CSE 548: Analysis of Algorithms

Lecture 9 (Binomial Heaps)

Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2019

Mergeable Heap Operations

MAKE-HEAP(x): return a new heap containing only element x

INSERT(*H*, *x***):** insert element *x* into heap *H*

MINIMUM(H**):** return a pointer to an element in H containing the smallest key

EXTRACT-MIN(H): delete an element with the smallest key from H and return a pointer to that element

UNION(H_1 , H_2): return a new heap containing all elements of heaps H_1 and H_2 , and destroy the input heaps

More mergeable heap operations:

DECREASE-KEY(*H*, *x*, *k*): change the key of element *x* of heap *H* to k assuming $k \leq$ the current key of *x*

DELETE(*H*, *x* **):** delete element *x* from heap *H*

Mergeable Heap Operations

Heap Operation	Binary Heap (worst-case)	Binomial Heap (amortized)	
Μακε-Ηεάρ	$\Theta(1)$	$\Theta(1)$	
INSERT	$O(\log n)$	$\Theta(1)$	
MINIMUM	$\Theta(1)$	$\Theta(1)$	
EXTRACT-MIN	$O(\log n)$	$O(\log n)$	
UNION	$\Theta(n)$	$\Theta(1)$	
Decrease-Key	$O(\log n)$	_	
Delete	$O(\log n)$	_	

A *binomial tree* B_k is an ordered tree defined recursively as follows.

- $-B_0$ consists of a single node
- For k > 0, B_k consists of two B_{k-1} 's that are linked together so that the root of one is the left child of the root of the other

Some useful properties of B_k are as follows.

- 1. it has exactly 2^k nodes
- 2. its height is k
- 3. there are exactly $\binom{k}{i}$ nodes at depth i = 0, 1, 2, ..., k
- 4. the root has degree k
- 5. if the children of the root
 are numbered from left to
 right by k 1, k 2, ..., 0,
 then child i is the root of a B_i

Prove: B_k has exactly $\binom{k}{i}$ nodes at depth i = 0, 1, 2, ..., k.

Proof: Suppose B_k has $s_{k,i}$ nodes at depth *i*.

$$s_{k,i} = \begin{cases} 0 & \text{if } i < 0 \text{ or } i > k, \\ 1 & \text{if } i = k = 0, \\ s_{k-1,i} + s_{k-1,i-1} & \text{otherwise.} \end{cases}$$

 $\Rightarrow s_{k,i} = [k \ge i \ge 0] (s_{k-1,i} + s_{k-1,i-1} + [i = k = 0])$

Generating function: $S_k(z) = s_{k,0} + s_{k,1}z + s_{k,2}z^2 + ... + s_{k,k}z^k$

$$S_{k\geq 0}(z) = \sum_{i=0}^{k} s_{k,i} z^{i} = \sum_{i=0}^{k} s_{k-1,i} z^{i} + \sum_{i=0}^{k} s_{k-1,i-1} z^{i} + [k = 0] \sum_{i=0}^{k} [i = 0] z^{i}$$
$$= \sum_{i=0}^{k-1} s_{k-1,i} z^{i} + z \sum_{i=0}^{k-1} s_{k-1,i} z^{i} + [k = 0]$$
$$= S_{k-1}(z) + z S_{k-1}(z) + [k = 0] = (1 + z) S_{k-1}(z) + [k = 0]$$
$$\Rightarrow S_{k}(z) = \begin{cases} 1 & \text{if } k = 0, \\ (1 + z) S_{k-1}(z) & \text{otherwise.} \end{cases}$$
$$= (1 + z)^{k}$$
Equating the coefficient of z^{i} from both sides: $s_{k,i} = \binom{k}{i}$

 $\langle i \rangle$

Binomial Heaps

A *binomial heap H* is a set of binomial trees that satisfies the following properties:

Binomial Heaps

A *binomial heap H* is a set of binomial trees that satisfies the following properties:

- 1. each node has a key
- 2. each binomial tree in H obeys the min-heap property
- 3. for any integer $k \ge 0$, there is at most one binomial tree in H whose root node has degree k

Rank of Binomial Trees

The *rank* of a binomial tree node x, denoted rank(x), is the number of children of x.

