
CSE 548: Analysis of Algorithms

Guest Lecture

(The 𝜶 Technique)
Inspiration Comes from Lectures Given by

Jeff Erickson, Seth Pettie, Vijaya Ramachandran and Raimund Seidel

Guest Lecturer: Shih-yu Tsai

(Slides: Rezaul A. Chowdhury, Shih-yu Tsai)

Department of Computer Science

SUNY Stony Brook

Spring 2019

1

Iterated Functions

𝑓 𝑖 𝑛 = ቐ
𝑛 𝑖𝑓 𝑖 = 0

𝑓 𝑓 𝑖−1 𝑛 𝑖𝑓 𝑖 > 0

𝑓∗ 𝑛 = min 𝑖 ≥ 0: 𝑓 𝑓 𝑓 …𝑓 𝑛 …

𝑖 𝑡𝑖𝑚𝑒𝑠

≤ 1

= min 𝑖 ≥ 0: 𝑓 𝑖 𝑛 ≤ 1 ,

where

Example: If 𝑓 = log, we have:

log(0) 65536 = 65536

log(1) 65536 = 16

log(2) 65536 = 4

log(3) 65536 = 2

log(4) 65536 = 1

∴ log∗ 65536 = 4

2

Iterated Functions

𝑓 𝑛 𝑓∗ 𝑛

𝑛 − 1 𝑛 − 1

𝑛 − 2
𝑛

2

𝑛

2
log2 𝑛

log 𝑛 log∗ 𝑛

𝑛 − 𝑐
𝑛

𝑐

𝑛

𝑐
log𝑐 𝑛

3

log∗ 2 = 1

log∗ 22 =2

log∗ 24 =3

log∗ 216 = 4

log∗ 265536 = 5

log∗ 22
65536

= 6….

log∗ (𝑛) grows extremely slowly
5

The Inverse Ackermann Function: 𝜶 𝒏

𝑓 𝑛 𝑓∗ 𝑛

log 𝑛 log∗ 𝑛

log∗ 𝑛 log∗∗ 𝑛

log∗∗ 𝑛 log∗∗∗ 𝑛

logฑ∗⋯∗
𝑘−2

𝑛 logฑ∗⋯∗
𝑘−1

𝑛

logฑ∗⋯∗
𝑘−1

𝑛 logฑ∗⋯∗
𝑘

𝑛

> 3

> 3

> 3

> 3

≤ 3

𝛼 𝑛 = min 𝑘 ≥ 1: logฑ∗⋯∗
𝑘

𝑛 ≤ 3

𝛼 𝑛

rows

6

Example: 𝜶 𝟔𝟓𝟓𝟑𝟔

𝑓 𝑛 𝑓∗ 𝑛

log 65536 log∗ 65536 = 4

log∗ 65536 log∗∗ 65536 = 3

> 3

≤ 3

𝛼 65536 = min 𝑘 ≥ 1: logฑ∗⋯∗
𝑘

65536 ≤ 3 = 2

𝛼 65536

rows

log(0) 65536 = 65536

log(1) 65536 = 16

log(2) 65536 = 4

log(3) 65536 = 2

log(4) 65536 = 1

∴ log∗ 65536 = 4

(log∗)(0) 65536 = 65536

(log∗)(1) 65536 = 4

(log∗)(2) 65536 = log∗(4) = 2

(log∗)(3) 65536 = log∗ 2 = 1

∴ log∗∗ 65536 = 3

7

The Partial Sums

Data Structure

8

Example:
The Partial Sums on Array of numbers

𝟑 𝟒 𝟔 𝟐 𝟏1 𝟕 𝟑 𝟓 𝟓 𝟐

4 + 6 + 2 + 11 + 7 + 3 =?

9

Semigroups

Semigroup 𝚷, ⊕ : A set Π together with an associative binary

operation ⊕:Π × Π → Π.

Examples:

ℜ,𝑚𝑎𝑥

𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 , 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑂𝑅

𝑘 × 𝑘 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠,𝑚𝑎𝑡𝑟𝑖𝑥 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

11

Partial Semigroup Sums

Given 𝑖 a semigroup Π,⊕ , and

𝑖𝑖 an array 𝐴 1…𝑛 with each entry 𝐴 𝑖 ∈ Π

Goal: Preprocess 𝐴 using as little space as possible so that for all 1 ≤

𝑖 ≤ 𝑗 ≤ 𝑛, queries of the form 𝐴 𝑖 ⊕ 𝐴 𝑖 + 1 ⊕⋯⊕𝐴 𝑗

can be answered efficiently.

