Midterm Exam
 (2:30 PM - 3:45 PM : 75 Minutes)

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.
- There are three (3) questions, worth 75 points in total. Please answer all of them in the spaces provided.
- There are 16 pages including four (4) blank pages and two (2) pages of appendices. Please use the blank pages if you need additional space for your answers.
- The exam is open slides and open notes. But no books and no computers.

Good Luck!

Question	Pages	Score	Maximum
1. A Broken ATM	$2-4$		25
2. Hops	$6-9$		25
3. Recurrences with Triangular Numbers	$11-12$		25
Total			75

Name: \qquad

Question 1. [25 Points] A Broken ATM. This question is about an ATM (Automated Teller Machine) that can store dollar bills of exactly n different integral values, but when a customer tries to withdraw cash the machine fails unless it can output the amount using exactly k bills, where both n and k are positive integers. We assume that the value of the largest bill the machine stores is not more than $c n$ for some constant $c \geq 1$. We also assume that before each transaction the machine will have at least k bills of each of the n different dollar values it stores (i.e., it will be refilled as soon as the number of bills of any value drops below k).
Now the question is: with any given n and k as above, how many distinct cash amount the ATM can successfully deliver?

1(a) [5 Points] Show that for any given k you can output all distinct withdrawal amounts the ATM can successfully deliver in $\mathcal{O}\left(n^{2} k^{2}\right)$ time. For example, if the ATM stores only $\$ 5, \$ 10$, $\$ 20$ and $\$ 50$ bills and $k=2$, then it can fulfill the following 10 distinct withdrawal amounts:

1. $\$ 10$
$(=\$ 5+\$ 5)$
2. $\$ 15$
$(=\$ 5+\$ 10)$
3. $\$ 20$
$(=\$ 10+\$ 10)$
4. $\$ 25$
$(=\$ 5+\$ 20)$
5. $\$ 30$
$(=\$ 10+\$ 20)$
6. $\begin{aligned} & \$ 40 \\ & (=\$ 20+\$ 20)\end{aligned}$
7. $\begin{aligned} & \$ 55 \\ & (=\$ 5+\$ 50)\end{aligned}$
8. $\begin{aligned} & \$ 60 \\ & (=\$ 10+\$ 50)\end{aligned}$
9. $\begin{aligned} & \$ 70 \\ & (=\$ 20+\$ 50)\end{aligned}$
10. $\$ 100$
$(=\$ 50+\$ 50)$

1(b) [10 Points] Explain how you will output all distinct withdrawal amounts in $\mathcal{O}\left(n^{1+\epsilon}\right)$ time when $k=2$, where ϵ is any given positive constant which can be arbitrarily close to zero.

1(c) [10 Points] Explain how you will extend your algorithm from part $1(b)$ to output all distinct withdrawal amounts in $\mathcal{O}\left(n k\left(n^{\epsilon}+k^{\epsilon}\right)\right)$ time for any given k, where ϵ is a given constant as in part $1(b)$.

Use this page if you need additional space for your answers.

Question 2. [25 Points] Hops. Suppose G is an undirected graph that has n vertices. Each vertex of G is identified by a unique integer in $[1, n]$. We say that two vertices u and v of G are adjacent provided they are connected by an edge. All edges of G are recorded in an $n \times n$ adjacency matrix A, where $A[u][v]$ is set to 1 provided vertices u and v are connected by an edge (i.e., provided edge (u, v) exists in G), otherwise $A[u][v]$ is set to 0 . Since G is undirected $A[u][v]=A[v][u]$ always holds. We say that vertices u and v are connected by an h-hop path provided v can be reached from u following a path containing exactly h edges and vice versa. An $n \times n$ matrix $D^{(h)}$ which we call an h-hop matrix, records each pair of vertices that are connected by h-hop paths. Entry $D^{(h)}[u][v]$ is set to 1 provided u and v are connected by an h-hop path, and 0 otherwise. Again $D^{(h)}[u][v]=D^{(h)}[v][u]$ for all $u, v \in[1, n]$. Clearly, $D^{(1)}=A$.

Figure 1: An undirected graph whose edges (i.e., 1-hop paths) are captured by the matrix $D^{(1)}$ which is also the adjacency matrix of this graph.

Figure 2: The solid edges show the vertices connected by 2 -hop paths in the graph on the left. Matrix $D^{(2)}$ marks every pair of vertices connected by 2 -hop paths in that graph.

