CSE548, AMS542: Analysis of Algorithms, Spring 2019

Date: March 13, 2019

Midterm Exam
( 2:30 PM — 3:45 PM : 75 Minutes )

e This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 30% of your grade, and the lower one 15%.

e There are three (3) questions, worth 75 points in total. Please answer all of them in the

spaces provided.

e There are 16 pages including four (4) blank pages and two (2) pages of appendices. Please
use the blank pages if you need additional space for your answers.

e The exam is open slides and open notes. But no books and no computers.

Goobp Luck!

Question Pages | Score | Maximum
1. A Broken ATM 2-4 25
2. Hops 6-9 25
3. Recurrences with Triangular Numbers | 11-12 25
Total 75
NAME:




QUESTION 1. [ 25 Points | A Broken ATM. This question is about an ATM (Automated Teller
Machine) that can store dollar bills of exactly n different integral values, but when a customer tries
to withdraw cash the machine fails unless it can output the amount using exactly k bills, where
both n and k are positive integers. We assume that the value of the largest bill the machine stores
is not more than cn for some constant ¢ > 1. We also assume that before each transaction the
machine will have at least k bills of each of the n different dollar values it stores (i.e., it will be
refilled as soon as the number of bills of any value drops below k).

Now the question is: with any given n and k as above, how many distinct cash amount the ATM
can successfully deliver?

1(a) [ 5 Points | Show that for any given k you can output all distinct withdrawal amounts the
ATM can successfully deliver in O (n2k2) time. For example, if the ATM stores only $5, $10,
$20 and $50 bills and k = 2, then it can fulfill the following 10 distinct withdrawal amounts:

1. $10 2. 815 3. $20 4. $25 5. $30

(=$5+ $5) (= $5+ $10) (= $10 + $10) (= $5+ $20) (= $10 + $20)
6. $40 7. $55 8. $60 9. $70 10. $100

(= $20 + $20) (= $5+ $50) (= $10 + $50) (= $20 + $50) (= $50 + $50)



1(b) [ 10 Points ] Explain how you will output all distinct withdrawal amounts in O (n!*€) time
when k& = 2, where € is any given positive constant which can be arbitrarily close to zero.



1(c) [ 10 Points | Explain how you will extend your algorithm from part 1(b) to output all distinct
withdrawal amounts in O (nk(n€+ k¢)) time for any given k, where € is a given constant as
in part 1(b).



Use this page if you need additional space for your answers.



QUESTION 2. [ 25 Points | Hops. Suppose G is an undirected graph that has n vertices. Each
vertex of G is identified by a unique integer in [1,n]. We say that two vertices u and v of G are
adjacent provided they are connected by an edge. All edges of G are recorded in an n x n adjacency
matrix A, where Afu][v] is set to 1 provided vertices v and v are connected by an edge (i.e., provided
edge (u,v) exists in G), otherwise A[u|[v] is set to 0. Since G is undirected Afu][v] = A[v][u] always
holds. We say that vertices u and v are connected by an h-hop path provided v can be reached
from wu following a path containing exactly h edges and vice versa. An n x n matrix D" which
we call an h-hop matrix, records each pair of vertices that are connected by h-hop paths. Entry
DWW [y][v] is set to 1 provided u and v are connected by an h-hop path, and 0 otherwise. Again
DM [y][v] = DM [v][u] for all u,v € [1,n]. Clearly, DV = A.
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Figure 1: An undirected graph whose edges  Figure 2: The solid edges show the vertices con-
(i.e., 1-hop paths) are captured by the matrix = nected by 2-hop paths in the graph on the left.
D which is also the adjacency matrix of this ~ Matrix D) marks every pair of vertices con-
graph. nected by 2-hop paths in that graph.

Figure 1 shows an example undirected graph containing 6 vertices and its D(*) matrix which is the
same as its adjacency matrix. Figure 2 shows the D) matrix for the graph in Figure 1.

Iter-Reach ( Z, X, Y') {X, Y, Zare nx n matrices, iter-MM ( Z, X, Y) {X, Y, Zare nx n matrices,
where n is a positive integer } where n is a positive integer }

1. fori«1tondo 1. fori<«1tondo

2 for j <« 1tondo 2. for j < 1tondo

3. Z[il[jl1«0 3. Z[i][j]1«0

4 for k <~ 1 tondo 4, for k < 1tondo

5 ZLili1 e« ZLiN 1@ X[ kI® YT kI[)] 5 ZLiNj1« ZIPlJT1+Xilk]-YIKI[J]

Figure 3: Combining an hj-hop matrix X = Figure 4: Multiplying two n x n matrices X and
D) and an hy-hop matrix Y = D"2) to obtain Y and putting the result in another n xn matrix
an (h1 4 hg)-hop matrix Z = D(1+h2), 7

Figure 3 shows an iterative algorithm ITER-REACH that uses bitwise OR (@) and bitwise AND



(®) operators to obtain a new (hy + hy)-hop matrix Z = D"1+h2) by combining an hi-hop matrix
X = D) and an hy-hop matrix Y = D(h2),

Observe that ITER-REACH can be obtained from the standard iterative matrix multiplication al-
gorithm ITER-MM shown in Figure 4 simply by replacing the standard addition (4) and multipli-
cation (x) operators with the bitwise OR (&) and bitwise AND (®) operators, respectively. Both
algorithms run in © (n3) time.

