
CSE548, AMS542: Analysis of Algorithms, Spring 2019 Date: Apr 22

Homework #3
( Due: May 1 )

Task 1. [ 100 Points ] Randomized Connected Components

A connected component C of an undirected graph G is a maximal subgraph of G such that every
vertex in C is reachable from every other vertex in C following a path in G. Figure 1 shows an
example.

Figure 1: [Task 1] An undirected graph with three connected components.

In this task, we will analyze two randomized algorithms, namely Rand-CC-1 (shown in Figure 2)
and Rand-CC-2 (shown in Figure 3), for computing the connected components (CC) of any given
undirected graph. For every vertex v of the input graph, both algorithms find the unique id of the
connected component containing v. Both algorithms use a function called Rand-Hook (shown
in Figure 2) as a subroutine which randomly hooks vertices to their neighbors in such a way that
after the function terminates these vertices form a set of disjoint stars. Also, Rand-CC-2 calls
Rand-CC-1 as a subroutine.

Pseudocodes (with detailed comments) of Rand-CC-1 and Rand-CC-2 are given in Figure 2 and
Figure 3, respectively.

Now answer the following questions.

(a) [ 10 Points ] Consider the function Rand-Hook( V, L, N ) in Figure 2, and assume that
V has no zero degree vertices. Suppose we start with an empty set Q, and add edges to it as
follows. We traverse the vertices in V in some order, and for each v ∈ V encountered in that
order, we add (v,N [v]) to Q provided the graph induced by Q∪ {(v,N [v])} does not contain

a cycle. Prove that |Q| ≥ |V |
2 .

(b) [ 10 Points ] Consider the set Q constructed in part 1(a). We say that an edge (u, v) ∈ Q
is a hook provided C[u] 6= C[v] right after step 3 of Rand-Hook. Prove that for all Q′ ⊂ Q,
if one knows the hook status of all edges in Q′ that still does not reveal anything about the
hook status of any edge in Q \Q′.
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(c) [ 10 Points ] Use your results from parts 1(a) and 1(b) to show that in any invocation of

Rand-Hook( V, L, N ), with probability at least 1 − 1
e|V |/32 at least |V |

16 vertices of V will
change their L values.

(d) [ 10 Points ] Use your result from part 1(c) to prove a high probability bound on the running
time of Rand-CC-1.

(e) [ 20 Points ] Consider Rand-CC-2. The algorithm repeatedly chooses a random sample
(of geometrically decreasing sizes) from the edges of the input graph, and uses the sample to
identify vertices (or supervertices) that have potentially high degree (PHD). Each vertex of
the graph starts as a PHD vertex, but loses the status as soon as a chosen sample of edges
fails to include an edge connecting that vertex with another PHD vertex. The Rand-Hook
function is called only on the vertices that retain the PHD status. After a sufficient number
of such sampling and hooking rounds, the number of edges among the supervertices reduce
to a sufficiently small number. At that point connected components among the supervertices
are found by calling Rand-CC-1. Now suppose at recursion depth d of Rand-CC-2, nd
denotes the number of vertices/supervertices in V with a PHD status. Then n0 is the number
of vertices in the original input graph. Let n = n0. Prove that for each d ∈ [0, dmax],

nd ≤ α2d · n w.h.p. in n, where α =
√

15
16 and dmax =

⌈
1
4 log 1

α
n
⌉
.

(f) [ 20 Points ] We call an edge (u, v) heavy provided PHD[u] = PHD[v] = True, otherwise
we call it light. At recursion depth d of Rand-CC-2, let rd be the expected number of heavy
edges that become light. Prove that for each d ∈ [0, dmax], rd ≤ αd · n.

(g) [ 10 Points ] Prove that in the call to Rand-CC-1 in line 21 of Rand-CC-2, the expected
number of edges in E′ is O (n).

(h) [ 10 Points ] Compute the expected running time of Rand-CC-2.

