CSE 613: Parallel Programming

Lecture 3
(The Cilk++ Concurrency Platform)

(inspiration for many slides comes from talks given
by Charles Leiserson and Matteo Frigo)

Rezaul A. Chowdhury

Department of Computer Science
SUNY Stony Brook
Spring 2017

The Cilk++ Concurrency Platform

— Supports dynamic multithreading

— Includes a small set of linguistic extensions to C++ to support
fork-join parallelism

— Based on multithreaded language technology developed at
MIT and MIT spin-off Cilk Arts (acquired by Intel in 2009)

— Includes
o A provably efficient scheduler
o Hyperobject library for parallelizing code with global variables
o Race detector (Cilkscreen)
o Scalability analyzer (Cilkview)

The Cilk++ Concurrency Platform

Download URL
— MIT Cilk Project:

http://supertech.csail.mit.edu/cilk/

— Intel® Cilk++ SDK:

http://software.intel.com/en-us/articles/download-intel-cilk-sdk/

— Intel® Cilk Plus:

http://software.intel.com/en-us/articles/intel-cilk-plus/

— Intel® C++ Composer XE 2013:

http://software.intel.com/en-us/non-commercial-software-development

Serial to Parallel
using
Three Keywords

Nested Parallelism in Cilk++

- int comb (int n, int r)

S

L if (r > n) return 0;

+ if (r==0 || r == n) return 1;

T int x, y;

N

L Xx =comb(n-1, r -1);

I y =comb(n-1, r);

) return (x + vy);

E } Grant permission to execute

Serial C d the called (spawned) function
Control cannot pass this point " era ++ code in parallel with the caller.
until all spawned children have -
returned. jcpmb (int n,
Cif r > n) ret 0;
if r == n) return 1;
int k, y;

Function return
enforces implicit X = ilk_spawn comb(n - 1, r -1) -
synchronization. y =¢omb(n -1, r);

cilk_sync;

return (x + vy);

Oblivious of the number
of cores / processors!

Cilk++ code

Loop Parallelism in Cilk++

Ca; A, A, (ag; ay - Ay
dyy dzp - dApp in-place djp dzp - dpp
transpose
\arﬂ dpy - annj \aln dop .- ann/
for (int 1 = 1; i < n; ++i)
for{(int j =0; j < 1i; ++3)

Allows all iterations of the loop "

Converted to spawns and syncs using
recursive divide-and-conquer.

to be executed in parallel.

cilk_ for (int = 1;
for (int §J = 0; jJ < 1i; ++3)
{
double t = A[1
A[i][j 1 = A[
}A[J][l]=t;

Cilk++ code

Measuring
Parallel Perfformance

Cilk++ Execution Model

int comb (int n, int r)

{
if (r > n) return 0O;
if (r =0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n -1, r -1);
y =comb(n-1, r);

cilk_sync;

return (x + vy);

Cilk++ Execution Model

int comb (int n, int r)

{
if (r > n) return 0O;
if (r =0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n -1, r -1);
y =comb(n-1, r);

cilk_sync;

return (x + vy);

2@ 0O @]

Cilk++ Execution Model

int comb (int n, int r)

{
if (r > n) return 0O;
if (r =0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n -1, r -1);
y =comb(n-1, r);

cilk_sync;

return (x + vy);

® eoe

@0 @)

Cilk++ Execution Model

int comb (int n, int r)

{
if (r > n) return 0O;
if (r =0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n -1, r -1);
y =comb(n-1, r);

cilk_sync;

return (x + vy);

(4,2 ‘J
® 2

[(3,1) ®-0O ‘] [<3’2?‘ O ‘]

[(2,0)

Cilk++ Execution Model

int comb (int n, int r)

{
if (r > n) return 0;
if (r =0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n -1, r -1);
y =comb(n-1, r);

cilk_sync;

return (x + vy);

® seoe
\
O 25) 2200 @

N\ _

| "9 0 @ (@ O @]

[(2,0)

®

Ci

ilk++ Execution Model

int comb (int n, int r)

{

if (r > n) return 0;
if (r =0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n -1, r -1);

y =comb(n-1, r);
cilk_sync;

return (x + vy);

(4,2 ‘J

o Q0] E

\

[(2,0)

Cilk++ Execution Model

int comb (int n, int r)

{
if (r > n) return 0;
if (r =0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n -1, r -1);
y =comb(n-1, r);

cilk_sync;

return (x + vy);

Cilk++ Execution Model

int comb (int n, int r)

{
if (r > n) return 0;
if (r =0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n -1, r -1);
y =comb(n-1, r);

cilk_sync;

return (x + vy);

® seoe

o0 8-Q @] 2 8-Q @]

‘Z \ _
0 @] (0 9-Q.0) (- 6-QS

AN
[(1,0)‘{ [(1,1>‘] [(LML] [(1,1))"

Cilk++ Execution Model

int comb (int n, int r)

{
if (r > n) return 0;
if (r =0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n -1, r -1);
y =comb(n-1, r);

cilk_sync;

return (x + vy);

(4,2 ‘J
o0 8-Q @] 28-Q @
‘Z \ N\
X e = INET < IE)

AN
o e T)

Cilk++ Execution Model

int comb (int n, int r)

{
if (r > n) return 0;
if (r =0 || r == n) return 1;

int x, y;

x = cilk_spawn comb(n -1, r -1);
y =comb(n-1, r);

cilk_sync;

return (x + vy);

Computation DAG

\4

+2.@>0. 0.
spawn edge /

continue edge

N

|{3.1}":>Q .\} strand |(3.M .J
call edge /

\\ return edge
(1,0) ’ (1-1)ﬂ {1-0}‘_] ‘(1-1)3‘.

