CSE 548: Analysis of Algorithms

Guest Lecture
(The a Technique)

Inspiration Comes from Lectures Given by
Jeff Erickson, Seth Pettie, Vijaya Ramachandran and Raimund Seidel

Guest Lecturer: Shih-yu Tsai
(Slides: Rezaul A. Chowdhury, Shih-yu Tsai)

Department of Computer Science
SUNY Stony Brook
Spring 2019

lterated Functions

-

i times
= min{i > 0: fD(n) < 1},

(i
where n ifi=0

FO(n) =4 f (f(i—l)(n)) if i >0
\

Example: If f = log, we have:

log(®(65536) = 65536 log(®)(65536) = 2
logW(65536) = 16 log*)(65536) = 1
log(?)(65536) = 4 ~ log*(65536) = 4

lterated Functions

f(n) frn)
n—1 n—1
, n
" 2
n
n—-c —
C
n
> log, n
n
- log.n

logn log™n

log™ (n) grows exiremely slowly

log®2 =1

log* 22 =2
log* 2* =3

log* 216 =4
lOg* 265536 =5

65536
2 =6...

log™ 2

The Inverse Ackermann Function: a(n)

a(n)

rOws

fn) fr(n)
logn log*n
log™n log™ n
log™ n log™" n
log™" " n log™" ™" n
k1 L
log™" " n log™" ™" n

a(n) = min {

k > 1:10gmn <3

|

> 3
> 3

> 3

> 3

Example: a(65536)

f(n) fr(n)
a(65536) log 65536 log® 65536 =4 > 3
rows log® 65536 log™ 65536 =3 <3

k
a(65536) = min {k > 1:log* * 65536 < 3} =2

log(®(65536) = 65536 (log*)(®(65536) = 65536
log(M(65536) = 16 (log")®(65536) = 4

log(?)(65536) = 4 (log*)?(65536) = log*(4) = 2
log(®(65536) = 2 (log*)® (65536) = log*(2) = 1
log*)(65536) = 1 « log*™(65536) = 3

~ log*(65536) = 4

The Partial Sums
Data Structure

Example:
The Partial Sums on Array of numbers

)

44+6+2+11+7+3 =7

Semigroups

Semigroup (II, @): A set Il together with an associative binary
operation @: 11 x IT — II.

Examples:
(R, max)
({ true, false },logical OR)
(k X k matrices, matrix multiplication)

Partial Semigroup Sums

Given (i) a semigroup (I,), and
(ii) an array A[1 ...n] with each entry A[i] € 11

Goal: Preprocess A using as little space as possible so that forall 1 <
i <j <n,queries of the form A[i] @ Ali + 1] @ :-- D Alj]
can be answered efficiently.

Query Complexity: #times the @ operation is applied
Space Complexity: #values from Il stored in the data structure

k-op structure: A data structure with query complexity k

S (n): #values from I1 to be stored so that every partial sum query
can be answered using at most k applictions of the € operation

Bound 0

Bound 0: S; (n) < nlogn.

Construction of a 1-op structure:

A
(NN EEEEEEEEEEEEEEEN

Input array A of size n

Split A into A; and A, of size g each A A
Compute: all suffix-sums of 4;, and
all prefix-sums of A, i

| HNEEENEEEEN | HEEEEEEEEEN]
A Ay

Recurse: 1-op structure for 4;, and
1-op structure for A,

Query: Either crosses A’s midpoint (return suffix-sum & prefix-sum),
or lies completely inside A; (recurse) or A, (recurse)

Bound 0

Bound 0: S; (n) < nlogn.
Construction of a 1-op structure:
Input array A of size n

Split A into 4; and A, of size g each

Compute: all suffix-sums of 4;, and
all prefix-sums of A,

Recurse: 1-op structure for 4;, and
1-op structure for A,

Space: S;(n) < n+ 2S5, (g)

<nlogn

A
(NN EEEEEEEEEEEEEEEN

A A,
 HIEEEEEEEEEEE EEEEEEEEEEEE|
 HIEEEEEEEEEEE EEEEEEEEEEEE|

AI AT

Bound 1
Bound 1: S;(n) < 3nlog* n.