Task 2. [ 80 Points ] Partial Sums on 2D Grids

This task asks you to solve the partial semigroup sums problem on two dimensional (2D) square
and hexagonal grids1.

In the 2D square grid version of the problem you are asked to preprocess an n × n grid S filled
with entries from a given semigroup (Π,⊕) using as little space as possible so that queries asking
for the sum of the entries in any given rectangular area r of S can be answered efficiently. Space
complexity is measured in terms of the number of values from Π stored in the data structure, and
query complexity is measured in terms of the number of times the semigroup operation ⊕ is applied
when answering a query. You can assume n = 2k for some integer k ≥ 0.

In the 2D hexagonal grid version you are required to preprocess a hexagonal grid H of side length
n using as little space as possible so that given any hexagonal region h of H one can return the
sum of the entries in h as efficiently as possible. You can assume n = 2k − 1 for some k ∈ Z+.

Now answer the following questions.

11D version of the problem was solved in the class during the guest lecture on “the α technique” by Shih-yu Tsai
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Rand-CC-1( V, E, L)

(Input is an unweighted undirected graph with vertex set V and edge set E. For each v ∈ V , L[v] is set to v before
the invocation of this function. When this function terminates, for each v ∈ V , L[v] contains the unique id of the
connected component containing v. We call an edge (u, v) live provided L[u] 6= L[v].)

1. if |E| = 0 then return {no edge to contract}
2. for each (u, v) ∈ E do N [u]← v, N [v]← u {try to associate the edge (u, v) with u and v}
3. Rand-Hook( V, L, N ) {hook among vertices in V based on the edges chosen in the previous step}
4. V ′ ← { v | ( (u, v) ∈ E ∨ (v, u) ∈ E ) ∧ v = L[v] 6= L[u] } {collect the non-zero degree roots after hooking}
5. E′ ← { (L[u], L[v]) | (u, v) ∈ E ∧ L[u] 6= L[v] } {E′ contains only edges among roots,

and no duplicate edges and self loops}
6. Rand-CC-1( V ′, E′, L ) {recurse on the smaller instance}
7. for each v ∈ V do L[v]← L[L[v]] {map the solution back to the current instance}

Rand-Hook( V, L, N )

(Input is an unweighted undirected graph with vertex set V . For each v ∈ V , L[v] is set to v before the invocation
of this function. For each u ∈ V , N [u] is set to a v such that (u, v) is an edge in the graph. This function randomly
hooks vertices in V to their neighbors in such a way that after the function terminates these vertices form a set of
disjoint stars. For each v ∈ V , L[v] is set to u (possibly u = v) provided u is the center of the star containing v.)

1. for each u ∈ V do {for each vertex in V }
2. Cu ← Random { Head, Tail } {toss a coin}
3. Hu ← False {record that this vertex has not yet been hooked}
4. for each u ∈ V do {for each vertex u in V }
5. v ← N [u] {will try to hook u with v = N [u]}
6. if Cu = Tail and Cv = Head then {if u tossed Tail and v tossed Head}
7. L[u]← v {make u point to v}
8. Hu ← True, Hv ← True {record that both u and v are hooked}
9. for each u ∈ V do {manipulate the coin tosses to hook more in a second try}

10. if Hu = True then Cu ← Head {if u is already hooked, will try to hook unhooked vertices pointing to u}
11. else if Cu = Tail then Cu ← Head else Cu ← Tail {if u is not hooked, flip Cu}
12. for each u ∈ V do {try to hook again}
13. v ← N [u] {will try to hook u with v = N [u]}
14. if Cu = Tail and Cv = Head then {if u has Tail and v has Head}
15. L[u]← L[v] {make u point to whatever v is pointing to}

Figure 2: A randomized algorithm for computing the connected components (CC) of a graph.
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Rand-CC-2( V, E, L, PHD, N, U, d )

