
CSE 613: Parallel Programming

Lecture 11

(Parallel Maximal Independent Set)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2017

Independent Sets
Let � � �, � 	be an undirected graph.

Independent Set: A subset � ⊆ � is said to be independent provided

for each 	 ∈ � none of its neighbors in � belongs to �.

Maximal Independent Set: An independent set of � is maximal if it is

not properly contained in any other independent set in �.

Maximum Independent Set:

A maximal independent set

of the largest size.

Finding a maximum

independent set is NP-hard.

But finding a maximal

independent set is trivial in

the sequential setting. Maximal Independent Sets (red vertices) of the Cube Graph

Source: Wikipedia

Finding a Maximal Independent Set Sequentially

Serial-Greedy-MIS (V, E)

2. for v ← 1 to |V| do

4. return MIS

1. MIS ← �

3. if MIS ∩ Γ(v) = � then MIS ← MIS ∪ { v }

Input: V is the set of vertices, and E is the set of edges. For each v ∈ V, we

denote by Γ(v) the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

This algorithm can be easily implemented to run in Θ � � time, where �
is the number of vertices and � is the number of edges in the input graph.

The output of this algorithm is called the Lexicographically First MIS (LFMIS).

Finding a Maximal Independent Set Sequentially

Serial-Greedy-MIS-2 (V, E)

2. while |V| > 0 do

8. return MIS

1. MIS ← �

Input: V is the set of vertices, and E is the set of edges. For each v ∈ V, we

denote by Γ(v) the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

3. pick an arbitrary vertex v ∈ V

4. MIS ← MIS ∪ { v }

5. R ← { v } ∪ Γ(v)

6. V ← V ∖ R

7. E ← E ∖ { (v1, v2) | v1 ∈ R or v2 ∈ R }

Always choosing the vertex with the smallest id in the current graph will

produce exactly the same MIS as in Serial-Greedy-MIS.

Finding a Maximal Independent Set Sequentially

Input: V is the set of vertices, and E is the set of edges. For each S ⊆ V, we

denote by Γ(S) the set of neighboring vertices of S.

Output: A maximal independent set MIS of the input graph.

Serial-Greedy-MIS-3 (V, E)

2. while |V| > 0 do

8. return MIS

1. MIS ← �

3. find an independent set S ⊆ V

4. MIS ← MIS ∪ S

5. R ← S ∪ Γ(S)

6. V ← V ∖ R

7. E ← E ∖ { (v1, v2) | v1 ∈ R or v2 ∈ R }

Parallelizing Serial-Greedy-MIS-3
Serial-Greedy-MIS-3 (V, E)

2. while |V| > 0 do

8. return MIS

1. MIS ← �

3. find an independent set S ⊆ V

4. MIS ← MIS ∪ S

5. R ← S ∪ Γ(S)

6. V ← V ∖ R

7. E ← E ∖ { (v1, v2) | v1 ∈ R or v2 ∈ R }

― Number of iterations can be kept small

by finding in each iteration an S with

large S ∪ Γ(S). But this is difficult to do.

― Instead in each iteration we choose an

S such that a large fraction of current

edges are incident on S ∪ Γ(S).

― To select S we start with a random S′⊆ V.

• By choosing lower degree vertices with higher probability we are

likely to have very few edges with both end-points in S′.

• We check each edge with both end-points in S′, and drop the end-

point with lower degree from S′. Our intention is to keep Γ(S′) as

large as we can.

• After removing all edges as above we are left with an independent

set. This is our S.

• We will prove that if we remove S ∪ Γ(S) from the current graph a

large fraction of current edges will also get removed.

