CSE 548: Analysis of Algorithms

Guest Lecture (The α Technique)

Inspiration Comes from Lectures Given by
Jeff Erickson, Seth Pettie, Vijaya Ramachandran and Raimund Seidel

Guest Lecturer: Shih-yu Tsai

(Slides: Rezaul A. Chowdhury, Shih-yu Tsai)
Department of Computer Science
SUNY Stony Brook
Spring 2019

Iterated Functions

$$
\begin{aligned}
f^{*}(n) & =\min \{i \geq 0: \underbrace{f(f(f(\ldots f(n) \ldots))}_{\text {itimes }} \leq 1\} \\
& =\min \left\{i \geq 0: f^{(i)}(n) \leq 1\right\},
\end{aligned}
$$

where $f^{(i)}(n)=\left\{\begin{array}{cl}n & \text { if } i=0 \\ f\left(f^{(i-1)}(n)\right) & \text { if } i>0\end{array}\right.$

Example: If $f=\log$, we have:

$$
\begin{array}{ll}
\log ^{(0)}(65536)=65536 & \log ^{(3)}(65536)=2 \\
\log ^{(1)}(65536)=16 & \log ^{(4)}(65536)=1 \\
\log ^{(2)}(65536)=4 & \therefore \log ^{*}(65536)=4
\end{array}
$$

Iterated Functions

$$
\begin{array}{cc}
f(n) & f^{*}(n) \\
\hline n-1 & n-1 \\
n-2 & \frac{n}{2} \\
n-c & \frac{n}{c} \\
\frac{n}{2} & \log _{2} n \\
\frac{n}{c} & \log _{c} n \\
\log n & \log ^{*} n
\end{array}
$$

$\log ^{*}(n)$ grows extremely slowly

$$
\begin{aligned}
& \log ^{*} 2=1 \\
& \log ^{*} 2^{2}=2 \\
& \log ^{*} 2^{4}=3 \\
& \log ^{*} 2^{16}=4 \\
& \log ^{*} 2^{65536}=5 \\
& \log ^{*} 2^{2^{65536}}=6 \ldots
\end{aligned}
$$

The Inverse Ackermann Function: $\alpha(n)$

$$
\begin{aligned}
& \alpha(n) \quad \begin{array}{lll}
f(n) & f^{*}(n) & \\
\text { rows } & \log ^{*} n & >3 \\
\begin{array}{lll}
\log n \\
\log ^{*} n \\
\log ^{* *} n
\end{array} & \log ^{* *} n & >3 \\
\cdots & \log ^{* * *} n & >3
\end{array} \\
& \alpha(n)=\min \left\{k \geq 1: \log ^{\frac{k}{* \cdots *}} n \leq 3\right\}
\end{aligned}
$$

Example: $\alpha(65536)$

$$
\alpha(65536)=\min \left\{k \geq 1: \log ^{\frac{k}{* \cdots *}} 65536 \leq 3\right\}=2
$$

$$
\begin{array}{ll}
\log { }^{(0)}(65536)=65536 & \left(\log ^{*}\right)^{(0)}(65536)=65536 \\
\log (1)(65536) & =16 \\
\log (2)(65536) & =4 \\
\log & \left(\log ^{*}\right)^{(1)}(65536)=4 \\
\log ^{(4)}(65536)=1 & \left(\log ^{*}\right)^{(2)}(65536)=\log ^{*}(4)=2 \\
\therefore & \left(\log ^{*}\right)^{(3)}(65536)=\log ^{*}(2)=1 \\
\log ^{*}(65536)=4 & \therefore \log ^{* *}(65536)=3
\end{array}
$$

The Partial Sums Data Structure

Example:
 The Partial Sums on Array of numbers

$$
4+6+2+11+7+3=?
$$

Semigroups

Semigroup (Π, \oplus): A set Π together with an associative binary operation $\oplus: \Pi \times \Pi \rightarrow \Pi$.

Examples:

$$
\begin{gathered}
(\Re, \max) \\
(\{\text { true, false }\}, \text { logical } O R) \\
(k \times k \text { matrices, matrix multiplication })
\end{gathered}
$$

Partial Semigroup Sums

Given (i) a semigroup (Π, \bigoplus), and
(ii) an array $A[1 \ldots n]$ with each entry $A[i] \in \Pi$

Goal: Preprocess A using as little space as possible so that for all $1 \leq$ $i \leq j \leq n$, queries of the form $A[i] \oplus A[i+1] \oplus \cdots \oplus A[j]$ can be answered efficiently.