The figure on the right shows the rank of each node in B_3 .

Observe that $rank(root(B_k)) = k$.

Rank of a binomial tree is the rank of its root. Hence,

$$rank(B_k) = rank(root(B_k)) = k$$

A Basic Operation: Linking Two Binomial Trees

Given *two binomial trees of the same rank*, say, two B_k 's, we link them in constant time by making the root of one tree the left child of the root of the other, and thus producing a B_{k+1} .

If the trees are part of a binomial min-heap, we always make the root with the smaller key the parent, and the one with the larger key the child.

Ties are broken arbitrarily.

Binomial Heap Operations: UNION(*H*₁, *H*₂**)**

UNION (H_1, H_2) works in exactly the same way as binary addition.

Let n_i be the number of nodes in H_i (i = 1,2).

Then the largest binomial tree in H_i is a B_{k_i} , where $k_i = \lfloor \log_2 n_i \rfloor$.

Thus H_i can be treated as a $(k_i + 1)$ bit binary number x_i , where bit j is 1 if H_i contains a B_j , and 0 otherwise.

If $H = Union(H_1, H_2)$, then H can be viewed as a $k = \lfloor \log_2 n \rfloor$ bit binary number $x = x_1 + x_2$, where $n = n_1 + n_2$.

UNION (H_1, H_2) works in exactly the same way as binary addition.

Initially, *H* does not contain any binomial trees.

Melding starts from B_0 (LSB) and continues up to B_k (MSB).

At each location $j \in [0, k]$, one encounters at most three (3) B_j 's:

- at most 1 from H_1 (input),
- at most 1 from H_2 (input), and
- if j > 0, at most 1 from H (carry)

UNION (H_1, H_2) works in exactly the same way as binary addition.

When the number of B_j 's at location $j \in [0, k]$ is:

- 0: location j of H is set to nil
- 1: location j of H points to that B_j
- 2: the two B_j's are linked to produce
 a B_{j+1} which is stored as a carry
 at location j + 1 of H, and
 location j is set to nil
- 3: two B_j 's are linked to produce a B_{j+1} which is stored as a carry at location j + 1 of H, and the 3rd B_j is stored at location j

UNION (H_1, H_2) works in exactly the same way as binary addition.

Worst case cost of UNION (H_1, H_2) is clearly $\Theta(\log n)$, where n is the total number of nodes in H_1 and H_2 . $B_2 = B_1 = B_0$

One can improve the performance of UNION (H_1, H_2) as follows.

W.I.o.g., suppose H_2 is at least as large as H_1 , i.e., $n_2 \ge n_1$.

We also assume that H_2 has enough space to store at least up to B_k , where, $k = \lfloor \log_2(n_1 + n_2) \rfloor$.

Then instead of melding H_1 and H_2 to a new heap H, we can meld them in-place at H_2 .

 H_1

 H_2

Binomial Heap Operations: INSERT(H, x)

Step 1: $H' \leftarrow MAKE-HEAP(x)$

Takes $\Theta(1)$ time.

Step 2: $H \leftarrow UNION(H, H')$ (in-place at H) Takes $O(\log n)$ time, where n is the number of nodes in H.

Thus the worst-case cost of INSERT(H, x) is O(log n), where n is the number of items already in the heap.

Binomial Heap Operations: EXTRACT-MIN(H)

Binomial Heap Operations: EXTRACT-MIN(H)

Binomial Heap Operations

Heap Operation	Worst-case	
Μακε-Ηεαρ	$\Theta(1)$	
INSERT	$O(\log n)$	
MINIMUM	$\Theta(1)$	
EXTRACT-MIN	$O(\log n)$	
UNION	$O(\log n)$	

We maintain a credit account for every tree in the heap, and always maintain the following invariant:

$$\bigwedge_{B_j \in H} credit(B_j) = 1$$

MAKE-HEAP(x):

actual cost, $c_i=1\,$ (for creating the singleton heap) extra charge, $\delta_i=1\,$ (for storing in the credit account of the new tree)

amortized cost, $\hat{c}_i = c_i + \delta_i = 2 = \Theta(1)$

We maintain a credit account for every tree in the heap, and always maintain the following invariant:

$$\bigwedge_{B_j \in H} credit(B_j) = 1$$

Link($oldsymbol{B}_k^{(1)}$, $oldsymbol{B}_k^{(2)}$):

actual cost, $c_i = 1$ (for linking the two trees) We use $credit(B_k^{(1)})$ pay for this actual work.