Space Complexity: #values from Π stored in the data structure

Query Complexity: #times the ⊕ operation is applied

𝑺𝒌 𝒏 : #values from Π to be stored so that every partial sum query

can be answered using at most 𝑘 applictions of the ⊕ operation

𝒌-op structure: A data structure with query complexity 𝑘

12

Bound 0

Bound 0: 𝑆1 𝑛 ≤ 𝑛 log 𝑛.

Construction of a 1-op structure:

Split 𝐴 into 𝐴𝑙 and 𝐴𝑟 of size
𝑛

2
each

Input array 𝐴 of size 𝑛

Recurse: 1-op structure for 𝐴𝑙, and

1-op structure for 𝐴𝑟

Compute: all suffix-sums of 𝐴𝑙, and

all prefix-sums of 𝐴𝑟

Query: Either crosses 𝐴’s midpoint (return suffix-sum ⊕ prefix-sum),

or lies completely inside 𝐴𝑙 (recurse) or 𝐴𝑟 (recurse)

13

Bound 0

Bound 0: 𝑆1 𝑛 ≤ 𝑛 log 𝑛.

Construction of a 1-op structure:

Split 𝐴 into 𝐴𝑙 and 𝐴𝑟 of size
𝑛

2
each

Input array 𝐴 of size 𝑛

Recurse: 1-op structure for 𝐴𝑙, and

1-op structure for 𝐴𝑟

Compute: all suffix-sums of 𝐴𝑙, and

all prefix-sums of 𝐴𝑟

Space: 𝑆1 𝑛 ≤ 𝑛 + 2𝑆1
𝑛

2

≤ 𝑛 log 𝑛

14

Bound 1

Bound 1: 𝑆3 𝑛 ≤ 3𝑛 log∗ 𝑛.

Construction of a 3-op structure:

Split 𝐴 into
𝑛

log 𝑛
subarrays of

size ≤ log 𝑛 each

Compute: all suffix- and prefix- sums

within each subarray

Build: 1-op structure for
𝑛

log 𝑛
subarray sums

Recurse: 3-op structure for each subarray

Query: Either completely inside a subarray (recurse),

or crosses subarray boundaries (return

suffix-sum ⊕ answer from 1-op structure ⊕ prefix-sum)

15

Bound 1

Bound 1: 𝑆3 𝑛 ≤ 3𝑛 log∗ 𝑛.

Construction of a 3-op structure:

Split 𝐴 into
𝑛

log 𝑛
subarrays of

size ≤ log 𝑛 each

Compute: all suffix- and prefix- sums

within each subarray

Build: 1-op structure for
𝑛

log 𝑛
subarray sums

Recurse: 3-op structure for each subarray

Space: 𝑆3 𝑛 ≤ 2𝑛 + 𝑆1
𝑛

log 𝑛
+

𝑛

log 𝑛
𝑆3 log 𝑛

≤ 3𝑛 +
𝑛

log 𝑛
𝑆3 log 𝑛 ≤ 3𝑛 log∗ 𝑛

16

Bound 𝒌

Bound 𝒌: 𝑆2𝑘+1 𝑛 ≤ 2𝑘 + 1 𝑛 logฑ∗⋯∗
𝑘

𝑛.

Compute: all suffix- and prefix- sums

within each subarray

Build: (2𝑘 − 1)-op structure for

𝑛/ logฑ∗⋯∗
𝑘−1

𝑛 subarray sums

Recurse: (2𝑘 + 1)-op structure for each

subarray
Query: Either completely inside a subarray (recurse),

or crosses subarray boundaries (return suffix-sum

⊕ answer from (2𝑘 − 1)-op structure ⊕ prefix-sum)

Construction of a (𝟐𝒌 + 𝟏)-op structure:

Split 𝐴 into 𝑛/ logฑ∗⋯∗
𝑘−1

𝑛 subarrays of

size ≤ logฑ∗⋯∗
𝑘−1

𝑛 each

17

Bound 𝒌

Bound 𝒌: 𝑆2𝑘+1 𝑛 ≤ 2𝑘 + 1 𝑛 logฑ∗⋯∗
𝑘

𝑛.