Query Complexity: \#times the \bigoplus operation is applied

Space Complexity: \#values from П stored in the data structure
\boldsymbol{k}-op structure: A data structure with query complexity k
$\boldsymbol{S}_{\boldsymbol{k}}(\boldsymbol{n})$: \#values from Π to be stored so that every partial sum query can be answered using at most k applictions of the \bigoplus operation

Bound 0

Bound 0: $S_{1}(n) \leq n \log n$.
Construction of a 1-op structure:
Input array A of size n
Split A into A_{l} and A_{r} of size $\frac{n}{2}$ each
Compute: all suffix-sums of A_{l}, and all prefix-sums of A_{r}

Recurse: 1-op structure for A_{l}, and 1-op structure for A_{r}

Query: Either crosses A 's midpoint (return suffix-sum \bigoplus prefix-sum), or lies completely inside A_{l} (recurse) or A_{r} (recurse)

Bound 0

Bound 0: $S_{1}(n) \leq n \log n$.
Construction of a 1-op structure:
Input array A of size n
Split A into A_{l} and A_{r} of size $\frac{n}{2}$ each
Compute: all suffix-sums of A_{l}, and all prefix-sums of A_{r}

Recurse: 1-op structure for A_{l}, and 1-op structure for A_{r}

Space: $S_{1}(n) \leq n+2 S_{1}\left(\frac{n}{2}\right)$
$\leq n \log n$

Bound 1

Bound 1: $S_{3}(n) \leq 3 n \log ^{*} n$.
Construction of a 3-op structure:

Split A into $\frac{n}{\log n}$ subarrays of
size $\leq \log n$ each
Compute: all suffix- and prefix- sums within each subarray

1-op structure

Recurse: 3-op structure for each subarray

Query: Either completely inside a subarray (recurse), or crosses subarray boundaries (return suffix-sum \bigoplus answer from 1-op structure \bigoplus prefix-sum)

Bound 1

Bound 1: $S_{3}(n) \leq 3 n \log ^{*} n$.
Construction of a 3-op structure:
Split A into $\frac{n}{\log n}$ subarrays of
size $\leq \log n$ each
Compute: all suffix- and prefix- sums within each subarray

1-op structure

Recurse: 3-op structure for each subarray
Space: $S_{3}(n) \leq 2 n+S_{1}\left(\frac{n}{\log n}\right)+\frac{n}{\log n} S_{3}(\log n)$

$$
\leq 3 n+\frac{n}{\log n} S_{3}(\log n) \leq 3 n \log ^{*} n
$$

Bound k

Bound k : $S_{2 k+1}(n) \leq(2 k+1) n \log ^{\approx \ldots *} n$.
Construction of a $(2 \boldsymbol{k}+1)$-op structure:
Split A into $n / \log ^{\frac{k-1}{* \cdots *}} n$ subarrays of
size $\leq \log ^{\frac{k-1}{x \cdots *}} n$ each
Compute: all suffix- and prefix- sums

Recurse: $(2 k+1)$-op structure for each
Build: $(2 k-1)$-op structure for
$n / \log ^{\pi \cdots *} n$ subarray sums
subarray
Query: Either completely inside a subarray (recurse), or crosses subarray boundaries (return suffix-sum \oplus answer from ($2 k-1$)-op structure \oplus prefix-sum)

Bound \boldsymbol{k}

Bound k : $S_{2 k+1}(n) \leq(2 k+1) n \log ^{\text {雨 }} n$.
Construction of a $(2 k+1)$-op structure:
Split A into $n / \log ^{\widetilde{2 N *}} n$ subarrays of
size $\leq \log ^{\frac{k-1}{* \cdots *}} n$ each
Compute: all suffix- and prefix- sums
 within each subarray
Build: $(2 k-\underset{k}{1})$-op structure for

-op structure
$n / \log ^{\approx \cdots *} n$ subarray sums
Recurse: $(2 k+1)$-op structure for each