Randomized Maximal Independent Set (MIS)

Par-Randomized-MIS (n, V, E, MIS)

2. array d[1 : |V|], c[1 : |V|] = { 0 }, M[1 : |V|] = { 0 }

5. parallel for j ← E[i].u to k do c[j] ← i

1. while |V| > 0 do

6. parallel for u ← 1 to |V| do

3. parallel for i ← 1 to |E| do

8. if d[u] = 0 then M[u] ← 1

10. parallel for each (u, v) ∈ E do

11. if M[u] = 1 and M[v] = 1 then

7. if u = 1 then d[u] ← c[u] else d[u] ← c[u] − c[u − 1]

13. parallel for u ← 1 to |V| do

15. (V, E) ← Par-Compress (V, E, M)

12. if d[u] ≤ d[v] then M[u] ← 0 else M[v] ← 0

14. if M[u] = 1 then MIS[V[u]] ← 1

9. else M[u] ← 1 (with probability 1 / (2d[u]))

Input: n is the number of vertices, and for each vertex u ∈ [1, n], V[u] is set

to u. E is the set of edges sorted in non-decreasing order of the first vertex.

For every edge (u, v) both (u, v) and (v, u) are included in E.

Output: For all u ∈ [1, n], MIS[u] is set to 1 if vertex u is in the MIS.

for each u find the

edge with the

largest index i such

that E[i].u ≤ u, and

store that i in c[u]

d[u] (i.e., degree of

vertex u) can now be

computed easily by

subtracting c[u – 1]

from c[u]

mark lower-degree

vertices with higher

probability
if both end-points of

an edge is marked,

unmark the one with

the lower degree

add all marked

vertices to MIS
remove marked

vertices along with

their neighbors as

well as the

corresponding edges

4. if i = |E| then k ← n else k ← E[i + 1].u − 1

Removing Marked Vertices and Their Neighbors

Par-Compress (V, E, M)

1. array SV[1 : |V|] = { 1 }, S′V[1 : |V|], SE[1 : |E|] = { 1 }, S′E[1 : |E|]

2. parallel for u ← 1 to |V| do

3. if M[u] = 1 then SV[u] ← 0

7. S′V ← Par-Prefix-Sum (SV, +), S′E ← Par-Prefix-Sum (SE, +)

Input: Arrays V and E, and bit array M[1: |V|]. Each entry of E is of the form

(u, v), where 1 ≤ u, v ≤ |V|. If for some u, M[u] = 1, then u and all v such

that (u, v) ∈ E must be removed from V along with all edges (u, v) from E.

Output: Updated V and E.

6. if M[u] = 1 or M[v] = 1 then SV[u] ← 0, SV[v] ← 0, SE[i] ← 0

4. parallel for i ← 1 to |E| do

5. u ← E[i].u, v ← E[i].v

8. array U[1 : S′V [|V|]], F[1 : S′E [|E|]]

9. parallel for u ← 1 to |V| do

10. if SV[u] = 1 then U[S′V[u]] ← V[u]

11. parallel for i ← 1 to |E| do

12. if SE[i] = 1 then F[S′E[i]] ← E[i]

15. F[i].u ← S′ V[u], F[i].v ← S′ V[v]

13. parallel for i ← 1 to |F| do

14. u ← F[i].u, v ← F[i].v

16. return (U, F)

initialize
marked vertices

will be removed

neighbors of

marked vertices &

corresponding

edges must go

find new indices

for surviving

vertices & edges

move surviving

vertices to the

smaller array U

move surviving

edges to the

smaller array F

update the end-

points of the

surviving edges to

new vertex

indices

Removing Marked Vertices and Their Neighbors

Par-Compress (V, E, M)

1. array SV[1 : |V|] = { 1 }, S′V[1 : |V|],

2. parallel for u ← 1 to |V| do

3. if M[u] = 1 then SV[u] ← 0

7. S′V ← Par-Prefix-Sum (SV, +),

6. if M[u] = 1 or M[v] = 1 then

4. parallel for i ← 1 to |E| do

5. u ← E[i].u, v ← E[i].v

8. array U[1 : S′V [|V|]], F[1 : S′E [|E|]]

9. parallel for u ← 1 to |V| do

10. if SV[u] = 1 then U[S′V[u]] ← V[u]

11. parallel for i ← 1 to |E| do

12. if SE[i] = 1 then F[S′E[i]] ← E[i]