Compute: all suffix- and prefix- sums

within each subarray

Build: (2𝑘 − 1)-op structure for

𝑛/ logฑ∗⋯∗
𝑘

𝑛 subarray sums

Recurse: (2𝑘 + 1)-op structure for each

subarray

Construction of a (𝟐𝒌 + 𝟏)-op structure:

Split 𝐴 into 𝑛/ logฑ∗⋯∗
𝑘−1

𝑛 subarrays of

size ≤ logฑ∗⋯∗
𝑘−1

𝑛 each

Space: 𝑆2𝑘+1 𝑛 ≤ 2𝑛 + 𝑆2𝑘−1
𝑛

logฑ∗⋯∗
𝑘−1

𝑛

+
𝑛

logฑ∗⋯∗
𝑘−1

𝑛

𝑆2𝑘+1 logฑ∗⋯∗
𝑘−1

𝑛

≤ 2𝑘 + 1 𝑛 +
𝑛

logฑ∗⋯∗
𝑘−1

𝑛

𝑆2𝑘+1 logฑ∗⋯∗
𝑘−1

𝑛 ≤ 2𝑘 + 1 𝑛 logฑ∗⋯∗
𝑘

𝑛

18

The 𝜶 Bound

Putting 𝑘 = 𝛼 𝑛 , we have:

Bound 𝜶: 𝑆2𝛼 𝑛 +1 𝑛 ≤ 3 2𝛼 𝑛 + 1 𝑛 =  𝑛𝛼 𝑛 .

Bound 𝒌: 𝑆2𝑘+1 𝑛 ≤ 2𝑘 + 1 𝑛 logฑ∗⋯∗
𝑘

𝑛.

Linear Space: Use the 𝛼-bound to show that the space complexity

of the data structure can be reduced to  𝑛 while still supporting

range queries in  𝛼 𝑛 time.

20

Union-Find:

A Disjoint-Set Data Structure

21

Disjoint Set Operations

MAKE-SET(𝒙): create a new set 𝑥 containing only element 𝑥.

Element 𝑥 becomes the representative of the set.

FIND(𝒙): returns a pointer to the representative of the set

containing 𝑥

UNION(𝒙, 𝒚): replace the dynamic sets 𝑆𝑥 and 𝑆𝑦 containing

𝑥 and 𝑦, respectively, with the set 𝑆𝑥 ∪ 𝑆𝑦

A disjoint-set data structure maintains a collection of disjoint

dynamic sets. Each set is identified by a representative which must

be a member of the set.

The collection is maintained under the following operations:

22

Union-Find Data Structure
with Union by Rank and Find with Path Compression

MAKE-SET (𝑥)

1. 𝜋 𝑥 ← 𝑥

2. 𝑟𝑎𝑛𝑘 𝑥 ← 0

UNION (𝑥, 𝑦)

1. LINK (FIND (𝑥), FIND (𝑦))

LINK (𝑥, 𝑦)

1. if 𝑟𝑎𝑛𝑘 𝑥 > 𝑟𝑎𝑛𝑘 𝑦 then 𝜋 𝑦 ← 𝑥

2. else 𝜋 𝑥 ← 𝑦

3. if 𝑟𝑎𝑛𝑘 𝑥 = 𝑟𝑎𝑛𝑘 𝑦 then 𝑟𝑎𝑛𝑘 𝑦 ← 𝑟𝑎𝑛𝑘 𝑦 + 1

FIND (𝑥)

1. if 𝑥 ≠ 𝜋 𝑥 then 𝜋 𝑥 ← FIND (𝜋 𝑥)

