v

1. array L[1 : n], C[1 : n], R[1 : n]

10. if C[u] = Tail and C[v] = Head and R[u] = i then

5. while F = True do

8. parallel for i ← 1 to |E| do

7. parallel for i ← 1 to |E| do R[E[i].u] ← i (priority: |E| ― i)

12. parallel for i ← 1 to |E| do E[i] ← (L[E[i].u], L[E[i].v])

13. F ← False

14. parallel for each (u, v) ∈ E do

15. if u ≠ v then F ← True

Input: n is the number of vertices, E is the set of edges, and MST[1: |E|] are

flags with all of them initially set to 0. For every edge (u, v) both (u, v) and

(v, u) are included in E.

Output: For all i, MST[i] is set to 1 if edge E[i] is included in the MST.

9. u ← E[i].u, v ← E[i].v

11. L[u] ← v, MST[i] ← 1

2. sort the edges in E in non-decreasing order of edge weights

6. parallel for v ← 1 to n do C[v] ← RANDOM{ Head, Tail }

4. F ← (|E| > 0) ? True : False

Randomized Parallel MST w/o Priority CW

Par-Randomized-MST-Priority-CW (n, E, MST)

3. parallel for v ← 1 to n do L[v] ← v

1. array L[1 : n], C[1 : n], R[1 : n]

10. if C[u] = Tail and C[v] = Head and R[u] = i then

5. while F = True do

8. parallel for i ← 1 to |E| do

7. Par-Simulate-Priority-CW-using-Radix-Sort-2 (n, E, R)

12. parallel for i ← 1 to |E| do E[i] ← (L[E[i].u], L[E[i].v])

13. F ← False

14. parallel for each (u, v) ∈ E do

15. if u ≠ v then F ← True

Input: n is the number of vertices, E is the set of edges, and MST[1: |E|] are

flags with all of them initially set to 0. For every edge (u, v) both (u, v) and

(v, u) are included in E.

Output: For all i, MST[i] is set to 1 if edge E[i] is included in the MST.

9. u ← E[i].u, v ← E[i].v

11. L[u] ← v, MST[i] ← 1

2. sort the edges in E in non-decreasing order of edge weights

6. parallel for v ← 1 to n do C[v] ← RANDOM{ Head, Tail }

4. F ← (|E| > 0) ? True : False

Let n = #vertices, and m = #edges in original

graph. Then m ≥ n - 1 as graph is connected.

Expected number of contraction steps, " �

Ο log � .

For each contraction step span is Θ log2� ,

and work is Θ � #� log� .

Parallelism:
$% &,'

$(&,'
� Θ

'

)*+3 &

Work:

� �,� � Θ � log� #" � #�

� Θ � log�

Span:

�- �,� � Θ log3� # "log3�

� Θ log4�

Randomized Parallel MST w/o Priority CW

Par-Randomized-MST-Priority-CW (n, E, MST)

3. parallel for v ← 1 to n do L[v] ← v

1. array L[1 : n], C[1 : n], R[1 : n]

10. if C[u] = Tail and C[v] = Head and R[u] = i then

5. while F = True do

8. parallel for i ← 1 to |E| do

7. Par-Simulate-Priority-CW-using-Radix-Sort-2 (n, E, R)

12. parallel for i ← 1 to |E| do

13. F ← False

14. parallel for each (u, v) ∈ E do

15. if u ≠ v then F ← True

9. u ← E[i].u, v ← E[i].v

11. L[u] ← v, MST[i] ← 1

2. sort the edges in E in non-decreasing

6. parallel for v ← 1 to n do

4. F ← (|E| > 0) ? True : False

order of edge weights

C[v] ← RANDOM{ Head, Tail }

E[i] ← (L[E[i].u], L[E[i].v])

Concurrent Writes where the Leftmost Writer Wins

Solution: Use binary search.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

0

T
(initialized to 0)

writers write 1 to U no one writes to U

Concurrent Writes where the Leftmost Writer Wins

Solution: Use binary search.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

1

T
(initialized to 0)

writers write 1 to U no one writes to U

After stage 1: T � 1, and so processors .8, … , . 5 are eliminated.

Concurrent Writes where the Leftmost Writer Wins

Solution: Use binary search.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

1

T
(initialized to 0)

After stage 1: T � 1, and so processors .8, … , . 5 are eliminated.

Concurrent Writes where the Leftmost Writer Wins

Solution: Use binary search.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

0

T
(initialized to 0)

writers write 1 to U no one writes to U

After stage 1: T � 1, and so processors .8, … , . 5 are eliminated.

Concurrent Writes where the Leftmost Writer Wins

Solution: Use binary search.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

0

T
(initialized to 0)

writers write 1 to U no one writes to U

After stage 1: T � 1, and so processors .8, … , . 5 are eliminated.

After stage 2: T � 0, and so processors . , … , .! are eliminated.