15. F[i].u ← S′ V[u], F[i].v ← S′ V[v]

13. parallel for i ← 1 to |F| do

14. u ← F[i].u, v ← F[i].v

16. return (U, F)

SE[1 : |E|] = { 1 }, S′E[1 : |E|]

SV[u] ← 0, SV[v] ← 0, SE[i] ← 0

S′E ← Par-Prefix-Sum (SE, +)

Work: Θ � |�|
Span: Θ log2 � log2 |�|

The prefix sums in line 7 perform Θ � |�|
work and have Θ log2 � log2 |�| depth. The

rest of the algorithm also perform Θ � |�|
work but in Θ log � log |�| depth. Hence,

Randomized Maximal Independent Set (MIS)

Let n = #vertices, and m = #edges initially.

Let us assume for the time being that at least a

constant fraction of the edges are removed in

each iteration of the while loop (we will prove

this shortly). Let this fraction be f (< 1).

This implies that the while loop iterates

Θ log� �����⁄ � � Θ log� times. (how?)

Each iteration performs Θ � |�| work and

has Θ log2 � log2 |�| depth. Hence,

Work: �� �,� � Θ � � ∑ 1 � � ! "#
� Θ � �

Span: �$ �,� � Θ log2 � log2 � log�
� Θ log3 �

Parallelism:
&' (,)
&* (,) � Θ

(+)
,-./ (

Par-Randomized-MIS (n, V, E, MIS)

2. array d[1 : |V|], c[1 : |V|] = { 0 },

4. if i = |E| then k ← n else k ← E[i + 1].u − 1

1. while |V| > 0 do

6. parallel for u ← 1 to |V| do

3. parallel for i ← 1 to |E| do

8. if d[u] = 0 then M[u] ← 1

10. parallel for each (u, v) ∈ E do

11. if M[u] = 1 and M[v] = 1 then

7. if u = 1 then d[u] ← c[u]

13. parallel for u ← 1 to |V| do

15. (V, E) ← Par-Compress (V, E, M)

12. if d[u] ≤ d[v] then M[u] ← 0

14. if M[u] = 1 then MIS[V[u]] ← 1

9. else M[u] ← 1 (with prob 1 / (2d[u]))

M[1 : |V|] = { 0 }

else d[u] ← c[u] – c[u – 1]

else M[v] ← 0

5. parallel for j ← E[i].u to k do c[j] ← i

Analysis of Randomized MIS

Let, 0�	� be the degree of vertex 	, and Γ�	� be its set of neighbors.

Good Vertex: A vertex 	 is good provided 1 	 2 3 4
/ , where,

1 	 � 	5	 	 5 ∈ Γ 	 	∧	 0 5 6 0 	 	 .

Bad Vertex: A vertex is bad if it is not good.

Good Edge: An edge �5, 	� is good if at least one of 5 and 	 is good.

Bad Edge: An edge �5, 	� is bad if both 5 and 	 are bad.

Analysis of Randomized MIS
Lemma 1: In some iteration of the while loop, let 	 be a good vertex

with 0 	 7 0, and let 9 be the set of vertices that got marked (in

lines 8-9). Then

Pr 	Γ 	 	∩	9 < ∅	 2 1 � >�� ?⁄ .

Proof: We have, Pr 	Γ 	 	∩	9 < ∅	 � 1 � Pr 	Γ 	 	∩	9 � ∅	

	� 1 � @ Pr 	5 ∉ 9	
B

C	∈D 4
2 1 � @ Pr 	5 ∉ 9	

B

C	∈E 4

						� 1 � @ 1 � 1
20 5

B

C	∈E 4
2 1 � @ 1 � 1

20 	
B

C	∈E 4

	� 1 � 1 � 1
20 	

E 4
2 1 � 1 � 1

20 	
3 4 /⁄

																		2 1 � >�	3 4 /⁄
F3 4 � 1 � >�	�?

Analysis of Randomized MIS

Lemma 2: In any iteration of the while loop, let 9 be the set of vertices

that got marked (in lines 8-9), and let G be the set of vertices that got

included in the MIS (in line 14). Then

Pr 		 ∈ G	 		 ∈ 9	 2 �
F .

