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Independent Sets
Let � � �, � 	be an undirected graph.

Independent Set: A subset � ⊆ � is said to be independent provided 

for each 	 ∈ � none of its neighbors in � belongs to �.

Maximal Independent Set: An independent set of � is maximal if it is 

not properly contained in any other independent set in �.

Maximum Independent Set:

A maximal independent set 

of the largest size.

Finding a maximum 

independent set is NP-hard.

But finding a maximal 

independent set is trivial in

the sequential setting. Maximal Independent Sets ( red vertices ) of the Cube Graph

Source: Wikipedia



Finding a Maximal Independent Set Sequentially

Serial-Greedy-MIS ( V, E )

2.  for v ← 1 to |V| do

4.  return MIS

1.  MIS ← �

3.      if MIS ∩ Γ( v ) = � then MIS ← MIS ∪ { v }

Input: V is the set of vertices, and E is the set of edges. For each v ∈ V, we 

denote by Γ( v ) the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

This algorithm can be easily implemented to run in Θ �  � time, where �
is the number of vertices and � is the number of edges in the input graph.

The output of this algorithm is called the Lexicographically First MIS (LFMIS).



Finding a Maximal Independent Set Sequentially

Serial-Greedy-MIS-2 ( V, E )

2.  while |V| > 0 do

8.  return MIS

1.  MIS ← �

Input: V is the set of vertices, and E is the set of edges. For each v ∈ V, we 

denote by Γ( v ) the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

3.      pick an arbitrary vertex v ∈ V

4.      MIS ← MIS ∪ { v }

5.      R ← { v } ∪ Γ( v )

6.      V ← V ∖ R

7.      E ← E ∖ { ( v1, v2 ) | v1 ∈ R or v2 ∈ R }

Always choosing the vertex with the smallest id in the current graph will 

produce exactly the same MIS as in Serial-Greedy-MIS.



Finding a Maximal Independent Set Sequentially

Input: V is the set of vertices, and E is the set of edges. For each S ⊆ V, we 

denote by Γ( S ) the set of neighboring vertices of S.

Output: A maximal independent set MIS of the input graph.

Serial-Greedy-MIS-3 ( V, E )

2.  while |V| > 0 do

8.  return MIS

1.  MIS ← �

3.      find an independent set S ⊆ V

4.      MIS ← MIS ∪ S

5.      R ← S ∪ Γ( S )

6.      V ← V ∖ R

7.      E ← E ∖ { ( v1, v2 ) | v1 ∈ R or v2 ∈ R }



Parallelizing Serial-Greedy-MIS-3
Serial-Greedy-MIS-3 ( V, E )

2.  while |V| > 0 do

8.  return MIS

1.  MIS ← �

3.      find an independent set S ⊆ V

4.      MIS ← MIS ∪ S

5.      R ← S ∪ Γ( S )

6.      V ← V ∖ R

7.      E ← E ∖ { ( v1, v2 ) | v1 ∈ R or v2 ∈ R }

― Number of iterations can be kept small 

by finding in each iteration an S with 

large S ∪ Γ(S). But this is difficult to do.

― Instead in each iteration we choose an 

S such that a large fraction of current 

edges are incident on S ∪ Γ(S).

― To select S we start with a random S′⊆ V. 

• By choosing lower degree vertices with higher probability we are 

likely to have very few edges with both end-points in S′.

• We check each edge with both end-points in S′, and drop the end-

point with lower degree from S′. Our intention is to keep Γ(S′) as 

large as we can.

• After removing all edges as above we are left with an independent 

set. This is our S.

• We will prove that if we remove S ∪ Γ(S) from the current graph a 

large fraction of current edges will also get removed.



Randomized Maximal Independent Set ( MIS )

Par-Randomized-MIS ( n, V, E, MIS )

2.      array d[ 1 : |V| ], c[ 1 : |V| ] = { 0 }, M[ 1 : |V| ] = { 0 }

5.          parallel for j ← E[ i ].u to k do c[ j ] ← i

1.  while |V| > 0 do

6.      parallel for u ← 1 to |V| do

3.      parallel for i ← 1 to |E| do

8.           if d[ u ] = 0 then M[ u ] ← 1

10.      parallel for each ( u, v ) ∈ E do

11.           if M[ u ] = 1 and M[ v ] = 1 then

7.           if u = 1 then d[ u ] ← c[ u ] else d[ u ] ← c[ u ] − c[ u − 1 ]