— A parallel instruction stream is represented by a DAGG=(V, E).

Each vertex v € Vis a strand which is a sequence of instructions
without a spawn, call, return or exception.

Each edge e € Eis a spawn, call, continue or return edge.

Parallel Performance

T

/O\ T, = execution time on p cores
? ? /Q\ work =T, span=T_

AR V

V Q\?ﬁ Work Law Span Law
\ /O 1,21, /p T,2T,

Speedup & Parallelism

T,= execution time on p cores

work =T, span=T_
Work Law Span Law
T,2T,/p T,2T,

speedup=T,/T,

parallelism=T,/T_

Parallelism in comb(4, 2)

Only marginal performanc
. - . _ gains with more than 2 cores!
work: T, =21 span: T_=9

parallelism=T,/T_=21/9=[2.33

Implementation of Parallel Loops in Cilk++

cilk for (int i = s; 1 < t; ++1i)
BODY(i);

divide-and-conquer
implementation

void recur(int lo, int hi)
{
if (hi - lo > GRAINSIZE)
{
int mid = lo + (hi - lo) / 2;
cilk spawn recur(lo, mid);
recur (mid, hi);
}
else
{
for (int 1 = lo; i < hi; ++1i)
BODY(i);

}

recur(s, t);

Analysis of Parallel Loops

< n; ++i)
i; ++3)

cilk for (int i
for (int j
{

!
ol

J
double t = A

0] lwom [/?3?1/7%2?]
o' (o] () (0] |0) (@] |

— Span of loop control = O(logn)

— Maximum span of an iteration = ®(n)
— Work, T;(n) = ©(n?)
— Span, T,(n) = ®(n + logn) = O(n)

Parallelism = i O(n)

Source: Charles Leiserson

Analysis of Parallel Loops

cilk for (int 1 = 1; i < n; ++i)
cilk for (int j = 0; j < i; ++3)
{
double t = A[1][J 1;
Al 1]J[J 1 =A[31[11];
}A[j][i]=t;

— Span of outer loop control = ®(logn)

— Maximum span of inner loop control = ©@(logn)
— Span of body = ©(1)

— Work, T;(n) = ©(n?)

— Span, T,,(n) = ©(logn)

— Parallelism = L _ @(-)
Too () logn

Analysis of Parallel Loops

#pragma cilk grainsize = G

cilk for (int 1 = 0; i < n; ++i)
A[1] += B[1];

S
5
—){ G [«
n
— Work, T1 (Tl) =n- titer T E) tspawn
— Span, T n)=a¢- Liter T log() spawn
_ n n C
— Parallelism = = =—.———, where, r = —E——
Too (M) G 1 +Elog(5) Liter

Implementation of Parallel Loops in Cilk++

Default GRAINSIZE: min % 512}

— p = number of processing elements
— N = number of loop iterations

— Works well for loops that are reasonably balanced

void cilk_ for_ custom grainsize(int s, int t)

{

int p = cilk::current_worker count();
#pragma cilk grainsize = (t - s) / (4 * p)

cilk for (int 1i = s; 1 < t; ++1i)
BODY(i);

Custom GRAINSIZE
— small = high overhead

— large = less parallelism

Cilk++’s
Work-Stealing Scheduler

Cilk++'s Work-Stealing Scheduler

A randomized distributed scheduler

Achieves

o T, = % + O(T,,) time (provably)
o T, = %+ T time (empirically)

: , T
Near-perfect linear speedup as long as parallelism, T—l > D

o 0)

Uses at most p times the space used by a serial execution

Has provably good cache performance

Cilk++'s Work-Stealing Scheduler

Each core maintains a work dgueue of ready threads
A core manipulates the bottom of its dqueue like a stack

o Pops ready threads for execution
o Pushes new/spawned threads

Whenever a core runs out of ready threads it steals one
from the top of the dqueue of a random core

The Cilkview
Scalability Analyzer

Cilkview Scalability Analyzer

Measures work and span using dynamic instrumentation.

Derives upper bounds on parallel performance using work

and span.

Estimates scheduling overhead to compute a burdened span

for lower bounds.