Space: $\left.\begin{array}{c}\text { subarray } \\ S_{2 k+1}(n) \leq 2 n+S_{2 k-1} \\ \left(\frac{n}{\log ^{k-1} n}\right)\end{array}\right)+\frac{n}{\substack{k-1 \\ \log ^{k+1} n}} S_{2 k+1}\left(\log ^{\frac{k-1}{* \cdots *} n}\right)$

$$
\leq(2 k+1) n+\frac{n}{k-1} S_{2 k+1}\left(\log ^{\frac{k-1}{k \cdots} n} n\right) \leq(2 k+1) n \log ^{\frac{k}{k \cdots \cdots}} n
$$

Bound \boldsymbol{k} : $S_{2 k+1}(n) \leq(2 k+1) n \log ^{\widetilde{* \cdots *}} n$.
Putting $k=\alpha(n)$, we have:
Bound $\alpha: S_{2 \alpha(n)+1}(n) \leq 3(2 \alpha(n)+1) n=\mathrm{O}(n \alpha(n))$.

Linear Space: Use the α-bound to show that the space complexity of the data structure can be reduced to $\mathrm{O}(n)$ while still supporting range queries in $\mathrm{O}(\alpha(n))$ time.

Union-Find:
A Disjoint-Set Data Structure

Disioint Set Operations

A disjoint-set data structure maintains a collection of disjoint dynamic sets. Each set is identified by a representative which must be a member of the set.

The collection is maintained under the following operations:

Make-Set (\boldsymbol{x}) : create a new set $\{x\}$ containing only element x.
Element x becomes the representative of the set.
Find (x) : returns a pointer to the representative of the set containing x

UNION($\boldsymbol{x}, \boldsymbol{y})$: replace the dynamic sets S_{x} and S_{y} containing x and y, respectively, with the set $S_{x} \cup S_{y}$

Union-Find Data Structure

 with Union by Rank and Find with Path Compression```
Make-Set (}x\mathrm{)
1. }\pi(x)\leftarrow
2. }\operatorname{rank}(x)\leftarrow
```

```
LINK (\(x, y\))
 1. if \(\operatorname{rank}(x)>\operatorname{rank}(y)\) then \(\pi(y) \leftarrow x\)
 2. else \(\pi(x) \leftarrow y\)
 3. if \(\operatorname{rank}(x)=\operatorname{rank}(y)\) then \(\operatorname{rank}(y) \leftarrow \operatorname{rank}(y)+1\)
```

```
UNION(x,y)
1. LINK (FIND (x), FIND (y))
```

```
FIND (}x\mathrm{)
 1. if x\not=\pi(x) then }\pi(x)\leftarrow\operatorname{FIND}(\pi(x)
2. return }\pi(x
```


## Some Useful Properties of Rank

- If $x$ is not a root then $\operatorname{rank}(x)<\operatorname{rank}(\pi(x))$
- Node ranks strictly increase along any simple path towards a root
- Once a node becomes a non-root its rank never changes
- If $\pi(x)$ changes from $y$ to $z$ then $\operatorname{rank}(z)>\operatorname{rank}(y)$
- If the root of $x$ 's tree changes from $y$ to $z$ then $\operatorname{rank}(z)>\operatorname{rank}(y)$
- If $x$ is the root of a tree then $\operatorname{size}(x) \geq 2^{\operatorname{rank}(x)}$
- If there are only $n$ nodes the highest possible rank is $\left\lfloor\log _{2} n\right\rfloor$
- There are at most $\frac{n}{2^{r}}$ nodes with rank $r \geq 0$


## Some Useful Properties of Rank

- We will analyze the total running time of $m^{\prime}$ Make-Set, Union and FIND operations of which exactly $n\left(\leq m^{\prime}\right)$ are MAKe-Set
- But each Union can be replaced with two FIND and one LINK
- Hence, we can simply analyze the total running time of $m$ Make-Set, Link and Find operations of which exactly $n(\leq m)$ are Make-Set and where $m^{\prime} \leq m \leq 3 m^{\prime}$


## Compress