Now answer the following questions.

2(a) [ 8 Points ] Argue that you cannot obtain a © (nlog? 7) time algorithm for computing D(h1+52)
from D) and D"2) by simply replacing the + and x operators with @ and ® operators,
respectively, in Strassen’s matrix multiplication algorithm given in the Appendix.



2(b) [ 10 Points ] Give an © (n°%27) time algorithm for correctly computing D(hith2) from (k)
and D"2) based on Strassen’s matrix multiplication algorithm.



2(c) [ 7 Points ] For any positive integer n, explain how you will compute D™ in © (n1°g2 "log n)
time.



Use this page if you need additional space for your answers.
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QUESTION 3. [ 25 Points | Recurrences with Triangular Numbers. The k-th triangular
number sk is defined as follows: Ak =1+ 2+ ... + k, where £ is a natural number. The first few
triangular numbers (al, A2, a3, a4, A5 and a6) are shown in Figure 5 below.
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Figure 5: The first 6 triangular numbers.

3(a) [ 10 Points | The time 7'(n) needed to query a widely used data structure of size n can be
described by the following recurrence relation involving triangular numbers:

T ©(1) if n <6,
(n) = 22:2 ﬁT (%) + %T(n) +© (1) otherwise.

Solve the recurrence for finding an asymptotic tight bound for T'(n).
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3(b) [ 15 Points | The expected running time 7'(n) of a randomized algorithm on an input of size
n can be described by the following recurrence relation involving triangular numbers A2 = 3,
A3 =6 and A4 = 10:

O (n if n < 1024,
T(n):{ (n) <

%ngT(n%> + %n%T<n%> + Tl()n%T(n%) + 2T(n) + © (nloglogn)  otherwise.

Solve the recurrence for finding an asymptotic tight bound for T'(n).
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Use this page if you need additional space for your answers.
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Use this page if you need additional space for your answers.
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APPENDIX: RECURRENCES

Master Theorem. Let a > 1 and b > 1 be constants, let f(n) be a function, and let T'(n) be
defined on the nonnegative integers by the recurrence

(e, ifn <1,
T(n) = { aT (%) + f(n), otherwise,

where, % is interpreted to mean either | %] or [#]. Then T'(n) has the following bounds:

Case 1: If f(n) = O (n'°% %) for some constant € > 0, then T'(n) = © (n'°8 7).

Case 2: If f(n) = © (nlo& @ log” n) for some constant k > 0, then T'(n) = © (n'°8»¢ loght! n).

f=n

Case 3: If f(n) = Q(n'°% %) for some constant € > 0, and af (%) < cf(n) for some
constant ¢ < 1 and all sufficiently large n, then T'(n) = © (f(n)).

Akra-Bazzi Recurrences. Consider the following recurrence:

T(:L’):{@(l)’ if 1 <z <,

2?21 a;T (biz) + g(x), otherwise,
where,

k > 1 is an integer constant,

a; > 01is a constant for 1 <i <k,

b; € (0,1) is a constant for 1 < i <k,
x > 1 is a real number,

o is a constant and > max{%, ﬁ} for 1 <i <k, and

A

g(z) is a nonnegative function that satisfies a polynomial growth condition (e.g., g(z) =
2% log” x satisfies the polynomial growth condition for any constants a, 8 € R).

Let p be the unique real number for which Zle a;b? = 1. Then

T(x) = © (:cp <1 + /135 zﬁﬂdu>> .
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APPENDIX: COMPUTING PRODUCTS

Integer Multiplication. Karatsuba’s algorithm can multiply two n-bit integers in © (nlog? 3) =
(@) (n1'6) time (improving over the standard © (n2) time algorithm).

Matrix Multiplication. Strassen’s algorithm can multiply two n X n matrices in © (nlog? 7) =
O (n*8!) time (improving over the standard © (n?) time algorithm).

Polynomial Multiplication. One can multiply two n-degree polynomials in © (nlogn) time using
the FFT (Fast Fourier Transform) algorithm (improving over the standard © (n?) time algorithm).

APPENDIX: STRASSEN’S MATRIX MULTIPLICATION ALGORITHM

ZI1 Z‘IZ X11 x11 Y11 Y12 X11Y11+X12 Y21 X11Y12+X12Y22
- % ]
23 Z; X3 X3z Y21 Y2 Xy Y+ X2 Yoy | Xgq Yo+ Xpa Yo

Sums:
X1 = X171 + X12 Vii=V1+Y
Xy =Xo1 + Xy Yo=Y + Y,
X1 = X110 — X1 You =VYi1 — Yoy =
Xeg = Xq2 — Xp2 Yoo =Y — Yo
Xa1 = X11 + X2 Yo =Y11+ Y

Products:
Py =Xq1 Y Poy =Xe1 Y Running Time:
Py =X50- Y Py =Xep Yo
Pry = Xpq - Yo Pa1 = Xg1 - Yau
Py e(1), ifn=1,

r2 — Ar2 11 T(n) — n

Sums: 7T (5) +©(n?), otherwise.
Z11=—Pq — Py + Py + P
Z13 = +P + P11 = ®(nlog2 7)
Zy1 = +Py — Py _ O(nz'm)
Zyy = —Pry+ Py + Py — Py
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