Figure 1 shows an example undirected graph containing 6 vertices and its $D^{(1)}$ matrix which is the same as its adjacency matrix. Figure 2 shows the $D^{(2)}$ matrix for the graph in Figure 1.

```
Iter-Reach (Z, X, Y)
    for i}<<1\mathrm{ to n do
    for j}\leftarrow1\mathrm{ to n do
        Z[i][j]}\leftarrow
        for k\leftarrow1 to n do
        Z[i][j]\leftarrowZ[i][j]\oplusX[i][k]\otimesY[k][j]
```


Figure 4: Multiplying two $n \times n$ matrices X and Y and putting the result in another $n \times n$ matrix Z.

Figure 3 shows an iterative algorithm ItER-REACH that uses bitwise OR (\oplus) and bitwise AND
(\otimes) operators to obtain a new $\left(h_{1}+h_{2}\right)$-hop matrix $Z=D^{\left(h_{1}+h_{2}\right)}$ by combining an h_{1}-hop matrix $X=D^{\left(h_{1}\right)}$ and an h_{2}-hop matrix $Y=D^{\left(h_{2}\right)}$.
Observe that Iter-Reach can be obtained from the standard iterative matrix multiplication algorithm Iter-MM shown in Figure 4 simply by replacing the standard addition (+) and multiplication (\times) operators with the bitwise OR (\oplus) and bitwise AND (\otimes) operators, respectively. Both algorithms run in $\Theta\left(n^{3}\right)$ time.
Now answer the following questions.

2(a) [8 Points] Argue that you cannot obtain a $\Theta\left(n^{\log _{2} 7}\right)$ time algorithm for computing $D^{\left(h_{1}+h_{2}\right)}$ from $D^{\left(h_{1}\right)}$ and $D^{\left(h_{2}\right)}$ by simply replacing the + and \times operators with \oplus and \otimes operators, respectively, in Strassen's matrix multiplication algorithm given in the Appendix.

2(b) [10 Points] Give an $\Theta\left(n^{\log _{2} 7}\right)$ time algorithm for correctly computing $D^{\left(h_{1}+h_{2}\right)}$ from $D^{\left(h_{1}\right)}$ and $D^{\left(h_{2}\right)}$ based on Strassen's matrix multiplication algorithm.

2(c) [7 Points] For any positive integer n, explain how you will compute $D^{(n)}$ in $\Theta\left(n^{\log _{2} 7} \log n\right)$ time.

Use this page if you need additional space for your answers.

Question 3. [25 Points] Recurrences with Triangular Numbers. The k-th triangular number Δk is defined as follows: $\Delta k=1+2+\ldots+k$, where k is a natural number. The first few triangular numbers $(\Delta 1, \Delta 2, \Delta 3, \Delta 4, \Delta 5$ and $\Delta 6$) are shown in Figure 5 below.

Figure 5: The first 6 triangular numbers.

3(a) [10 Points] The time $T(n)$ needed to query a widely used data structure of size n can be described by the following recurrence relation involving triangular numbers:

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1) & \text { if } n \leq 6 \\
\sum_{k=2}^{5} \frac{1}{\Delta k} T\left(\frac{k n}{k+1}\right)+\frac{1}{3} T(n)+\Theta(1) & \text { otherwise }
\end{array}\right.
$$

Solve the recurrence for finding an asymptotic tight bound for $T(n)$.

3(b) [15 Points] The expected running time $T(n)$ of a randomized algorithm on an input of size n can be described by the following recurrence relation involving triangular numbers $\Delta 2=3$, $\Delta 3=6$ and $\Delta 4=10$:
$T(n)=\left\{\begin{array}{lr}\Theta(n) & \text { if } n \leq 1024, \\ \frac{1}{3} n^{\frac{2}{3}} T\left(n^{\frac{1}{3}}\right)+\frac{1}{6} n^{\frac{5}{6}} T\left(n^{\frac{1}{6}}\right)+\frac{1}{10} n^{\frac{9}{10}} T\left(n^{\frac{1}{10}}\right)+\frac{2}{5} T(n)+\Theta(n \log \log n) & \text { otherwise. }\end{array}\right.$
Solve the recurrence for finding an asymptotic tight bound for $T(n)$.

Use this page if you need additional space for your answers.

Use this page if you need additional space for your answers.