Let B_{k+1} be the newly created tree. We restore the credit invariant by transferring $credit(B_k^{(2)})$ to $credit(B_{k+1})$.

Hence, amortized cost, $\hat{c}_i = c_i + \delta_i = 1 - 1 = 0$

We maintain a credit account for every tree in the heap, and always maintain the following invariant:

$$\bigwedge_{B_j \in H} credit(B_j) = 1$$

INSERT(H, x):

Amortized cost of MAKE-HEAP(x) is = 2

Then UNION(H, H') is simply a sequence of free LINK operations with only a constant amount of additional work that do not create any new trees. Thus the credit invariant is maintained, and the amortized cost of this step is = 1.

Hence, amortized cost of INSERT, $\hat{c}_i = 2 + 1 = 3 = \Theta(1)$

We maintain a credit account for every tree in the heap, and always maintain the following invariant:

$$\bigwedge_{B_j \in H} credit(B_j) = 1$$

UNION(H_1, H_2):

UNION(H_1, H_2) includes a sequence of free LINK operations that maintain the credit invariant.

But it also includes $O(\log n)$ other operations that are not free (e.g., consider melding a heap with $n = 2^k$ elements with one containing n - 1 elements). These operations do not create new trees (and so do not violate the credit invariant), and each cost $\Theta(1)$. Hence, amortized cost of UNION, $\hat{c}_i = O(\log n)$

We maintain a credit account for every tree in the heap, and always maintain the following invariant:

$$\bigwedge_{B_j \in H} credit(B_j) = 1$$

EXTRACT-MIN(H):

<u>Steps 1 & 2</u>: The $\Theta(1)$ actual cost is paid for by the credit released by the deleted tree.

<u>Step 3</u>: Exposes $O(\log n)$ new trees, and we charge 1 unit of extra credit for storing in the credit account of each such tree.

<u>Step 4</u>: Performs a UNION that has $O(\log n)$ amortized cost.

Hence, amortized cost of EXTRACT-MIN, $\hat{c}_i = O(\log n)$

Potential Function,

 $\Phi(D_i) = c \times ($ #trees in the data structure after the *i*-th operation),

where c is a constant.

Clearly, $\Phi(D_0) = 0$ (no trees in the data structure initially) and for all i > 0, $\Phi(D_i) \ge 0$ (#trees cannot be negative)

MAKE-HEAP(x):

actual cost, $c_i = 1$ (for creating the singleton heap) potential change, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) = c$ (as #trees increases by 1) amortized cost, $\hat{c}_i = c_i + \Delta_i = 1 + c = \Theta(1)$

Potential Function,

 $\Phi(D_i) = c \times ($ #trees in the data structure after the *i*-th operation),

where *c* is a constant.

INSERT(H, x):

The number of trees increases by 1 initially.

Then the operation scans k > 0 (say) locations of the array of tree pointers. Observe that we use tree linking (k - 1) times each of which reduces the number of trees by 1.

> actual cost, $c_i = 1 + k$ potential change, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) = c(1 - (k - 1))$ = c - c(k - 1)amortized cost, $\hat{c}_i = c_i + \Delta_i = 2 + c - (c - 1)(k - 1)$ For $c \ge 1$, we have, $\hat{c}_i \le 2 + c = \Theta(1)$

Potential Function,

 $\Phi(D_i) = c \times ($ #trees in the data structure after the *i*-th operation),

where *c* is a constant.

UNION(H_1, H_2):

Suppose the operation scans k > 0 locations of the array of tree pointers, and uses the link operation l times. Observe that $k > l \ge 0$. Each link reduces the number of trees by 1.

actual cost, $c_i = k$ potential change, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) = -c \times l$ amortized cost, $\hat{c}_i = c_i + \Delta_i = k - c \times l$

Since $k = O(\log n)$ and $l = O(\log n)$, we have, $\hat{c}_i = O(\log n)$ for any c.