Construction of a 3-op structure:
n

Split A into subarrays of A

size < logn each —

Compute: all suffix- and prefix- sums éég—-l::::‘ 5

within each subarray

subarray sums =1+

1-op structure

logn

Build: 1-op structure for
logn

Recurse: 3-op structure for each subarray R ae

3-o0p 3-0op 3-0p 3-op 3-op

Query: Either completely inside a subarray (recurse),
or crosses subarray boundaries (return
suffix-sum @ answer from 1-op structure @@ prefix-sum)

Bound 1
Bound 1: S;(n) < 3nlog* n.

Construction of a 3-op structure:

Split A into

subarrays of
logn

size < logn each

Compute: all suffix- and prefix- sums
within each subarray

Build: 1-op structure for subarray sums

logn

Recurse: 3-op structure for each subarray

Space: S;(n) < 2n+ S, (S;(logn)

log n) logn

<3n+ S3;(logn) < 3nlog*n

log n

logn

1-op structure
(HEEE EEEE EEE LIIRT 111
3-o0p 3-0op 3-0p 3-op 3-op

Bound ’f{

—

Bound k: S, ., (n) < (2k + 1)nlog™ ™ n.

Construction of a (2k + 1)-op structure:
k-1

Split A intcl)c n/ logm n subarrays of
-1

A

size < log™"™ n each
Compute: all suffix- and prefix- sums

within each subarray

Build: (2k —kl)—op structure for
-1

—~
O..

n subarray sums

Recurse: (2k + 1)-op structure for each
subarray

(2k-1)

OTT

2k+1 Z2k+1 2k+l
-op -op -op

Query: Either completely inside a subarray (recurse),

2k+1 2k+1
-op -op

or crosses subarray boundaries (return suffix-sum

@ answer from (2k — 1)-op structure @ prefix-sum)

Bound ’f{

—

Bound k: S, ., (n) < (2k + 1)nlog™ ™ n.

C tructi fa(k + 1)- truct :
onstruction o alg_l + 1)-op structure cerebrrrbrred-brrbrn

Split A intcl)c n/ logm n subarrays of
-1

size < log:k-’?:E n each 5?5:::?;

Compute: all suffix- and prefix- sums

within each subarray -
Build: (2k — 1k)—op structure for e
Tl/ log** Tl SUbarray Sums 11 E| I |
Recurse: (2k + 1)-op structure for each ST
subarray .) (k-1)
Space: Syi1(n) < 2n+ Syp_1 [(—=— | + —=r Sak+1 \l0g" "
logm n logm n

k

—~
Skeook

n) < 2k + nlog" " n

k-1

—~
Skeoek

< (2k + Dn + ———Sax+1 (108

- N

20

The a Bound
k

—

Bound k: S, 1(n) < (2k + 1)nlog™ " n.

Putting k = a(n), we have:
Bound a: Sy,()+1(n) < 3(2a(n) + 1)n = O(na(n)).

[1 R

oo . >
1 1
L A A] | A J 111 111
! J T T Y l:l:l:l:l:l:l:l:lI I I:I:l:l:I:l:l:I:lI A
a(n) 1 1 a(n) a(n) i€---1 F--p
M Ry R
| :
\/ \/ \/ \/ i i
A 1 1 1 A I I
i Y Y | (Y 1 [| | 1 4
........ | i i
4 & ... |] A | m »!
U ' R
L J
Y 2
a(n)

Linear Space: Use the a-bound to show that the space complexity
of the data structure can be reduced to O(n) while still supporting

range queries in O(a(n)) time.