13.      parallel for u ← 1 to |V| do

15.      ( V, E ) ← Par-Compress ( V, E, M )

12.               if d[ u ] ≤ d[ v ] then M[ u ] ← 0 else M[ v ] ← 0

14.            if M[ u ] = 1 then MIS[ V[ u ] ] ← 1

9.           else M[ u ] ← 1 ( with probability 1 / ( 2d[ u ] ) )

Input: n is the number of vertices, and for each vertex u ∈ [ 1, n ], V[ u ] is set 

to u. E is the set of edges sorted in non-decreasing order of the first vertex. 

For every edge ( u, v ) both  ( u, v ) and ( v, u ) are included in E.

Output: For all u ∈ [ 1, n ], MIS[ u ] is set to 1 if vertex u is in the MIS.

for each u find the 

edge with the 

largest index i such 

that E[ i ].u ≤ u, and  

store that i in c[ u ]

d[ u ] (i.e., degree of 

vertex u) can now be 

computed easily by 

subtracting c[ u – 1 ] 

from c[ u ]

mark lower-degree 

vertices with higher 

probability
if both end-points of 

an edge is marked, 

unmark the one with 

the lower degree

add all marked 

vertices to MIS
remove marked 

vertices along with 

their neighbors as 

well as the 

corresponding edges

4.          if i = |E| then k ← n else k ← E[ i + 1 ].u − 1



Removing Marked Vertices and Their Neighbors

Par-Compress ( V, E, M )

1.  array SV[ 1 : |V| ] = { 1 }, S′V[ 1 : |V| ], SE[ 1 : |E| ] = { 1 }, S′E[ 1 : |E| ]

2.  parallel for u ← 1 to |V| do

3.      if M[ u ] = 1 then SV[ u ] ← 0

7.  S′V ← Par-Prefix-Sum ( SV, + ), S′E ← Par-Prefix-Sum ( SE, + )

Input: Arrays V and E, and bit array M[ 1: |V| ]. Each entry of E is of the form 

( u, v ), where 1 ≤ u, v ≤ |V|. If for some u, M[ u ] = 1, then u and all v such 

that ( u, v ) ∈ E must be removed from V along with all edges ( u, v ) from E. 

Output: Updated V and E.

6.      if M[ u ] = 1 or M[ v ] = 1 then SV[ u ] ← 0, SV[ v ] ← 0, SE[ i ] ← 0

4.  parallel for i ← 1 to |E| do

5.      u ← E[ i ].u, v ← E[ i ].v

8.  array U[ 1 : S′V [ |V| ] ], F[ 1 : S′E [ |E| ] ]

9.  parallel for u ← 1 to |V| do

10.      if SV[ u ] = 1 then U[ S′V[ u ] ] ← V[ u ]

11.  parallel for i ← 1 to |E| do

12.      if SE[ i ] = 1 then F[ S′E[ i ] ] ← E[ i ]

15.       F[ i ].u ← S′ V[ u ], F[ i ].v ← S′ V[ v ]

13.  parallel for i ← 1 to |F| do

14.      u ← F[ i ].u, v ← F[ i ].v

16.  return ( U, F )

initialize
marked vertices 

will be removed

neighbors of 

marked vertices & 

corresponding 

edges must go

find new indices 

for surviving 

vertices & edges

move surviving 

vertices to the 

smaller array U

move surviving 

edges to the 

smaller array F

update the end-

points of the 

surviving edges to 

new vertex 

indices



Removing Marked Vertices and Their Neighbors

Par-Compress ( V, E, M )

1.  array SV[ 1 : |V| ] = { 1 }, S′V[ 1 : |V| ],

2.  parallel for u ← 1 to |V| do

3.      if M[ u ] = 1 then SV[ u ] ← 0

7.  S′V ← Par-Prefix-Sum ( SV, + ),

6.      if M[ u ] = 1 or M[ v ] = 1 then

4.  parallel for i ← 1 to |E| do

5.      u ← E[ i ].u, v ← E[ i ].v

8.  array U[ 1 : S′V [ |V| ] ], F[ 1 : S′E [ |E| ] ]

9.  parallel for u ← 1 to |V| do

10.      if SV[ u ] = 1 then U[ S′V[ u ] ] ← V[ u ]