Potential Function,

 $\Phi(D_i) = c \times ($ #trees in the data structure after the *i*-th operation),

where *c* is a constant.

EXTRACT-MIN(H):

Let in Step 1: r = rank of the tree with the smallest key

and in Step 4: k =#locations of pointer array scanned during UNION

- l =#link operations during UNION
- t =#trees in the heap after the UNION

Then actual cost, $c_i = 1$ (step 1) + 1 (step 2) + r (step 3) + k (step 4: union) + t (step 4: update min ptr) = 2 + k + t + r

Potential Function,

 $\Phi(D_i) = c \times ($ #trees in the data structure after the *i*-th operation),

where *c* is a constant.

EXTRACT-MIN(H):

Let in Step 1: r = rank of the tree with the smallest key

and in Step 4: k =#locations of pointer array scanned during UNION

- l =#link operations during UNION
- t =#trees in the heap after the UNION

potential change, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1})$

 $= c \times (r - 1)$ (removing *min* element in step 1

removes 1 tree but creates r new ones)

- $-c \times l$ (linkings in step 4)
 - reduces #trees by l)

Potential Function,

 $\Phi(D_i) = c \times ($ #trees in the data structure after the *i*-th operation),

where *c* is a constant.

EXTRACT-MIN(H):

Let in Step 1: r = rank of the tree with the smallest key

and in Step 4: k =#locations of pointer array scanned during UNION

- l =#link operations during UNION
- t =#trees in the heap after the UNION

actual cost, $c_i = 2 + k + t + r$

potential change, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) = c \times (r - l - 1)$

Then amortized cost, $\hat{c}_i = c_i + \Delta_i = 2 + k + t + r + c \times (r - l - 1)$

Since
$$k = O(\log n)$$
, $l = O(\log n)$, $t = O(\log n) \& r = O(\log n)$,
we have, $\hat{c}_i = O(\log n)$ for any c .

Binomial Heap Operations

Heap Operation	Worst-case	Amortized	
Μακε-Ηεαρ	$\Theta(1)$	$\Theta(1)$	
INSERT	$O(\log n)$	$\Theta(1)$	
MINIMUM	$\Theta(1)$	$\Theta(1)$	
EXTRACT-MIN	$O(\log n)$	$O(\log n)$	
UNION	$O(\log n)$	$O(\log n)$	

Binomial Heaps with Lazy Union

We maintain pointers to the trees in a doubly linked circular list

(instead of an array), but do not maintain a *min* pointer.

We maintain the following invariant:

$$\bigwedge_{B_j \in H} credit(B_j) = 2$$

MAKE-HEAP(x): Create a singleton heap as before. Hence, amortized cost = $\Theta(1)$.

LINK($B_k^{(1)}$, $B_k^{(2)}$ **):** The two input trees have 4 units of saved credits of which 1 unit will be used to pay for the actual cost of linking, and 2 units will be saved as credit for the newly created tree. So, linking is still free, and it has 1 unused credit that can be used to pay for additional work if necessary.

UNION(H_1 , H_2): Simply concatenate the two root lists into one, and update the min pointer. Clearly, amortized cost = $\Theta(1)$.

INSERT(*H*, *x*): This is MAKE-HEAP followed by a UNION. Hence, amortized cost = $\Theta(1)$.

We maintain the following invariant:

$$\bigwedge_{B_j \in H} credit(B_j) = 2$$

EXTRACT-MIN(*H***):** Unlike in the array version, in this case we may have several trees of the same rank.

We create an array of length $\lfloor \log_2 n \rfloor + 1$ with each location containing a *nil* pointer. We use this array to transform the linked list version to array version.

We go through the list of trees of *H*, inserting them one by one into the array, and linking and carrying if necessary so that finally we have at most one tree of each rank. We also create a min pointer.

We now perform EXTRACT-MIN as in the array case.

Finally, we collect the nonempty trees from the array into a doubly linked list, and return.