```
COMPRESS (x,y) {y is an ancestor of }x
1. if }x\not=y\mathrm{ then }\pi(x)\leftarrowCOMPRESS (\pi(x),y
2. return }\pi(x
```

- We will analyze the total running time of $m$ Make-Set, Union and FIND operations of which exactly $n(\leq m)$ are Make-Set
- But $\operatorname{Find}(x)$ is nothing but $\operatorname{Compress}(x, y)$, where $y$ is the root of the tree containing $x$
- Hence, we can analyze the total running time of $m$ Make-Set, LINK and COMPRESS operations of which exactly $n(\leq m)$ are Make-Set

```
COMPRESS (x,y) {y is an ancestor of }x
1. if }x\not=y\mathrm{ then }\pi(x)\leftarrowCOMPRESS (\pi(x),y
2. return }\pi(x
```

We can reorder the sequence of LINא and Compress operations so that all Link's are performed before all Compress operations without changing the number of parent pointer reassignments!






## Shatter

| $\operatorname{Shatter}(x)$ |
| :--- |
| 1. if $x \neq \pi(x)$ then $\operatorname{Shatter}(\pi(x))$ <br> 2. $\pi(x) \leftarrow x$ |



## Bound 0

Let $T(m, n, r)=$ worst-case number of parent pointer assignments

- during any sequence of at most $m$ COMPRESS operations
- on a forest of $n$ nodes
- with maximum rank $r$

Bound 0: $T(m, n, r) \leq n r$.

Proof: Since there are at most $r$ distinct ranks, and each new parent of a node has a higher rank than its previous parent, any node can change parents fewer than $r$ times.

## Bound 1

Bound 1: $T(m, n, r) \leq m+2 n \log ^{*} r$.
Proof: Let $F$ be the forest, and $C$ be the sequence of COMPRESS operations performed on $F$.

Let $T(F, C)$ be the number of parent pointer assignments by $C$ in $F$.
Let $s$ be an arbitrary rank. We partition $F$ into two subforests:
$F_{b}$ containing all nodes with rank $\leq s$, and
$F_{t}$ containing all nodes with rank $>s$.


## Bound 1

Bound 1: $T(m, n, r) \leq m+2 n \log ^{*} r$.
Proof: Let $s$ be an arbitrary rank. We partition $F$ into two subforests:
$F_{b}$ containing all nodes with rank $\leq s$, and
$F_{t}$ containing all nodes with rank $>s$.


Let $n_{t}=\#$ nodes in $F_{t}$, and $n_{b}=\#$ nodes in $F_{b}$
Let $m_{t}=$ \#COMPRESS operations with at least one node in $F_{t}$, and

$$
m_{b}=m-m_{t}
$$

## Bound 1

Bound 1: $T(m, n, r) \leq m+2 n \log ^{*} r$.
Proof: The sequence $C$ on $F$ can be decomposed into

- a sequence of COMPRESS operations in $F_{t}$, and
- a sequence of COMPRESS and ShATTER operations in $F_{b}$


Suppose, this decomposition partitions $C$ into two subsequences

- $C_{t}$ in $F_{t}$, and
$-C_{b}$ in $F_{b}$


## Bound 1

Bound 1: $T(m, n, r) \leq m+2 n \log ^{*} r$.
Proof: We get the following recurrence:

$$
T(F, C) \leq T\left(F_{t}, C_{t}\right)+T\left(F_{b}, C_{b}\right)+m_{t}+n_{b}
$$

Cost on Left Side
node $\in F_{t}$ gets new parent $\in F_{t}$ node $\in F_{b}$ gets new parent $\in F_{b}$ node $\in F_{b}$ gets new parent $\in F_{t}$ ( for the first time ) node $\in F_{b}$ gets new parent $\in F_{t}$ ( again )