11.  parallel for i ← 1 to |E| do

12.      if SE[ i ] = 1 then F[ S′E[ i ] ] ← E[ i ]

15.       F[ i ].u ← S′ V[ u ], F[ i ].v ← S′ V[ v ]

13.  parallel for i ← 1 to |F| do

14.      u ← F[ i ].u, v ← F[ i ].v

16.  return ( U, F )

SE[ 1 : |E| ] = { 1 }, S′E[ 1 : |E| ]

SV[ u ] ← 0, SV[ v ] ← 0, SE[ i ] ← 0

S′E ← Par-Prefix-Sum ( SE, + )

Work: Θ �  |�|
Span:  Θ log2 �  log2 |�|

The prefix sums in line 7 perform Θ �  |�|
work and have Θ log2 �  log2 |�| depth. The 

rest of the algorithm also perform Θ �  |�|
work but in Θ log �  log |�| depth. Hence,



Randomized Maximal Independent Set ( MIS )

Let n = #vertices, and m = #edges initially. 

Let us assume for the time being that at least a 

constant fraction of the edges are removed in 

each iteration of the while loop ( we will prove 

this shortly ). Let this fraction be f ( < 1 ). 

This implies that the while loop iterates 

Θ log� �����⁄ � � Θ log� times. ( how? )

Each iteration performs Θ �  |�| work and 

has Θ log2 �  log2 |�| depth. Hence,

Work:  �� �,� � Θ �  � ∑ 1 � �  ! "#
� Θ �  �

Span:  �$ �,� � Θ log2 �  log2 � log�
� Θ log3 �

Parallelism: 
&' (,)
&* (,) � Θ

(+)
,-./ (

Par-Randomized-MIS ( n, V, E, MIS )

2.      array d[ 1 : |V| ], c[ 1 : |V| ] = { 0 }, 

4. if i = |E| then k ← n else k ← E[ i + 1 ].u − 1

1.  while |V| > 0 do

6.      parallel for u ← 1 to |V| do

3.      parallel for i ← 1 to |E| do

8.           if d[ u ] = 0 then M[ u ] ← 1

10.      parallel for each ( u, v ) ∈ E do

11.           if M[ u ] = 1 and M[ v ] = 1 then

7.           if u = 1 then d[ u ] ← c[ u ]

13.      parallel for u ← 1 to |V| do

15.      ( V, E ) ← Par-Compress ( V, E, M )

12.               if d[ u ] ≤ d[ v ] then M[ u ] ← 0

14.            if M[ u ] = 1 then MIS[ V[ u ] ] ← 1

9.           else M[ u ] ← 1 ( with prob 1 / ( 2d[ u ] ) )

M[ 1 : |V| ] = { 0 }

else d[ u ] ← c[ u ] – c[ u – 1 ]

else M[ v ] ← 0

5.           parallel for j ← E[ i ].u to k do c[ j ] ← i



Analysis of Randomized MIS

Let, 0�	� be the degree of vertex 	, and Γ�	� be its set of neighbors.

Good Vertex: A vertex 	 is good provided  1 	 2 3 4
/ , where,

1 	 � 	5	 	 5 ∈ Γ 	 	∧	 0 5 6 0 	 	 .

Bad Vertex: A vertex is bad if it is not good.

Good Edge: An edge �5, 	� is good if at least one of 5 and 	 is good.

Bad Edge: An edge �5, 	� is bad if both 5 and 	 are bad.



Analysis of Randomized MIS
Lemma 1: In some iteration of the while loop, let 	 be a good vertex 

with 0 	 7 0, and let 9 be the set of vertices that got marked (in 

lines 8-9). Then 

Pr 	Γ 	 	∩	9 < ∅	 2 1 � >�� ?⁄ .

Proof: We have,  Pr 	Γ 	 	∩	9 < ∅	 � 1 � Pr 	Γ 	 	∩	9 � ∅	

	� 1 � @ Pr 	5 ∉ 9	
B

C	∈D 4
2 1 � @ Pr 	5 ∉ 9	

B

C	∈E 4

						� 1 � @ 1 � 1
20 5

B

C	∈E 4
2 1 � @ 1 � 1

20 	
B

C	∈E 4

	� 1 � 1 � 1
20 	

E 4
2 1 � 1 � 1

20 	
3 4 /⁄

																		2 1 � >�	3 4 /⁄
F3 4 � 1 � >�	�?