2. return 𝜋 𝑥

23

Some Useful Properties of Rank

− If 𝑥 is not a root then 𝑟𝑎𝑛𝑘 𝑥 < 𝑟𝑎𝑛𝑘 𝜋 𝑥

− Node ranks strictly increase along any simple path towards a root

− Once a node becomes a non-root its rank never changes

− If 𝜋 𝑥 changes from 𝑦 to 𝑧 then 𝑟𝑎𝑛𝑘 𝑧 > 𝑟𝑎𝑛𝑘 𝑦

− If the root of 𝑥’s tree changes from 𝑦 to 𝑧 then 𝑟𝑎𝑛𝑘 𝑧 > 𝑟𝑎𝑛𝑘 𝑦

− If 𝑥 is the root of a tree then 𝑠𝑖𝑧𝑒 𝑥 ≥ 2𝑟𝑎𝑛𝑘 𝑥

− If there are only 𝑛 nodes the highest possible rank is log2 𝑛

− There are at most
𝑛

2𝑟
nodes with rank 𝑟 ≥ 0

24

Some Useful Properties of Rank

− We will analyze the total running time of 𝑚′ MAKE-SET, UNION

and FIND operations of which exactly 𝑛 ≤ 𝑚′ are MAKE-SET

− But each UNION can be replaced with two FIND and one LINK

− Hence, we can simply analyze the total running time of 𝑚

MAKE-SET, LINK and FIND operations of which exactly 𝑛 ≤ 𝑚

are MAKE-SET and where 𝑚′ ≤ 𝑚 ≤ 3𝑚′

25

Compress

COMPRESS (𝑥, 𝑦) { 𝑦 is an ancestor of 𝑥 }

1. if 𝑥 ≠ 𝑦 then 𝜋 𝑥 ← COMPRESS (𝜋 𝑥 , 𝑦)

2. return 𝜋 𝑥

− We will analyze the total running time of 𝑚 MAKE-SET, UNION

and FIND operations of which exactly 𝑛 ≤ 𝑚 are MAKE-SET

− But FIND 𝑥 is nothing but COMPRESS 𝑥, 𝑦 , where 𝑦 is the root

of the tree containing 𝑥

− Hence, we can analyze the total running time of 𝑚 MAKE-SET,

LINK and COMPRESS operations of which exactly 𝑛 ≤ 𝑚 are

MAKE-SET

26

Compress

COMPRESS (𝑥, 𝑦) { 𝑦 is an ancestor of 𝑥 }

1. if 𝑥 ≠ 𝑦 then 𝜋 𝑥 ← COMPRESS (𝜋 𝑥 , 𝑦)

2. return 𝜋 𝑥

We can reorder the sequence of LINK and COMPRESS operations so

that all LINK’S are performed before all COMPRESS operations

without changing the number of parent pointer reassignments!

𝑥

𝑦

𝑧
𝑥 𝑦 𝑧

𝑥 𝑦 𝑧

𝑥

𝑦

𝑧

𝑥 𝑦 𝑧

𝑥

𝑦

𝑧

28

Shatter

SHATTER (𝑥)

1. if 𝑥 ≠ 𝜋 𝑥 then SHATTER (𝜋 𝑥)

2. 𝜋 𝑥 ← 𝑥

𝑥

𝑦

𝑧

𝑤
𝑤 𝑧 𝑦 𝑥

30

Bound 0

Let 𝑇 𝑚, 𝑛, 𝑟 = worst-case number of parent pointer assignments

− during any sequence of at most 𝑚 COMPRESS operations

− on a forest of 𝑛 nodes

− with maximum rank 𝑟

Bound 0: 𝑇 𝑚, 𝑛, 𝑟 ≤ 𝑛𝑟.

Proof: Since there are at most 𝑟 distinct ranks, and each new parent

of a node has a higher rank than its previous parent, any node can

change parents fewer than 𝑟 times.

31

Bound 1
Bound 1: 𝑇 𝑚, 𝑛, 𝑟 ≤ 𝑚 + 2𝑛 log∗ 𝑟.

Proof: Let 𝐹 be the forest, and 𝐶 be the sequence of COMPRESS

operations performed on 𝐹.

Let 𝑇 𝐹, 𝐶 be the number of parent pointer assignments by 𝐶 in 𝐹.

Let 𝑠 be an arbitrary rank. We partition 𝐹 into two subforests:

𝐹𝑏 containing all nodes with rank ≤ 𝑠, and

𝐹𝑡 containing all nodes with rank > 𝑠.

𝑭

𝑭𝒕

𝑭𝒃

𝑟𝑎𝑛𝑘 > 𝑠

𝑟𝑎𝑛𝑘 ≤ 𝑠

𝑟𝑎𝑛𝑘 > 𝑠

𝑟𝑎𝑛𝑘 ≤ 𝑠

33

Bound 1
Bound 1: 𝑇 𝑚, 𝑛, 𝑟 ≤ 𝑚 + 2𝑛 log∗ 𝑟.

Proof: Let 𝑠 be an arbitrary rank. We partition 𝐹 into two subforests:

𝐹𝑏 containing all nodes with rank ≤ 𝑠, and

𝐹𝑡 containing all nodes with rank > 𝑠.