Concurrent Writes where the Leftmost Writer Wins

Solution: Use binary search.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

0

T
(initialized to 0)

After stage 1: T � 1, and so processors .8, … , . 5 are eliminated.

After stage 2: T � 0, and so processors . , … , .! are eliminated.

Concurrent Writes where the Leftmost Writer Wins

Solution: Use binary search.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

0

T
(initialized to 0)

writers

write

1 to U

no one

writes

to U

After stage 1: T � 1, and so processors .8, … , . 5 are eliminated.

After stage 2: T � 0, and so processors . , … , .! are eliminated.

Concurrent Writes where the Leftmost Writer Wins

Solution: Use binary search.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

1

T
(initialized to 0)

writers

write

1 to U

no one

writes

to U

After stage 1: T � 1, and so processors .8, … , . 5 are eliminated.

After stage 2: T � 0, and so processors . , … , .! are eliminated.

After stage 3: T � 1, and so processors .6, .7 are eliminated.

Concurrent Writes where the Leftmost Writer Wins

Solution: Use binary search.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

1

T
(initialized to 0)

After stage 1: T � 1, and so processors .8, … , . 5 are eliminated.

After stage 2: T � 0, and so processors . , … , .! are eliminated.

After stage 3: T � 1, and so processors .6 and .7	are eliminated.

Concurrent Writes where the Leftmost Writer Wins

Solution: Use binary search.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

0

T
(initialized to 0)

After stage 1: T � 1, and so processors .8, … , . 5 are eliminated.

After stage 2: T � 0, and so processors . , … , .! are eliminated.

After stage 3: T � 1, and so processors .6 and .7	are eliminated.

Concurrent Writes where the Leftmost Writer Wins

Solution: Use binary search.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

1

T
(initialized to 0)

After stage 1: T � 1, and so processors .8, … , . 5 are eliminated.

After stage 2: T � 0, and so processors . , … , .! are eliminated.

After stage 3: T � 1, and so processors .6 and .7	are eliminated.

After stage 4: T � 1, and so processor .5 is eliminated.

Concurrent Writes where the Leftmost Writer Wins

Solution: Use binary search.

. ., .3 .! .4 .5 .6 .7 .8 . 9 . . , . 3 . ! . 4 . 5

0

T
(initialized to 0)

After stage 1: T � 1, and so processors .8, … , . 5 are eliminated.

After stage 2: T � 0, and so processors . , … , .! are eliminated.

After stage 3: T � 1, and so processors .6 and .7	are eliminated.

After stage 4: T � 1, and so processor .5 is eliminated.

So processor .4 is the leftmost writer.

Eliminating Priority Concurrent Writes from MST

Par-Simulate-Priority-CW-using-Binary-Search (n, E, R)

2. parallel for u ← 1 to n do l[u] ← 1, h[u] ← |E|

1. array B[1 : n], l[1 : n], h[1 : n], lo[1 : n], hi[1 : n], md[1 : n],

7. if i ≥ lo[u] and i ≤ md[u] then B[u] ← 1

8. parallel for i ← 1 to |E| do

5. parallel for i ← 1 to |E| do

Input: n is the number of vertices and E is the set of edges.

Output: For 1 ≤ u ≤ n, R[u] is set to the smallest index i such that E[i].u = u.

6. u ← E[i].u, md[u] ← (lo[u] + hi[u]) / 2

4. parallel for u ← 1 to n do B[u] ← 0, lo[u] ← l[u], hi[u] ← h[u]

3. for k ← 1 to 1 + log|E| do

9. u ← E[i].u, md[u] ← (lo[u] + hi[u]) / 2

10. if B[u] = 1 and i ≥ lo[u] and i ≤ md[u] then h[u] ← md[u]

11. elif B[u] = 0 and i > md[u] and i ≤ hi[u] then l[u] ← md[u] + 1

12. parallel for i ← 1 to |E| do

13. u ← E[i].u

14. if i = l[u] then R[u] ← i

for each u ∈[1, n],

and each edge i with

E[i].u = u and i in

the left half of the

current active

segment for u, B[u]

is set to 1

if B[u] = 1 then the

next active segment

of u is set to the left

half of its current

active segment,

otherwise it is set to

the right half

the leftmost edge i

with E[i].u = u

writes its index i to

R[u]

Eliminating Priority Concurrent Writes from MST

The parallel for loops in lines 2 and

12 perform Ο � # � work and have

Θ log � depth.

The serial for loop in line 3 iterates

Θ log � 	times with each iteration

performing Θ � # � 	work in

Θ log � 	depth.

