Homework #3

Task 1. [100 Points] Randomized Connected Components

A connected component C of an undirected graph G is a maximal subgraph of G such that every vertex in C is reachable from every other vertex in C following a path in G. Figure 1 shows an example.

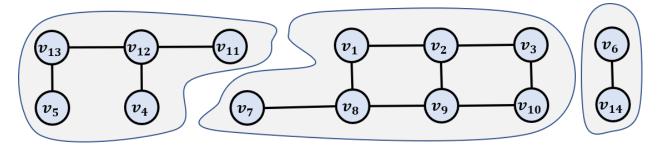


Figure 1: [Task 1] An undirected graph with three connected components.

In this task, we will analyze two randomized algorithms, namely RAND-CC-1 (shown in Figure 2) and RAND-CC-2 (shown in Figure 3), for computing the connected components (CC) of any given undirected graph. For every vertex v of the input graph, both algorithms find the unique id of the connected component containing v. Both algorithms use a function called RAND-HOOK (shown in Figure 2) as a subroutine which randomly hooks vertices to their neighbors in such a way that after the function terminates these vertices form a set of disjoint stars. Also, RAND-CC-2 calls RAND-CC-1 as a subroutine.

Pseudocodes (with detailed comments) of RAND-CC-1 and RAND-CC-2 are given in Figure 2 and Figure 3, respectively.

Now answer the following questions.

- (a) [10 Points] Consider the function RAND-HOOK(V, L, N) in Figure 2, and assume that V has no zero degree vertices. Suppose we start with an empty set Q, and add edges to it as follows. We traverse the vertices in V in some order, and for each $v \in V$ encountered in that order, we add (v, N[v]) to Q provided the graph induced by $Q \cup \{(v, N[v])\}$ does not contain a cycle. Prove that $|Q| \geq \frac{|V|}{2}$.
- (b) [10 Points] Consider the set Q constructed in part 1(a). We say that an edge $(u, v) \in Q$ is a *hook* provided $C[u] \neq C[v]$ right after step 3 of RAND-HOOK. Prove that for all $Q' \subset Q$, if one knows the *hook* status of all edges in Q' that still does not reveal anything about the hook status of any edge in $Q \setminus Q'$.

- (c) [10 Points] Use your results from parts 1(a) and 1(b) to show that in any invocation of RAND-HOOK(V, L, N), with probability at least $1 \frac{1}{e^{|V|/32}}$ at least $\frac{|V|}{16}$ vertices of V will change their L values.
- (d) [10 Points] Use your result from part 1(c) to prove a high probability bound on the running time of RAND-CC-1.
- (e) [20 Points] Consider RAND-CC-2. The algorithm repeatedly chooses a random sample (of geometrically decreasing sizes) from the edges of the input graph, and uses the sample to identify vertices (or supervertices) that have *potentially high degree* (PHD). Each vertex of the graph starts as a PHD vertex, but loses the status as soon as a chosen sample of edges fails to include an edge connecting that vertex with another PHD vertex. The RAND-HOOK function is called only on the vertices that retain the PHD status. After a sufficient number of such sampling and hooking rounds, the number of edges among the supervertices reduce to a sufficiently small number. At that point connected components among the supervertices are found by calling RAND-CC-1. Now suppose at recursion depth d of RAND-CC-2, n_d denotes the number of vertices/supervertices in V with a PHD status. Then n_0 is the number of vertices in the original input graph. Let $n = n_0$. Prove that for each $d \in [0, d_{max}]$, $n_d \leq \alpha^{2d} \cdot n$ w.h.p. in n, where $\alpha = \sqrt{\frac{15}{16}}$ and $d_{max} = \left[\frac{1}{4} \log_{\frac{1}{\alpha}} n\right]$.
- (f) [20 Points] We call an edge (u, v) heavy provided PHD[u] = PHD[v] = TRUE, otherwise we call it *light*. At recursion depth d of RAND-CC-2, let r_d be the expected number of heavy edges that become light. Prove that for each $d \in [0, d_{max}]$, $r_d \leq \alpha^d \cdot n$.
- (g) [10 Points] Prove that in the call to RAND-CC-1 in line 21 of RAND-CC-2, the expected number of edges in E' is $\mathcal{O}(n)$.
- (h) [10 Points] Compute the expected running time of RAND-CC-2.

Task 2. [80 Points] Partial Sums on 2D Grids

This task asks you to solve the *partial semigroup sums* problem on two dimensional (2D) square and hexagonal $grids^1$.

In the 2D square grid version of the problem you are asked to preprocess an $n \times n$ grid S filled with entries from a given semigroup (Π, \oplus) using as little space as possible so that queries asking for the sum of the entries in any given rectangular area r of S can be answered efficiently. Space complexity is measured in terms of the number of values from Π stored in the data structure, and query complexity is measured in terms of the number of times the semigroup operation \oplus is applied when answering a query. You can assume $n = 2^k$ for some integer $k \ge 0$.