(Input is an unweighted undirected graph with vertex set V and edge set E. The recursion depth of the function
is given by d which is set to 0 when the function is invoked for the first time. Let n be the number of vertices in
the graph when d = 0, and m = |E|. Each v ∈ V is an integer in [1, n]. Pointers L (label), PHD (potentially high
degree), N (neighbor) and U (updated) point to arrays L[1 : n], PHD[1 : n], N [1 : n] and U [1 : n], respectively.
For each v ∈ [1, n], L[v] is set to v, and PHD[v] is set to True before the initial invocation of this function. When
this function terminates, for each v ∈ V , L[v] contains the unique id of the connected component containing v. We

assume that α =
√

15
16

and dmax =
⌈

1
4

log 1
α
n
⌉
. We call an edge (u, v) live provided L[u] 6= L[v]. Edge (u, v) is heavy

provided PHD[u] = PHD[v], otherwise it is light.)

1. if d ≤ dmax then {need to recurse more to sufficiently reduce #vertices with PHD status}
2. md ←

⌈
m · αd

⌉
{size of edge sample which geometrically decreases with d}

3. Ê ← a sample of size md chosen uniformly at random from E {do not always touch all edges in E}

4. for each v ∈ V do U [v]← False
{

flag U [v] keeps track if an edge in Ê hits v
}

5. for each (u, v) ∈ Ê do {check each edge in the sample}
6. u′ ← L[u], v′ ← L[v] {find the root of the tree containing each endpoint}
7. if u′ ∈ V and v′ ∈ V and u′ 6= v′ and PHD[u′] = PHD[v′] = True then {if (u′, v′) is live and heavy}
8. N [u′]← v′, N [v′]← u′ {try to associate the edge with u′ and v′}

9. U [u′]← True, U [v′]← True
{
Ê hits u′ and v′

}
10. for each v ∈ V do {check each vertex v in V }

11. if U [v] = false then PHD[v]← False
{

if Ê does not hit v then v loses its PHD status
}

12. V̂ ← { v | v ∈ V ∧ U [v] = True }
{
V̂ contains the vertices from V which still have PHD status

}
13. Rand-Hook( V̂ , L, N )

{
hook among vertices in V̂ (see Figure 2)

}
14. V ′ ← { v | v ∈ V ∧ v = L[v] } {V ′ contains only the roots after hooking}
15. Rand-CC-2( V ′, E, L, PHD, N, U, d+ 1 ) {recurse on the smaller instance}
16. for each v ∈ V do L[v]← L[L[v]] {map the solution back to the current instance}
17. endif

18. if d = 0 then {done compressing}
19. V ′ ← { v | v ∈ V ∧ v = L[v] } {collect only the root vertices}
20. E′ ← { (L[u], L[v]) | (u, v) ∈ E ∧ L[u] 6= L[v] } {E′ contains only edges among roots,

and no duplicate edges and self loops}
21. Rand-CC-1( V ′, E′, L ) {use the algorithm from Figure 2 to solve the problem once the

number of edges reduces to a sufficiently small number}
22. for each v ∈ V do L[v]← L[L[v]] {map the solution back to the current instance}
23. endif

Figure 3: Randomized connected components (CC) based on edge sampling.
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Figure 4: [Task 2] Partial semigroup sum query for (a) a rectangular area r inside a square grid S,
and (b) a hexagonal area h inside a hexagonal grid H.

(a) [ 15 Points ] Show that the given 2D square grid S can be preprocessed to use O
(
n2 log n

)
space and to answer queries using O (1) applications of the semigroup operation.

(b) [ 25 Points ] Use the approach shown in the class to extend your result from part 1(a) and
show that S can preprocessed to use O

(
n2α(n)

)
space and answer queries using O

(
α2(n)

)
applications of the semigroup operation.

(c) [ 15 Points ] Repeat part 1(a) for the given hexagonal grid H.

(d) [ 25 Points ] Repeat part 1(b) for the hexagonal grid H.
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