We maintain the following invariant:

$$\bigwedge_{B_j \in H} credit(B_j) = 2$$

EXTRACT-MIN(*H* **):** We only need to show that converting from linked list version to array version takes $O(\log n)$ amortized time.

Suppose we start with t trees, and perform l links. So, we spend O(t + l) time overall.

As each link decreases the number of trees by 1, after l links we end up with t - l trees. Since at that point we have at most one tree of each rank, we have $t - l \leq \lfloor \log_2 n \rfloor + 1$.

Thus $t + l = 2l + (t - l) = O(l + \log n)$.

The O(l) part can be paid for by the l extra credits from l links. We only charge the $O(\log n)$ part to EXTRACT-MIN.

We use exactly the same potential function as in the previous version,

 $\Phi(D_i) = c \times ($ #trees in the data structure after the *i*-th operation),

where c is a constant.

As before, clearly, $\Phi(D_0) = 0$ and for all i > 0, $\Phi(D_i) \ge 0$

MAKE-HEAP(x):

actual cost, $c_i = 1$ (for creating the singleton heap) potential change, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) = c$ (as #trees increases by 1) amortized cost, $\hat{c}_i = c_i + \Delta_i = 1 + c = \Theta(1)$

We use exactly the same potential function as in the previous version,

 $\Phi(D_i) = c \times ($ #trees in the data structure after the *i*-th operation),

where *c* is a constant.

UNION(H_1, H_2):

actual cost, $c_i = 1$ (for merging the two doubly linked lists) potential change, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) = 0$ (no new tree is created or destroyed) amortized cost, $\hat{c}_i = c_i + \Delta_i = 1 = \Theta(1)$

We use exactly the same potential function as in the previous version,

 $\Phi(D_i) = c \times ($ #trees in the data structure after the *i*-th operation),

where c is a constant.

INSERT(H, x):

Constant amount of work is done by MAKE-HEAP and UNION, and MAKE-HEAP creates a new tree.

actual cost, $c_i = 1 + 1 = 2$ potential change, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) = c$ amortized cost, $\hat{c}_i = c_i + \Delta_i = 2 + c = \Theta(1)$

We use exactly the same potential function as in the previous version,

 $\Phi(D_i) = c \times ($ #trees in the data structure after the *i*-th operation),

where c is a constant.

EXTRACT-MIN(H):

Cost of creating the array of pointers is $\lfloor \log_2 n \rfloor + 1$.

Suppose we start with t trees in the doubly linked list, and perform l link operations during the conversion from linked list to array version. So we perform t + l work, and end up with t - l trees.

Cost of converting to the linked list version is t - l.

actual cost, $c_i = \lfloor \log_2 n \rfloor + 1 + (t+l) + (t-l) = 2t + \lfloor \log_2 n \rfloor + 1$ potential change, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) = -c \times l$

We use exactly the same potential function as in the previous version,

 $\Phi(D_i) = c \times ($ #trees in the data structure after the *i*-th operation),

where *c* is a constant.

EXTRACT-MIN(H):

actual cost, $c_i = \lfloor \log_2 n \rfloor + 1 + (t+l) + (t-l) = 2t + \lfloor \log_2 n \rfloor + 1$ potential change, $\Delta_i = \Phi(D_i) - \Phi(D_{i-1}) = -c \times l$

amortized cost, $\hat{c}_i = c_i + \Delta_i = 2(t - l) + \lfloor \log_2 n \rfloor + 1 - (c - 2) \times l$

But $t - l \leq \lfloor \log_2 n \rfloor + 1$ (as we have at most one tree of each rank)

So,
$$\hat{c}_i \leq 3[\log_2 n] + 3 - (c - 2) \times l$$

 $\leq 3[\log_2 n] + 3$ (assuming $c \geq 2$)
 $= O(\log n)$

Binomial Heap Operations

Heap Operation	Worst-case	Amortized (Eager Union)	Amortized (Lazy Union)
Маке- Неар	Θ(1)	$\Theta(1)$	Θ(1)
INSERT	$O(\log n)$	$\Theta(1)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
Extract- Min	$O(\log n)$	$O(\log n)$	$O(\log n)$
UNION	$O(\log n)$	$O(\log n)$	$\Theta(1)$