In the 2D hexagonal grid version you are required to preprocess a hexagonal grid H of side length n using as little space as possible so that given any hexagonal region h of H one can return the sum of the entries in h as efficiently as possible. You can assume $n = 2^k - 1$ for some $k \in \mathbb{Z}^+$.

Now answer the following questions.

¹1D version of the problem was solved in the class during the guest lecture on "the α technique" by Shih-yu Tsai

RAND-CC-1(V, E, L)

(Input is an unweighted undirected graph with vertex set V and edge set E. For each $v \in V$, L[v] is set to v before the invocation of this function. When this function terminates, for each $v \in V$, L[v] contains the unique id of the connected component containing v. We call an edge (u, v) live provided $L[u] \neq L[v]$.)

1. $if E = 0$ then return	$\{no \ edge \ to \ contract\}$
2. for each $(u, v) \in E$ do $N[u] \leftarrow v$, $N[v] \leftarrow u$	$\{try \ to \ associate \ the \ edge \ (u, v) \ with \ u \ and \ v\}$
3. RAND-HOOK(V, L, N) {hook among vertices in V	V based on the edges chosen in the previous step}
4. $V' \leftarrow \{ v \mid ((u,v) \in E \lor (v,u) \in E) \land v = L[v] \neq L[u] \}$	$\{ collect \ the \ non-zero \ degree \ roots \ after \ hooking \}$
5. $E' \leftarrow \{ (L[u], L[v]) \mid (u, v) \in E \land L[u] \neq L[v] \}$	$\{E' \text{ contains only edges among roots},\$
	and no duplicate edges and self loops}
6. RAND-CC-1(V', E', L)	$\{recurse \ on \ the \ smaller \ instance\}$
7. for each $v \in V$ do $L[v] \leftarrow L[L[v]]$	$\{map \ the \ solution \ back \ to \ the \ current \ instance\}$

Rand-Hook(V, L, N)

(Input is an unweighted undirected graph with vertex set V. For each $v \in V$, L[v] is set to v before the invocation of this function. For each $u \in V$, N[u] is set to a v such that (u, v) is an edge in the graph. This function randomly hooks vertices in V to their neighbors in such a way that after the function terminates these vertices form a set of disjoint stars. For each $v \in V$, L[v] is set to u (possibly u = v) provided u is the center of the star containing v.)

1.	for each $u \in V$ do	$\{for \ each \ vertex \ in \ V\}$
2.	$C_u \leftarrow \text{Random} \{ \text{ Head}, \text{ Tail } \}$	$\{toss \ a \ coin\}$
3.	$H_u \leftarrow \text{False}$	$\{record that this vertex has not yet been hooked\}$
4.	$\textit{for} ext{ each } u \in V \ \textit{do}$	$\{for \ each \ vertex \ u \ in \ V\}$
5.	$v \leftarrow N[u]$	$\{will try to hook u with v = N[u]\}$
6.	$if C_u = \text{Tail} \ and \ C_v = \text{Head} \ then$	$\{if \ u \ tossed \ TAIL \ and \ v \ tossed \ HEAD\}$
7.	$L[u] \leftarrow v$	$\{make \ u \ point \ to \ v\}$
8.	$H_u \leftarrow \text{True}, \ H_v \leftarrow \text{True}$	$\{record \ that \ both \ u \ and \ v \ are \ hooked\}$
9.	$\textit{for} ext{ each } u \in V \ \textit{do}$	$\{manipulate the coin tosses to hook more in a second try\}$
10. <i>if</i> $H_u = \text{True }$ <i>then</i> $C_u \leftarrow \text{HEAD}$ { <i>if</i> u <i>is already hooked, will try to hook unhooked vertices pointing to</i> u }		
11.	else if C_u = TAIL then C_u \leftarrow Head else C	$U_u \leftarrow \text{TAIL}$ {if u is not hooked, flip C_u }
12. for each $u \in V$ do $\{try \ to \ hook \ again\}$		
13.	$v \leftarrow N[u]$	$\{will try to hook u with v = N[u]\}$
14.	$if C_u = \text{Tail} \ and \ C_v = \text{Head} \ then$	$\{if \ u \ has \ TAIL \ and \ v \ has \ HEAD\}$
15.	$L[u] \leftarrow L[v]$	$\{make \ u \ point \ to \ whatever \ v \ is \ pointing \ to \}$

Figure 2: A randomized algorithm for computing the connected components (CC) of a graph.

RAND-CC-2(V, E, L, PHD, N, U, d)

(Input is an unweighted undirected graph with vertex set V and edge set E. The recursion depth of the function is given by d which is set to 0 when the function is invoked for the first time. Let n be the number of vertices in the graph when d = 0, and m = |E|. Each $v \in V$ is an integer in [1, n]. Pointers L (label), PHD (potentially high degree), N (neighbor) and U (updated) point to arrays L[1:n], PHD[1:n], N[1:n] and U[1:n], respectively. For each $v \in [1, n]$, L[v] is set to v, and PHD[v] is set to TRUE before the initial invocation of this function. When this function terminates, for each $v \in V$, L[v] contains the unique id of the connected component containing v. We assume that $\alpha = \sqrt{\frac{15}{16}}$ and $d_{max} = \left\lceil \frac{1}{4} \log_{\frac{1}{\alpha}} n \right\rceil$. We call an edge (u, v) live provided $L[u] \neq L[v]$. Edge (u, v) is heavy provided PHD[u] = PHD[v], otherwise it is light.)