Let 𝑛𝑡 = #nodes in 𝐹𝑡, and 𝑛𝑏 = #nodes in 𝐹𝑏

Let 𝑚𝑡 = #COMPRESS operations with at least one node in 𝐹𝑡, and

𝑚𝑏 =𝑚 −𝑚𝑡

𝑭

𝑭𝒕

𝑭𝒃

𝑟𝑎𝑛𝑘 > 𝑠

𝑟𝑎𝑛𝑘 ≤ 𝑠

𝑟𝑎𝑛𝑘 > 𝑠

𝑟𝑎𝑛𝑘 ≤ 𝑠

34

Bound 1
Bound 1: 𝑇 𝑚, 𝑛, 𝑟 ≤ 𝑚 + 2𝑛 log∗ 𝑟.

Proof: The sequence 𝐶 on 𝐹 can be decomposed into

− a sequence of COMPRESS operations in 𝐹𝑡, and

− a sequence of COMPRESS and SHATTER operations in 𝐹𝑏

Suppose, this decomposition partitions 𝐶 into two subsequences

− 𝐶𝑡 in 𝐹𝑡, and

− 𝐶𝑏 in 𝐹𝑏

36

Bound 1
Bound 1: 𝑇 𝑚, 𝑛, 𝑟 ≤ 𝑚 + 2𝑛 log∗ 𝑟.

Proof: We get the following recurrence:

𝑇 𝐹, 𝐶 ≤ 𝑇 𝐹𝑡 , 𝐶𝑡 + 𝑇 𝐹𝑏, 𝐶𝑏 +𝑚𝑡 + 𝑛𝑏

Cost on Left Side Corresponding Cost on Right Side

node ∈ 𝐹𝑡 gets new parent ∈ 𝐹𝑡 𝑇 𝐹𝑡 , 𝐶𝑡

node ∈ 𝐹𝑏 gets new parent ∈ 𝐹𝑏 𝑇 𝐹𝑏 , 𝐶𝑏

node ∈ 𝐹𝑏 gets new parent ∈ 𝐹𝑡
(for the first time)

𝑛𝑏

node ∈ 𝐹𝑏 gets new parent ∈ 𝐹𝑡
(again)

𝑚𝑡

38

Bound 1
Bound 1: 𝑇 𝑚, 𝑛, 𝑟 ≤ 𝑚 + 2𝑛 log∗ 𝑟.

Proof: We get the following recurrence:

𝑇 𝐹, 𝐶 ≤ 𝑇 𝐹𝑡 , 𝐶𝑡 + 𝑇 𝐹𝑏, 𝐶𝑏 +𝑚𝑡 + 𝑛𝑏

Now 𝑛𝑡 ≤ σ𝑖>𝑠
𝑛

2𝑖
=

𝑛

2𝑠
, and 𝑟𝑡 = 𝑟 − 𝑠 < 𝑟.

Hence, using bound 0: 𝑇 𝐹𝑡 , 𝐶𝑡 ≤ 𝑛𝑡𝑟𝑡 <
𝑛𝑟

2𝑠

Let 𝑠 = log 𝑟. Then 𝑇 𝐹𝑡, 𝐶𝑡 < 𝑛.

Hence, 𝑇 𝐹, 𝐶 ≤ 𝑇 𝐹𝑏 , 𝐶𝑏 +𝑚𝑡 + 2𝑛

⇒ 𝑇 𝐹, 𝐶 − 𝑚 ≤ 𝑇 𝐹𝑏 , 𝐶𝑏 −𝑚𝑏 + 2𝑛

39

Bound 1
Bound 1: 𝑇 𝑚, 𝑛, 𝑟 ≤ 𝑚 + 2𝑛 log∗ 𝑟.

Proof:

We got 𝑇 𝐹, 𝐶 − 𝑚 ≤ 𝑇 𝐹𝑏 , 𝐶𝑏 −𝑚𝑏 + 2𝑛

Let 𝑇1 𝑚, 𝑛, 𝑟 = 𝑇 𝑚, 𝑛, 𝑟 − 𝑚

Then 𝑇1 𝑚, 𝑛, 𝑟 ≤ 𝑇1 𝑚𝑏, 𝑛𝑏 , 𝑟𝑏 + 2𝑛

⇒ 𝑇1 𝑚, 𝑛, 𝑟 ≤ 𝑇1 𝑚, 𝑛, log 𝑟 + 2𝑛

Solving, 𝑇1 𝑚, 𝑛, 𝑟 ≤ 2𝑛 log∗ 𝑟

Hence, 𝑇 𝑚, 𝑛, 𝑟 ≤ 𝑚 + 2𝑛 log∗ 𝑟

40

Bound 2
Bound 2: 𝑇 𝑚, 𝑛, 𝑟 ≤ 2𝑚 + 3𝑛 log∗∗ 𝑟.