Union-Find:
A Disjoint-Set Data Structure

Disjoint Set Operations

A disjoint-set data structure maintains a collection of disjoint

dynamic sets. Each set is identified by a representative which must
be a member of the set.

The collection is maintained under the following operations:

MAKE-SET(x): create a new set {x} containing only element x.

Element x becomes the representative of the set.

FIND(x): returns a pointer to the representative of the set
containing x

UNION(x, ¥): replace the dynamic sets S, and S,, containing

x and y, respectively, with the set S, U §,,

Union-Find Data Structure
with Union by Rank and Find with Path Compression

MAKE-SET (x)

1. m(x) « x

2. rank(x) < 0

LINK (x,y)
1. if rank(x) > rank(y) then n(y) « x

2. else m(x) «y
3. if rank(x) = rank(y) then rank(y) < rank(y) + 1
UNION (x,y)

1. LINK (FIND (x), FIND (y))

FIND (x)

1. if x # w(x) then w(x) « FIND (m(x))

2. return m(x)

Some Useful Properties of Rank

If x is not a root then rank(x) < rank(n(x))

Node ranks strictly increase along any simple path towards a root
Once a node becomes a non-root its rank never changes

If m(x) changes from y to z then rank(z) > rank(y)

If the root of x’s tree changes from y to z then rank(z) > rank(y)
Zrank(x)

If x is the root of a tree then size(x) >

If there are only n nodes the highest possible rank is |log, n|

There are at most % nodes with rankr > 0

Some Useful Properties of Rank

— We will analyze the total running time of m’ MAKE-SET, UNION
and FIND operations of which exactly n (< m') are MAKE-SET

— But each UNION can be replaced with two FIND and one LINK

— Hence, we can simply analyze the total running time of m
MAKE-SET, LINK and FIND operations of which exactly n (< m)
are MAKE-SET and wherem' < m < 3m'’

Compress

COMPRESS (x,y) { y is an ancestor of x }
1. if x #y then m(x) « COMPRESS (m(x),y)
2. return m(x)

— We will analyze the total running time of m MAKE-SET, UNION
and FIND operations of which exactly n (< m) are MAKE-SET

— But FIND(x) is nothing but COMPRESS(x, y), where y is the root
of the tree containing x

— Hence, we can analyze the total running time of m MAKE-SET,
LINK and COMPRESS operations of which exactly n (< m) are
MAKE-SET

Compress

COMPRESS (x,y) { y is an ancestor of x }
1. if x #y then m(x) « COMPRESS (m(x),y)
2. return m(x)

We can reorder the sequence of LINK and COMPRESS operations so
that all LINK’S are performed before all COMPRESS operations
without changing the number of parent pointer reassignments!

(Y (A
Do

T #33e

B4 Mm

Shatter

SHATTER (x)
1. if x # w(x) then SHATTER (m(x))
2. m(x) « x

30

Bound 0

Let T(m, n,r) = worst-case number of parent pointer assignments
— during any sequence of at most m COMPRESS operations
— on a forest of n nodes

— with maximum rank r

Bound 0: T(m,n,r) < nr.

Proof: Since there are at most r distinct ranks, and each new parent
of a node has a higher rank than its previous parent, any node can
change parents fewer than r times.

Bound 1

Bound 1: T(m,n,r) <m+ 2nlog™r.

Proof: Let F be the forest, and C be the sequence of COMPRESS
operations performed on F.

Let T (F, C) be the number of parent pointer assighnments by C in F.

Let s be an arbitrary rank. We partition F into two subforests:
F,, containing all nodes with rank < s, and
F; containing all nodes with rank > s.

rank > s

rank>s /[_ - ‘ .- -

rank <s

rank <s

Bound 1

Bound 1: T(m,n,r) <m+ 2nlog™r.