Work: Θ � #� log�

Span: Θ log2�

Par-Simulate-Priority-CW-using-Binary-Search (n, E, R)

2. parallel for u ← 1 to n do l[u] ← 1, h[u] ← |E|

1. array B[1 : n], l[1 : n], h[1 : n],

7. if i ≥ lo[u] and i ≤ md[u] then B[u] ← 1

8. parallel for i ← 1 to |E| do

5. parallel for i ← 1 to |E| do

6. u ← E[i].u, md[u] ← (lo[u] + hi[u]) / 2

4. parallel for u ← 1 to n do

3. for k ← 1 to 1 + log|E| do

9. u ← E[i].u, md[u] ← (lo[u] + hi[u]) / 2

10. if B[u] = 1 and i ≥ lo[u] and i ≤ md[i] then

11. elif B[u] = 0 and i > md[i] and i ≤ hi[u] then

12. parallel for i ← 1 to |E| do

13. u ← E[i].u

14. if i = l[u] then R[u] ← i

B[u] ← 0, lo[u] ← l[u], hi[u] ← h[u]

lo[1 : n], hi[1 : n], md[1 : n]

h[u] ← md[u]

l[u] ← md[u] + 1

Randomized Parallel MST with Priority CW

Par-Randomized-MST-Priority-CW (n, E, MST)

3. parallel for v ← 1 to n do L[v] ← v

1. array L[1 : n], C[1 : n], R[1 : n]

10. if C[u] = Tail and C[v] = Head and R[u] = i then

5. while F = True do

8. parallel for i ← 1 to |E| do

7. parallel for i ← 1 to |E| do R[E[i].u] ← i (priority: |E| ― i)

12. parallel for i ← 1 to |E| do E[i] ← (L[E[i].u], L[E[i].v])

13. F ← False

14. parallel for each (u, v) ∈ E do

15. if u ≠ v then F ← True

Input: n is the number of vertices, E is the set of edges, and MST[1: |E|] are

flags with all of them initially set to 0. For every edge (u, v) both (u, v) and

(v, u) are included in E.

Output: For all i, MST[i] is set to 1 if edge E[i] is included in the MST.

9. u ← E[i].u, v ← E[i].v

11. L[u] ← v, MST[i] ← 1

2. sort the edges in E in non-decreasing order of edge weights

6. parallel for v ← 1 to n do C[v] ← RANDOM{ Head, Tail }

4. F ← (|E| > 0) ? True : False

Randomized Parallel MST w/o Priority CW

Par-Randomized-MST-Priority-CW (n, E, MST)

3. parallel for v ← 1 to n do L[v] ← v

1. array L[1 : n], C[1 : n], R[1 : n]

10. if C[u] = Tail and C[v] = Head and R[u] = i then

5. while F = True do

8. parallel for i ← 1 to |E| do

7. Par-Simulate-Priority-CW-using-Binary-Search (n, E, R)

12. parallel for i ← 1 to |E| do E[i] ← (L[E[i].u], L[E[i].v])

13. F ← False

14. parallel for each (u, v) ∈ E do

15. if u ≠ v then F ← True

Input: n is the number of vertices, E is the set of edges, and MST[1: |E|] are

flags with all of them initially set to 0. For every edge (u, v) both (u, v) and

(v, u) are included in E.

Output: For all i, MST[i] is set to 1 if edge E[i] is included in the MST.

9. u ← E[i].u, v ← E[i].v

11. L[u] ← v, MST[i] ← 1

2. sort the edges in E in non-decreasing order of edge weights

6. parallel for v ← 1 to n do C[v] ← RANDOM{ Head, Tail }

4. F ← (|E| > 0) ? True : False

Let n = #vertices, and m = #edges in original

graph. Then m ≥ n - 1 as graph is connected.

Expected number of contraction steps, " �

Ο log � .

For each contraction step span is Θ log2� ,

and work is Θ � #� log� .

Parallelism:
$% &,'

$(&,'
� Θ

'

)*+ &

Work: � �,� � ΘV� log � #"V� #

�W log �W

� Θ � log2�

Span:

�- �,� � Θ log3� # "log2�

� Θ log3�

Randomized Parallel MST w/o Priority CW

Par-Randomized-MST-Priority-CW (n, E, MST)

3. parallel for v ← 1 to n do L[v] ← v

1. array L[1 : n], C[1 : n], R[1 : n]

10. if C[u] = Tail and C[v] = Head and R[u] = i then

5. while F = True do

8. parallel for i ← 1 to |E| do

7. Par-Simulate-Priority-CW-using-Binary-Search (n, E, R)

12. parallel for i ← 1 to |E| do

13. F ← False

14. parallel for each (u, v) ∈ E do

15. if u ≠ v then F ← True

9. u ← E[i].u, v ← E[i].v

11. L[u] ← v, MST[i] ← 1

2. sort the edges in E in non-decreasing

6. parallel for v ← 1 to n do

4. F ← (|E| > 0) ? True : False

order of edge weights

C[v] ← RANDOM{ Head, Tail }

E[i] ← (L[E[i].u], L[E[i].v])