1. if $d \leq d_{max}$ then *{need to recurse more to sufficiently reduce #vertices with PHD status}* $m_d \leftarrow \left[m \cdot \alpha^d \right]$ 2. $\{size of edge sample which geometrically decreases with d\}$ 3. $\widehat{E} \leftarrow$ a sample of size m_d chosen uniformly at random from E $\{do not always touch all edges in E\}$ $\left\{ flag \ U[v] \ keeps \ track \ if \ an \ edge \ in \ \widehat{E} \ hits \ v \right\}$ for each $v \in V$ do $U[v] \leftarrow$ FALSE 4. for each $(u, v) \in \widehat{E}$ do 5.{check each edge in the sample} $u' \leftarrow L[u], v' \leftarrow L[v]$ 6. *{find the root of the tree containing each endpoint}* if $u' \in V$ and $v' \in V$ and $u' \neq v'$ and PHD[u'] = PHD[v'] = TRUE then $\{if(u', v') \text{ is live and heavy}\}$ 7. $N[u'] \leftarrow v', \ N[v'] \leftarrow u'$ $\{try \ to \ associate \ the \ edge \ with \ u' \ and \ v'\}$ 8. $\left\{\widehat{E} \text{ hits } u' \text{ and } v'\right\}$ $U[u'] \leftarrow \text{True}, \ U[v'] \leftarrow \text{True}$ 9. $\{check \ each \ vertex \ v \ in \ V\}$ 10. for each $v \in V$ do $\left\{ if \ \widehat{E} \ does \ not \ hit \ v \ then \ v \ loses \ its \ PHD \ status \right\}$ if U[v] = False then $PHD[v] \leftarrow \text{False}$ 11. $\widehat{V} \leftarrow \{ v \mid v \in V \land U[v] = \text{True} \} \qquad \left\{ \widehat{V} \text{ contains the vertices from } V \text{ which still have PHD status} \right\}$ 12. $\left\{ hook among vertices in \widehat{V} (see Figure 2) \right\}$ Rand-Hook(\hat{V}, L, N) 13. $V' \leftarrow \{ v \mid v \in V \land v = L[v] \}$ 14. $\{V' \text{ contains only the roots after hooking}\}$ RAND-CC-2(V', E, L, PHD, N, U, d+1) {recurse on the smaller instance} 15.for each $v \in V$ do $L[v] \leftarrow L[L[v]]$ 16.{map the solution back to the current instance} 17. endif 18. *if* d = 0 *then* {done compressing} $V' \leftarrow \{ v \mid v \in V \land v = L[v] \}$ 19.{collect only the root vertices} $E' \leftarrow \{ (L[u], L[v]) \mid (u, v) \in E \land L[u] \neq L[v] \}$ 20. $\{E' \text{ contains only edges among roots},\$ and no duplicate edges and self loops} RAND-CC-1(V', E', L) 21.{use the algorithm from Figure 2 to solve the problem once the number of edges reduces to a sufficiently small number} for each $v \in V$ do $L[v] \leftarrow L[L[v]]$ 22.{map the solution back to the current instance} 23. endif

Figure 3: Randomized connected components (CC) based on edge sampling.

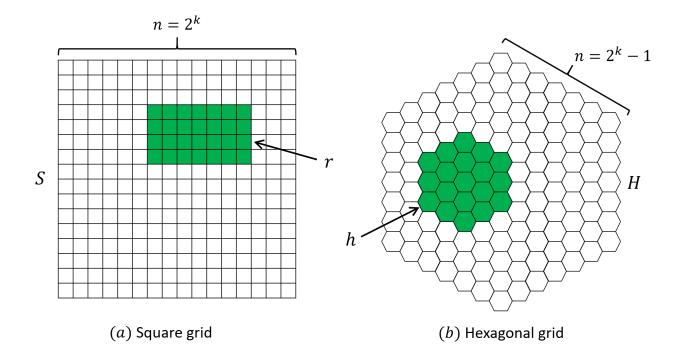


Figure 4: [Task 2] Partial semigroup sum query for (a) a rectangular area r inside a square grid S, and (b) a hexagonal area h inside a hexagonal grid H.

- (a) [15 Points] Show that the given 2D square grid S can be preprocessed to use $\mathcal{O}(n^2 \log n)$ space and to answer queries using $\mathcal{O}(1)$ applications of the semigroup operation.
- (b) [25 Points] Use the approach shown in the class to extend your result from part 1(a) and show that S can preprocessed to use $\mathcal{O}(n^2\alpha(n))$ space and answer queries using $\mathcal{O}(\alpha^2(n))$ applications of the semigroup operation.
- (c) [15 Points] Repeat part 1(a) for the given hexagonal grid H.
- (d) [25 Points] Repeat part 1(b) for the hexagonal grid H.