Proof: Let s be an arbitrary rank. We partition F into two subforests:
F,, containing all nodes with rank < s, and
F; containing all nodes with rank > s.

rank > s

rank > s

rank <s rank < s

Let n, = #nodes in F;, and n, = #nodes in F},

Let m; = #COMPRESS operations with at least one node in F, and

my =m—m;

Bound 1
Bound 1: T(m,n,r) <m+ 2nlog™r.

Proof: The sequence C on F can be decomposed into
— asequence of COMPRESS operations in F;, and
— asequence of COMPRESS and SHATTER operations in F;,

& el f >0

c b awzyx

Suppose, this decomposition partitions C into two subsequences
— (¢ in F¢, and
— Cb in Fb

Bound 1

Bound 1: T(m,n,r) <m+ 2nlog™r.

Proof: We get the following recurrence:

T(F, C) < T(Ft, Ct) + T(Fb, Cb) + me + Ny

Cost on Left Side

node € F; gets new parent € F;

node € F), gets new parent € F),

node € F), gets new parent € F;
(for the first time)

node € F, gets new parent € F;
(again)

Corresponding Cost on Right Side

T(Ft' Ct)
T(Fy, Cp)

ny

mg

Bound 1

Bound 1: T(m,n,r) <m+ 2nlog™r.

Proof: We get the following recurrence:
T(F, C) < T(Ft, Ct) + T(Fb, Cb) + me + Ny

n n

Nown; < Xjss; =55 and 1 =71 —s <.

Hence, using bound 0: T (F;, C;) < n;1y < %
Let s = logr. Then T (F;, C;) < n.

Hence, T(F,C) <T(Fy, Cy)+m;+2n
= T(F,C) —m < T(Fb,Cb) —my + 2n

Bound 1

Bound 1: T(m,n,r) <m+ 2nlog™r.

Proof:
WegotT(F,C) —m < T(F,,C,) —my + 2n
let T;(m,n,vr) =T(m,n,r) —m

Then Ty(m,n,r) < Ty(my,ny, 1) + 2n
> Ty(m,n,r) <T;(m,nlogr) + 2n

Solving, T;(m,n,r) < 2nlog*r

Hence, T(m,n,r) < m+ 2nlog*r

Bound 2
Bound 2: T(m,n,r) < 2m + 3nlog*™ r.

Proof: Similar to the proof of bound 1.
But we solve T (F;, C;) using bound 1, instead of bound 0!

We fix s = log™ r (instead of log r for bound 1)

Then using bound 1: T(F;, C;) < m; + 2n, log* Ty
<m;+ 2=
<m;+2n

log™r

log T

Then from T(F,C) < T(F;, C;) + T(Fp, C,) + m; + n,, we get

T(F, C) < T(Fb, Cb) + th + Bnb

Bound 2

Bound 2: T(m,n,r) < 2m + 3nlog*™ r.

Proof: Our recurrence:
T(F,C) <T(F,,Cy) + 2m; + 3n,
= T(F,C) — 2m < T(F,, C,) — 2m,, + 3n,
Let T,(m,n,r) =T(m,n,r) —2m
Then T,(m,n,r) < T,(my,ny,1,) + 3n
= T,(m,n,r) < T,(m,n,log"r) + 3n

Solving, T,(m,n,r) < 3nlog™ r

Hence, T(m,n,r) < 2m+ 3nlog™ r

Bound k

k

—~
keeosk

Bound k: T(m,n,rv) < km+ (k + 1)nlog* ™.

Observation: As we increase k:

— the dependency on m increases

— the dependency on r decreases

k
When k = a(r), we have logm r<3!

Bound a: T(m,n,r) < ma(r) + 3(a(r) + 1)n.

The a Bound

Bound a: T(m,n,r) < ma(r) + 3(a(r) + 1)n.
Observing that r < n, we have:

Bounda: T(m,n,r) < (m+ 3n)a(n) + 3n = O((m + n)a(n)).

Assuming m = n, we have:

Bound a: T(m,n,r) = O(ma(n)).

So, amortized complexity of each operation is only O(a(n))!