Proof: Similar to the proof of bound 1.

But we solve 𝑇 𝐹𝑡, 𝐶𝑡 using bound 1, instead of bound 0!

We fix 𝑠 = log∗ 𝑟 (instead of log 𝑟 for bound 1)

Then using bound 1: 𝑇 𝐹𝑡 , 𝐶𝑡 ≤ 𝑚𝑡 + 2𝑛𝑡 log
∗ 𝑟𝑡

≤ 𝑚𝑡 + 2
𝑛

2log
∗ 𝑟 log

∗ 𝑟

≤ 𝑚𝑡 + 2𝑛

Then from 𝑇 𝐹, 𝐶 ≤ 𝑇 𝐹𝑡 , 𝐶𝑡 + 𝑇 𝐹𝑏, 𝐶𝑏 +𝑚𝑡 + 𝑛𝑏, we get

𝑇 𝐹, 𝐶 ≤ 𝑇 𝐹𝑏 , 𝐶𝑏 + 2𝑚𝑡 + 3𝑛𝑏

41

Bound 2
Bound 2: 𝑇 𝑚, 𝑛, 𝑟 ≤ 2𝑚 + 3𝑛 log∗∗ 𝑟.

Proof: Our recurrence:

𝑇 𝐹, 𝐶 ≤ 𝑇 𝐹𝑏 , 𝐶𝑏 + 2𝑚𝑡 + 3𝑛𝑏

⇒ 𝑇 𝐹, 𝐶 − 2𝑚 ≤ 𝑇 𝐹𝑏 , 𝐶𝑏 − 2𝑚𝑏 + 3𝑛𝑏

Let 𝑇2 𝑚, 𝑛, 𝑟 = 𝑇 𝑚, 𝑛, 𝑟 − 2𝑚

Then 𝑇2 𝑚, 𝑛, 𝑟 ≤ 𝑇2 𝑚𝑏 , 𝑛𝑏, 𝑟𝑏 + 3𝑛

⇒ 𝑇2 𝑚, 𝑛, 𝑟 ≤ 𝑇2 𝑚, 𝑛, log∗ 𝑟 + 3𝑛

Solving, 𝑇2 𝑚, 𝑛, 𝑟 ≤ 3𝑛 log∗∗ 𝑟

Hence, 𝑇 𝑚, 𝑛, 𝑟 ≤ 2𝑚 + 3𝑛 log∗∗ 𝑟

42

Bound 𝒌

Bound k: 𝑇 𝑚, 𝑛, 𝑟 ≤ 𝑘𝑚 + (𝑘 + 1)𝑛 logฑ∗⋯∗
𝑘

𝑟.

Observation: As we increase 𝑘:

− the dependency on 𝑚 increases

− the dependency on 𝑟 decreases

When 𝑘 = 𝛼 𝑟 , we have logฑ∗⋯∗
𝑘

𝑟 ≤ 3 !

Bound 𝜶: 𝑇 𝑚, 𝑛, 𝑟 ≤ 𝑚𝛼 𝑟 + 3(𝛼 𝑟 + 1)𝑛.

43

The 𝜶 Bound

Bound 𝜶: 𝑇 𝑚, 𝑛, 𝑟 ≤ 𝑚𝛼 𝑟 + 3(𝛼 𝑟 + 1)𝑛.

Observing that 𝑟 < 𝑛, we have:

Bound 𝜶: 𝑇 𝑚, 𝑛, 𝑟 ≤ 𝑚 + 3𝑛 𝛼 𝑛 + 3𝑛 =  𝑚 + 𝑛 𝛼 𝑛 .

Assuming 𝑚 ≥ 𝑛, we have:

Bound 𝜶: 𝑇 𝑚, 𝑛, 𝑟 =  𝑚𝛼 𝑛 .

So, amortized complexity of each operation is only  𝛼 𝑛 !

44