Cilkview Scalability Analyzer

template < typename T >
void gsort(T p, T r)

{
if (p !'=r)

{
T q = partition(p, r, bind2nd(less< typename

iterator_traits< T >::value_type >(), *p));
cilk_spawn gsort(p, q);
gsort(max(p + 1, q), r);
cilk_sync;

}
}

int cilk main()

{
int n = 10000000;

double a[n];

cilk::cilkview cv;

cilk _for (int 1 = 0; i < n; i++)
a[i] = sin((double) 1)

cv.start ();

gsort(a, a + n);

cv.stop(),

cv.dump(“gsort’’);

return O;

Cilkview Scalability Analyzer

¥ CilkView

Span Law

Work Law
(linear speedup)

Measured Speedup

Burdened Parallelism
(scheduling overhead)

Parallelism

15 20
Cores

\76 Measured Speedup —A— Lower Performance Eound

—— Upper Perfo'mance Bound —— Application Parallelism = 23.07

—— |deal Speedup

Source: He, Leiserson & Leiserson, 2009

Race Bugs
and
the Cilkscreen Race Detector

Race Bugs

A determinacy race occurs if two logically parallel instructions access

the same memory location and at least one of them performs a write.

int x = 0;

cilk for (int i = 0; i < 2; i++)
X++;

printf(“sd”, x);

x=0
x=0 l’ l
ri =x r2 =x
! 1} i} i}
X++ X++ | > ri++ r2++
f 1]
l Xx=r1 X=r2
printf(“%d”, x) 7
1]

printf(“%d”, x)

Critical Sections and Mutexes

int r = 0;

cilk for (int i = 0; i < n; i++)
I r += eval(x[1]);

race

cilk: :mutex mtx;

cilk for (int i
mtx.lock();

two or more strands L E r += eval(x[i]);
must not access mtx.unlock () ;¢

o . ; 1 < n; i++
critical section 0; ;)

A

at the same time

mutex (mutual exclusion)

an attempt by a strand
to lock an already locked mutex
causes that strand to block (i.e., wait)
until the mutex is unlocked

Problems
— lock overhead

— lock contention

Critical Sections and Mutexes

race

int r = 0;

cilk for (int i = 0; i < n; i++)
r += eval(x[1]);

cilk: :mutex mtx;

cilk for (int i = 0; i < n; i++)
mtx.lock();
r += eval(x[1]);
mtx.unlock();

cilk: :mutex mtx;

cilk _for (int i = 0; i < n; i++)
int y = eval(x[1]);
mtx.lock();
r +=y;
mtx.unlock();

— slightly better solution
— but lock contention can still destroy parallelism

Cilkscreen Race Detector

If determinacy data races exist in an ostensibly deterministic
program (e.g., a program with no mutexes), Cilkscreen
guarantees to find such a race.

Uses regression tests on user-provided test inputs

Reports filenames, line and variables involved in races as well as
stack traces.

Runs the binary executable using dynamic instrumentation.

Runs about 20 times slower than real-time.

Race Bugs
and
the Cilk++ Reducers

Race Bugs and Cilk++ Reducer Hyperobjects
— Cilk++ provides reducer hyperobjects to mitigate data races on

nonlocal variables without locks and code restructuring

— A variable x can be declared a Cilk++ reducer over an associative
operation such as addition, list concatenation etc.

— Strands can update x as if it were an ordinary local variable, but x
is, in fact, maintained as a collection of different views.

— Clik++ runtime system coordinates the views and combines them

when appropriate.

a summing updates are resolved automatically
reducer over int without races or contention
cilk::reducer’ opadd< int > r;

at the end the cilk for”(int i = 0; i < n; i++)
final int value

r += eval(x[1])
can be extracted

|cout << r.get value();

Race Bugs and Cilk++ Reducer Hyperobjects

original equivalent equivalent
X =0; (x1 =0; x1=0;)
X += 2; x1 += 2; x1 += 2;
X++; X1++; X1++;
X += 3; x1 += 3; x1 += 3;
X += 4; X1 += 4; x1+=4;)
X +=7; X1 +=7; x2=0; Y
X +=3; | raceless / x1 +=3; X2 += 7, raceless
X +=4; | parallel \ X1 +=4; X2+=5; |t parallel
X += 2; | execution (X2 =0; X2 += 4; execution
X++; X2 += 2; X2 += 2;
X += 6; \ X2++; X2++; y
X +=9; X2 += 6; x3=0;)
X += 3; X2 += 9; X3 += 6;
X++; X2 += 3; X3 +=9;
X += 8; X2++; X3 += 3;
\ X2 +=8; X3++;
x3 +=8;)

X = X1 + x2;

X = X1 + X2 + X3;
If you do not need to look at intermediate values the
result is determinate because addition is associative.

Cilk++ Reducer Library

Many commonly used reducers

o reducer_list_append

o reducer_list_prepend
o reducer_max

o reducer_max_index

o reducer_min

o reducer_min_index

o reducer_opadd

o reducer_ostream

o reducer_basic_string

©)

One can also make one’s own reducers using cilk::monoid base
and cilk::reducer

Some Concluding Remarks

Cilk++ seems to have several major advantages
— very easy to use (compared to DIY platforms like pthreads)
— portable code (e.g., core-/processor-oblivious)

— produces efficient executables
(efficient scheduler, cache-efficiency)

— useful toolkit (cilkview, cilkscreen)