Appendix: Recurrences

Master Theorem. Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$
T(n)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } n \leq 1, \\
a T\left(\frac{n}{b}\right)+f(n), & \text { otherwise },
\end{array}\right.
$$

where, $\frac{n}{b}$ is interpreted to mean either $\left\lfloor\frac{n}{b}\right\rfloor$ or $\left\lceil\frac{n}{b}\right\rceil$. Then $T(n)$ has the following bounds:
Case 1: If $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
Case 2: If $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ for some constant $k \geq 0$, then $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$.
Case 3: If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

Akra-Bazzi Recurrences. Consider the following recurrence:

$$
T(x)=\left\{\begin{array}{lr}
\Theta(1), & \text { if } 1 \leq x \leq x_{0}, \\
\sum_{i=1}^{k} a_{i} T\left(b_{i} x\right)+g(x), & \text { otherwise }
\end{array}\right.
$$

where,

1. $k \geq 1$ is an integer constant,
2. $a_{i}>0$ is a constant for $1 \leq i \leq k$,
3. $b_{i} \in(0,1)$ is a constant for $1 \leq i \leq k$,
4. $x \geq 1$ is a real number,
5. x_{0} is a constant and $\geq \max \left\{\frac{1}{b_{i}}, \frac{1}{1-b_{i}}\right\}$ for $1 \leq i \leq k$, and
6. $g(x)$ is a nonnegative function that satisfies a polynomial growth condition (e.g., $g(x)=$ $x^{\alpha} \log ^{\beta} x$ satisfies the polynomial growth condition for any constants $\left.\alpha, \beta \in \Re\right)$.

Let p be the unique real number for which $\sum_{i=1}^{k} a_{i} b_{i}^{p}=1$. Then

$$
T(x)=\Theta\left(x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right)\right) .
$$

Appendix: Computing Products

Integer Multiplication. Karatsuba's algorithm can multiply two n-bit integers in $\Theta\left(n^{\log _{2} 3}\right)=$ $\mathcal{O}\left(n^{1.6}\right)$ time (improving over the standard $\Theta\left(n^{2}\right)$ time algorithm).

Matrix Multiplication. Strassen's algorithm can multiply two $n \times n$ matrices in $\Theta\left(n^{\log _{2} 7}\right)=$ $\mathcal{O}\left(n^{2.81}\right)$ time (improving over the standard $\Theta\left(n^{3}\right)$ time algorithm).

Polynomial Multiplication. One can multiply two n-degree polynomials in $\Theta(n \log n)$ time using the FFT (Fast Fourier Transform) algorithm (improving over the standard $\Theta\left(n^{2}\right)$ time algorithm).

Appendix: Strassen's Matrix Multiplication Algorithm

Sums:

$$
\begin{array}{ll}
X_{r 1}=X_{11}+X_{12} & Y_{r 1}=Y_{11}+Y_{12} \\
X_{r 2}=X_{21}+X_{22} & Y_{r 2}=Y_{21}+Y_{22} \\
X_{c 1}=X_{11}-X_{21} & Y_{c 1}=Y_{11}-Y_{21} \\
X_{c 2}=X_{12}-X_{22} & Y_{c 2}=Y_{12}-Y_{22} \\
X_{d 1}=X_{11}+X_{22} & Y_{d 1}=Y_{11}+Y_{22}
\end{array}
$$

Products:

$$
\begin{array}{ll}
P_{11}=X_{11} \cdot Y_{c 2} & P_{c 1}=X_{c 1} \cdot Y_{r 1} \\
P_{22}=X_{22} \cdot Y_{c 1} & P_{c 2}=X_{c 2} \cdot Y_{r 2} \\
P_{r 1}=X_{r 1} \cdot Y_{22} & P_{d 1}=X_{d 1} \cdot Y_{d 1} \\
P_{r 2}=X_{r 2} \cdot Y_{11} &
\end{array}
$$

Sums:

$$
\begin{aligned}
& Z_{11}=-P_{r 1}-P_{22}+P_{d 1}+P_{c 2} \\
& Z_{12}=+P_{r 1}+P_{11} \\
& Z_{21}=+P_{r 2}-P_{22} \\
& Z_{22}=-P_{r 2}+P_{11}+P_{d 1}-P_{c 1}
\end{aligned}
$$

Running Time:

$$
\begin{aligned}
T(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1, \\
7 T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right), & \text { otherwise } .
\end{array}\right. \\
& =\Theta\left(n^{\log _{2} 7}\right) \\
& =\mathrm{O}\left(n^{2.81}\right)
\end{aligned}
$$