Corresponding Cost on Right Side

$$
\begin{aligned}
& T\left(F_{t}, C_{t}\right) \\
& T\left(F_{b}, C_{b}\right)
\end{aligned}
$$

$$
n_{b}
$$

$$
m_{t}
$$

## Bound 1

Bound 1: $T(m, n, r) \leq m+2 n \log ^{*} r$.
Proof: We get the following recurrence:

$$
T(F, C) \leq T\left(F_{t}, C_{t}\right)+T\left(F_{b}, C_{b}\right)+m_{t}+n_{b}
$$

Now $n_{t} \leq \sum_{i>s} \frac{n}{2^{i}}=\frac{n}{2^{s}}$, and $r_{t}=r-s<r$.
Hence, using bound 0: $T\left(F_{t}, C_{t}\right) \leq n_{t} r_{t}<\frac{n r}{2^{s}}$
Let $s=\log r$. Then $T\left(F_{t}, C_{t}\right)<n$.
Hence, $\quad T(F, C) \leq T\left(F_{b}, C_{b}\right)+m_{t}+2 n$

$$
\Rightarrow T(F, C)-m \leq T\left(F_{b}, C_{b}\right)-m_{b}+2 n
$$

## Bound 1

Bound 1: $T(m, n, r) \leq m+2 n \log ^{*} r$.

## Proof:

We got $T(F, C)-m \leq T\left(F_{b}, C_{b}\right)-m_{b}+2 n$
Let $T_{1}(m, n, r)=T(m, n, r)-m$
Then $T_{1}(m, n, r) \leq T_{1}\left(m_{b}, n_{b}, r_{b}\right)+2 n$

$$
\Rightarrow T_{1}(m, n, r) \leq T_{1}(m, n, \log r)+2 n
$$

Solving, $T_{1}(m, n, r) \leq 2 n \log ^{*} r$
Hence, $T(m, n, r) \leq m+2 n \log ^{*} r$

## Bound 2

Bound 2: $T(m, n, r) \leq 2 m+3 n \log ^{* *} r$.
Proof: Similar to the proof of bound 1.
But we solve $T\left(F_{t}, C_{t}\right)$ using bound 1 , instead of bound 0 !
We fix $s=\log ^{*} r($ instead of $\log r$ for bound 1$)$

Then using bound 1: $T\left(F_{t}, C_{t}\right) \leq m_{t}+2 n_{t} \log ^{*} r_{t}$

$$
\begin{aligned}
& \leq m_{t}+2 \frac{n}{2^{\log ^{*} r}} \log ^{*} r \\
& \leq m_{t}+2 n
\end{aligned}
$$

Then from $T(F, C) \leq T\left(F_{t}, C_{t}\right)+T\left(F_{b}, C_{b}\right)+m_{t}+n_{b}$, we get

$$
T(F, C) \leq T\left(F_{b}, C_{b}\right)+2 m_{t}+3 n_{b}
$$

## Bound 2

Bound 2: $T(m, n, r) \leq 2 m+3 n \log ^{* *} r$.
Proof: Our recurrence:

$$
\begin{gathered}
T(F, C) \leq T\left(F_{b}, C_{b}\right)+2 m_{t}+3 n_{b} \\
\Rightarrow T(F, C)-2 m \leq T\left(F_{b}, C_{b}\right)-2 m_{b}+3 n_{b}
\end{gathered}
$$

Let $T_{2}(m, n, r)=T(m, n, r)-2 m$
Then $T_{2}(m, n, r) \leq T_{2}\left(m_{b}, n_{b}, r_{b}\right)+3 n$

$$
\Rightarrow T_{2}(m, n, r) \leq T_{2}\left(m, n, \log ^{*} r\right)+3 n
$$

Solving, $T_{2}(m, n, r) \leq 3 n \log ^{* *} r$
Hence, $T(m, n, r) \leq 2 m+3 n \log ^{* *} r$

## Bound $k$

Bound $\boldsymbol{k}: T(m, n, r) \leq k m+(k+1) n \log ^{\underset{\overbrace{}^{\cdots \cdots *}}{k}} r$.
Observation: As we increase $k$ :

- the dependency on $m$ increases
- the dependency on $r$ decreases

When $k=\alpha(r)$, we have $\log ^{\frac{k}{* \cdots *}} r \leq 3$ !

Bound $\alpha: T(m, n, r) \leq m \alpha(r)+3(\alpha(r)+1) n$.

## The $\alpha$ Bound

Bound $\alpha: T(m, n, r) \leq m \alpha(r)+3(\alpha(r)+1) n$.
Observing that $r<n$, we have:
Bound $\boldsymbol{\alpha}$ : $T(m, n, r) \leq(m+3 n) \alpha(n)+3 n=\mathrm{O}((m+n) \alpha(n))$.

Assuming $m \geq n$, we have:
Bound $\alpha: T(m, n, r)=O(m \alpha(n))$.
So, amortized complexity of each operation is only $\mathrm{O}(\alpha(n))$ !