Analysis of Randomized MIS

Lemma 2: In any iteration of the while loop, let 9 be the set of vertices 

that got marked (in lines 8-9), and let G be the set of vertices that got 

included in the MIS (in line 14). Then 

Pr 		 ∈ G	 		 ∈ 9	 2 �
F . 

Proof: We have, Pr 		 ∈ G	 		 ∈ 9	
																	2 1 � Pr 	∃5 ∈ Γ 	 	s. t. 	 	0 5 2 0 	 	 ∧ 	5 ∈ 9	

2 1 � N 1
20 5

B

C	∈	D 4
3 C O3 4

	2 1 � N 1
20 	

B

C	∈	D 4
3 C O3 4

2 1 � N 1
20 	

B

C	∈	D 4
� 1 � 0 	 P 1

20 	 � 1
2



Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let �Q be the set of good 

vertices, and let G be the vertex set that got included in the MIS. Then 

Pr 		 ∈ G ∪ Γ�G�	 		 ∈ �Q 	 2 �
F 1	 � >�	� ?⁄ . 

Proof: We have, Pr 		 ∈ G ∪ Γ�G�	 		 ∈ �Q 	
																				2 Pr 		 ∈ Γ G 	 		 ∈ �Q 	 � Pr 	Γ 	 ∩ G < �	 		 ∈ �Q 	

� Pr 	Γ 	 ∩ G < �	 	Γ 	 ∩ 9 < �, 	 ∈ �Q 	
P Pr 	Γ 	 ∩ 9 < �	 		 ∈ �Q 	

																							2 Pr 	5 ∈ G	 	5 ∈ Γ 	 ∩ 9, 	 ∈ �Q 	
P Pr 	Γ 	 ∩ 9 < �	 		 ∈ �Q 	

																							2 1
2 1 � >��/?



Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let �Q be the set of good 

vertices, and let G be the vertex set that got included in the MIS. Then 

Pr 		 ∈ G ∪ Γ�G�	 		 ∈ �Q 	 2 �
F 1	 � >�	� ?⁄ . 

Corollary 1: In any iteration of the while loop, a good vertex gets 

removed (in line 15) with probability at least 
�
F 1	 � >�	� ?⁄ . 

Corollary 2: In any iteration of the while loop, a good edge gets 

removed (in line 15) with probability at least 
�
F 1	 � >�	� ?⁄ . 



Analysis of Randomized MIS

Lemma 4: In any iteration of the while loop, let � and �Q be the sets 

of all edges and good edges, respectively. Then EV 2 |�|/2. 

Proof: For each edge 5, 	 ∈ �, direct 5, 	 from 5 to 	 if 0 5 6
0�	�, and 	 to 5 otherwise.

For every vertex 	 in the resulting digraph let 0 �	� and 0W�	� denote 

its in-degree and out-degree, respectively.

Let �Q and �X be the set of good and bad vertices, respectively.

Then for each 	 ∈ �X,	0W 	 � 0 	 2 3 4
/ .

Let �XX, �XQ , �QX	and �QQ be the #edges directed from �X	to �X, 

from �X	to �Q, from �Q 	to �X,  and from �Q 	to �Q, respectively. 



Analysis of Randomized MIS

Lemma 4: In any iteration of the while loop, let � and �Q be the sets 

of all edges and good edges, respectively. Then �Q 2 |�|/2. 

Proof ( continued ): We have,

2�XX  �XQ  �QX

							� N 0�	�
B

4∈YZ
6 3 N 0W 	 � 0 	

B

4∈YZ
� 3 N 0 	 � 0W 	

B

4∈Y[
						� 3 �XQ  �QQ � �QX  �QQ � 3 �XQ � �QX
						6 3 �XQ  �QX

Thus  2�XX  �XQ  �QX 6 3 �XQ  �QX
						⇒ �XX 6 �XQ  �QX ⇒ �XX 6 �XQ  �QX  �QQ
						⇒ �XQ  �QX  �QQ  	�XX 6 2 �XQ  �QX  �QQ
						⇒ |�| 6 2|�Q|



Analysis of Randomized MIS

Lemma 5: In any iteration of the while loop, let � be the set of all 

edges. Then the expected number of edges removed (in line 15) 

during this iteration is at least 
�
] 1	 � >�	� ?⁄ |�|. 

Proof: Follows from Lemma 4 and Corollary 2.