Proof: We have, Pr 		 ∈ G	 		 ∈ 9	
																	2 1 � Pr 	∃5 ∈ Γ 	 	s. t. 	 	0 5 2 0 	 	 ∧ 	5 ∈ 9	

2 1 � N 1
20 5

B

C	∈	D 4
3 C O3 4

	2 1 � N 1
20 	

B

C	∈	D 4
3 C O3 4

2 1 � N 1
20 	

B

C	∈	D 4
� 1 � 0 	 P 1

20 	 � 1
2

Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let �Q be the set of good

vertices, and let G be the vertex set that got included in the MIS. Then

Pr 		 ∈ G ∪ Γ�G�	 		 ∈ �Q 	 2 �
F 1	 � >�	� ?⁄ .

Proof: We have, Pr 		 ∈ G ∪ Γ�G�	 		 ∈ �Q 	
																				2 Pr 		 ∈ Γ G 	 		 ∈ �Q 	 � Pr 	Γ 	 ∩ G < �	 		 ∈ �Q 	

� Pr 	Γ 	 ∩ G < �	 	Γ 	 ∩ 9 < �, 	 ∈ �Q 	
P Pr 	Γ 	 ∩ 9 < �	 		 ∈ �Q 	

																							2 Pr 	5 ∈ G	 	5 ∈ Γ 	 ∩ 9, 	 ∈ �Q 	
P Pr 	Γ 	 ∩ 9 < �	 		 ∈ �Q 	

																							2 1
2 1 � >��/?

Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let �Q be the set of good

vertices, and let G be the vertex set that got included in the MIS. Then

Pr 		 ∈ G ∪ Γ�G�	 		 ∈ �Q 	 2 �
F 1	 � >�	� ?⁄ .

Corollary 1: In any iteration of the while loop, a good vertex gets

removed (in line 15) with probability at least
�
F 1	 � >�	� ?⁄ .

Corollary 2: In any iteration of the while loop, a good edge gets

removed (in line 15) with probability at least
�
F 1	 � >�	� ?⁄ .

Analysis of Randomized MIS

Lemma 4: In any iteration of the while loop, let � and �Q be the sets

of all edges and good edges, respectively. Then EV 2 |�|/2.

Proof: For each edge 5, 	 ∈ �, direct 5, 	 from 5 to 	 if 0 5 6
0�	�, and 	 to 5 otherwise.

For every vertex 	 in the resulting digraph let 0 �	� and 0W�	� denote

its in-degree and out-degree, respectively.

Let �Q and �X be the set of good and bad vertices, respectively.

Then for each 	 ∈ �X,	0W 	 � 0 	 2 3 4
/ .

Let �XX, �XQ , �QX	and �QQ be the #edges directed from �X	to �X,

from �X	to �Q, from �Q 	to �X, and from �Q 	to �Q, respectively.

Analysis of Randomized MIS

Lemma 4: In any iteration of the while loop, let � and �Q be the sets

of all edges and good edges, respectively. Then �Q 2 |�|/2.

Proof (continued): We have,

2�XX �XQ �QX

							� N 0�	�
B

4∈YZ
6 3 N 0W 	 � 0 	

B

4∈YZ
� 3 N 0 	 � 0W 	

B

4∈Y[
						� 3 �XQ �QQ � �QX �QQ � 3 �XQ � �QX
						6 3 �XQ �QX

Thus 2�XX �XQ �QX 6 3 �XQ �QX
						⇒ �XX 6 �XQ �QX ⇒ �XX 6 �XQ �QX �QQ
						⇒ �XQ �QX �QQ 	�XX 6 2 �XQ �QX �QQ
						⇒ |�| 6 2|�Q|

Analysis of Randomized MIS

Lemma 5: In any iteration of the while loop, let � be the set of all

edges. Then the expected number of edges removed (in line 15)

during this iteration is at least
�
] 1	 � >�	� ?⁄ |�|.

Proof: Follows from Lemma 4 and Corollary 2.

