
CSE548, AMS542: Analysis of Algorithms, Spring 2019 Date: March 4

Homework #1
( Due: March 18 )

Figure 1: [Task 1] A base-7 hexagonal grid and a neighborhood stencil consisting of all cells (green)
within distance 2 of the center cell (red). As an example, the stencil is centered on one of the cells
of the grid to count its neighbor coefficient which turns out to be 12.

Task 1. [ 60 Points ] Huddling Penguins1

Emperor penguins are known to form dense huddles to survive the brutal cold of Antarctica2. It
has also been observed that each penguin in a huddle usually positions itself at the center of a
regular hexagon in a nearly hexagonal packing of the group3. Each hexagonal cell is occupied by
at most one penguin.

To study the spatial distribution of penguins in a huddle and how that changes over time it is useful
to know the number of penguins in the neighborhood of each cell (including the penguin in that
cell, if any) of the hexagonal grid. We will call that number the neighbor coefficient of that cell. A
neighborhood stencil specifies the cells in the neighborhood of every cell.

A base-n (n ≥ 1) hexagonal grid is composed of regular hexagonal cells such that each of the six
sides of the grid contains exactly n hexagonal cells. Every two adjacent cells share an edge. A
base-n hexagonal grid has exactly 3n(n − 1) + 1 cells and 3(3n − 2)(n − 1) edges. The distance
between two cells is the minimum number of edges one must cross in order to go from one of the

1Phillip McDowall and Prof. Heather Lynch posed question 1(a) to the Algorithms Reading Group in Fall 2017
2Watch on Youtube how emperor penguins huddle for warmth: https://www.youtube.com/watch?v=OL7O5O7U4Gs
3Waters A, Blanchette F, Kim AD (2012) Modeling Huddling Penguins. PLOS ONE 7(11): e50277.

https://doi.org/10.1371/journal.pone.0050277
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cells to the other. Figure 1 shows a base-7 hexagonal grid and a neighborhood stencil consisting of
all cells (green) within distance 2 of the center cell (red). The neighbor coefficient of the red cell
in the hexagonal grid is exactly 12 (= 11 penguins in the green cells + 1 penguin in the red cell).

Figure 2: [Task 1] A base-7 hexagonal grid and an irregular shaped neighborhood stencil. Based
on this stencil, the red cell of the grid on which the stencil is centered has a neighbor coefficient of
9.

Figure 3: [Task 1] Same as Figure 3 except that each cell of the neighborhood stencil has a real
weight. Based on this stencil, the red cell of the grid has a neighbor coefficient of 5.2.

Now answer the following questions.

(a) [ 20 Points ] Given a base-n hexgonal grid Gn containing at most one penguin in each

2



cell and a neighborhood stencil consisting of all cells within distance r ∈ [0, 2n − 2] of the
center cell (see, e.g., Figure 1), give Θ

(
n2

)
algorithm for counting the neighbor coefficient

of all 3n(n − 1) + 1 cells in Gn. Observe that in this case, the stencil itself is a base-(r + 1)
hexagonal grid.

(b) [ 25 Points ] Repeat part 1(a) but with an irregular shaped stencil which is not necessarily
connected. Assume that the stencil is a base-(r + 1) hexagonal grid with some cells missing,
where r ∈ [0, 2n − 2]. Figure 2 shows an example. Running time of your algorithm must be
O
(
n2 log n

)
.

(c) [ 15 Points ] Repeat part 1(a) but assume that each cell of the neighborhood stencil has
an arbitrary real-valued weight. So, you compute a weighted count instead of a standard
count, that is, if a grid cell correponding to a stencil cell has a penguin in it you add the
weight of stencil cell to the neighbor coefficient, otherwise you add nothing. Figure 3 shows
an example. Running time of your algorithm must be O

(
n2 log n

)
.

Task 2. [ 30 Points ] Deriving Strassen’s Algorithm

We studied Strassen’s matrix multiplication algorithm in Lecture 3. However, the algorithm we
derived in slides 17–184 is not exactly the sams as the algorithm we learnt in slides 5–15!

(a) [ 10 Points ] Write down the algorithm we derived in in slides 17–18. How is it different
from Strassen’s algorithm we saw in slides 5–15?

(b) [ 20 Points ] Derive the algorithm we discussed in slides 5–15. You must use the approach
shown in slides 17–18 of Lecture 3.

Figure 4: [Task 3] Unshuffling array A[0 : 15].

Task 3. [ 50 Points ] Unshuffling

Consider the Rec-FFT algorithm given on slide 29 of Lecture 4. The input to the algorithm
is an array of coefficients 〈a0, a1, a2, . . . , an−1〉, where n = 2k for some integer k ≥ 0. When
k > 0, the algorithm unshuffles the input array into two subarrays – one containing the even-
numbered coefficients 〈a0, a2, . . . , an−2〉 and the other containing the odd-numbered coefficients

4There was a typo on slide 17. Please download the slides again.
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Figure 5: [Task 3] Unshuffling matrix M [0 : 7][0 : 7].

〈a1, a3, . . . , an−1〉. Entries in both subarrays appear in exactly the same order as they appeared in
the input array. Then in Line 5, Rec-FFT is recursively called with the even-numbered coefficients,
and in Line 6 with odd-numbered coefficients. The algorithm, however, does not say how the
unshuffling was done.

(a) [ 20 Points ] Given an array A[0 : n−1] of coefficients 〈a0, a1, a2, . . . , an−1〉, where n = 2k for
some integer k > 0, design an efficient recursive divide-and-conquer algorithm5 for unshuffling
the array using only O (1) extra space6. In the final unshuffled array, ai must be stored in
A
[
n
2 (i mod 2) +

⌊
i
2

⌋]
, for i ∈ [0, n−1]. Figure 4 shows an example. Analyze your algorithms

running time. What will be Rec-FFT’s running time with this unshuffling algorithm?

(b) [ 30 Points ] Now consider a square matrix M [0 : n − 1][0 : n − 1], where n = 2k for some
integer k > 0, and for 0 ≤ l ≤ n2 − 1, coefficient al is stored in M

[⌊
l
n

⌋]
[l mod n]. Design

an efficient algorithm based on recursive divide and conquer which moves all al values with l
mod 4 = 0, l mod 4 = 1, l mod 4 = 2, and l mod 4 = 3 to the top-left, top-right, bottom-
left, and bottom-right quadrant, respectively. All coefficients in each quadrant must appear
in exactly the same order (row by row) as they appeared in the original input matrix. More
specifically, al must be stored in M

[
n
2 ((l + 1) mod 2) +

⌊⌊
l
4

⌋
/n
2

⌋] [
n
2 (l mod 2) +

(⌊
l
4

⌋
mod n

2

)]
in the final unshuffled matrix. Figure 5 shows an example. Your algorithm must use O (1)
extra space. Analyze your algorithms running time.

Task 4. [ 40 Points ] Fractals

In this task we will consider recursive divide-and-conquer algorithms for generating recursively
self-similar structures.

Consider the algorithm given in Figure 7 which generates the Fractal object known as the Sierpinski

5We want to design a recursive divide-and-conquer algorithm because we want to avoid/reduce cache misses due
to unstructured/random accesses to A.

6and O (logn) stack space for recursion
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Figure 6: [Task 4] The Sierpinski triangle generated by the algorithm given in Figure 7.

Sierpinski( A, i, j, n ) {Fill A[i : i+ n− 1][j : j + n− 1],
where n is a power of 2}

1. if n = 1 then

2. color A[i][j] with gray

3. else

4. Sierpinski
(
A, i, j, n

2

)
{top-left quadrant}

5. Sierpinski
(
A, i+ n

2
, j, n

2

)
{bottom-left quadrant}

6. Sierpinski
(
A, i+ n

2
, j + n

2
, n

2

)
{top-right quadrant}

7. return

Figure 7: [Task 4] Generating the Sierpinski triangle (see Figure 6) in a square array A[0 : n−1][0 :
n− 1], where n = 2k for some integer k ≥ 0. The initial function call is Sierpinski( A, 0, 0, n )
on an empty array A.

triangle7. Figure 6 shows how the object looks like at various levels of recursion. The running time
T (n) of the algorithm for an input of size n, where n = 2k for some integer k ≥ 0, is given by the
following recurrence.

7check https://en.wikipedia.org/wiki/Sierpinski triangle

5



Figure 8: [Task 4] A red-green fractal pattern generated by the algorithm given in Figure 9.

T (n) =

{
Θ (1) if n = 1,
3T

(
n
2

)
+O (1) otherwise.

Using the Master Theorem, T (n) = Θ
(
nlog2 3

)
.

(a) [ 10 Points ] Figure 9 shows two mutually recursive functions Red and Green that generate
the red-green fractal pattern shown in Figure 8 when called as Red( A, 0, 0, n ), where n
is a non-negative integral power of two. Analyze the running time of this algorithm.

(b) [ 30 Points ] The following set of recurrences gives the running time of an algorithm for
generating a more complicated Fractal structure.

TA(n) =

{
Θ (1) if n ≤ 4,
5TA

(
n
2

)
+ 3TA

(
n
4

)
+ TB

(
n
4

)
+ 2TC

(
n
4

)
+ TD (n) + Θ (1) otherwise.

TB(n) =

{
Θ (1) if n = 1,
TB

(
n
2

)
+ 4TC

(
n
2

)
+ Θ (1) otherwise.

TC(n) =

{
Θ (1) if n = 1,
2TB

(
n
2

)
+ 3TC

(
n
2

)
+ Θ

(
n2

)
otherwise.

TD(n) =

{
Θ (1) if n = 1,
3TD

(
n
2

)
+ TE

(
n
2

)
+ Θ (n) otherwise.
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Red( A, i, j, n ) {Fill A[i : i+ n− 1][j : j + n− 1],
where n is a power of 2}

1. if n = 1 then

2. color A[i][j] with red

3. else

4. Red
(
A, i, j, n

2

)
{top-left quadrant}

5. Green
(
A, i+ n

2
, j, n

2

)
{bottom-right quadrant}

6. Red
(
A, i+ n

2
, j + n

2
, n

2

)
{bottom-right quadrant}

7. return

Green( A, i, j, n ) {Fill A[i : i+ n− 1][j : j + n− 1],
where n is a power of 2}

1. if n = 1 then

2. color A[i][j] with green

3. else

4. Red
(
A, i, j, n

2

)
{top-left quadrant}

5. Green
(
A, i, j + n

2
, n

2

)
{top-right quadrant}

6. Red
(
A, i+ n

2
, j + n

2
, n

2

)
{bottom-right quadrant}

7. return

Figure 9: [Task 4] Generating the Red-Green fractal pattern shown in Figure 8 in a square ar-
ray A[0 : n − 1][0 : n − 1], where n = 2k for some integer k ≥ 0. The initial function call is
Red( A, 0, 0, n ) on an empty array A.

TE(n) =

{
Θ (1) if n = 1,
4TE

(
n
2

)
+ Θ

(
n2

)
otherwise.

Solve for TA(n) assuming n = 2k for some integer k > 1.
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