
CSE548, AMS542: Analysis of Algorithms, Spring 2019 Date: March 13, 2019

Midterm Exam
(2:30 PM – 3:45 PM : 75 Minutes)

• This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 30% of your grade, and the lower one 15%.

• There are three (3) questions, worth 75 points in total. Please answer all of them in the
spaces provided.

• There are 16 pages including four (4) blank pages and two (2) pages of appendices. Please
use the blank pages if you need additional space for your answers.

• The exam is open slides and open notes. But no books and no computers.

Good Luck!

Question Pages Score Maximum

1. A Broken ATM 2–4 25

2. Hops 6–9 25

3. Recurrences with Triangular Numbers 11–12 25

Total 75

Name:

1

Question 1. [25 Points] A Broken ATM. This question is about an ATM (Automated Teller
Machine) that can store dollar bills of exactly n different integral values, but when a customer tries
to withdraw cash the machine fails unless it can output the amount using exactly k bills, where
both n and k are positive integers. We assume that the value of the largest bill the machine stores
is not more than cn for some constant c ≥ 1. We also assume that before each transaction the
machine will have at least k bills of each of the n different dollar values it stores (i.e., it will be
refilled as soon as the number of bills of any value drops below k).

Now the question is: with any given n and k as above, how many distinct cash amount the ATM
can successfully deliver?

1(a) [5 Points] Show that for any given k you can output all distinct withdrawal amounts the
ATM can successfully deliver in O

(
n2k2

)
time. For example, if the ATM stores only $5, $10,

$20 and $50 bills and k = 2, then it can fulfill the following 10 distinct withdrawal amounts:

1. $10 2. $15 3. $20 4. $25 5. $30
(= $5 + $5) (= $5 + $10) (= $10 + $10) (= $5 + $20) (= $10 + $20)

6. $40 7. $55 8. $60 9. $70 10. $100
(= $20 + $20) (= $5 + $50) (= $10 + $50) (= $20 + $50) (= $50 + $50)

2

1(b) [10 Points] Explain how you will output all distinct withdrawal amounts in O
(
n1+ε

)
time

when k = 2, where ε is any given positive constant which can be arbitrarily close to zero.

3

1(c) [10 Points] Explain how you will extend your algorithm from part 1(b) to output all distinct
withdrawal amounts in O (nk(nε + kε)) time for any given k, where ε is a given constant as
in part 1(b).

4

Use this page if you need additional space for your answers.

5

Question 2. [25 Points] Hops. Suppose G is an undirected graph that has n vertices. Each
vertex of G is identified by a unique integer in [1, n]. We say that two vertices u and v of G are
adjacent provided they are connected by an edge. All edges of G are recorded in an n×n adjacency
matrix A, where A[u][v] is set to 1 provided vertices u and v are connected by an edge (i.e., provided
edge (u, v) exists in G), otherwise A[u][v] is set to 0. Since G is undirected A[u][v] = A[v][u] always
holds. We say that vertices u and v are connected by an h-hop path provided v can be reached
from u following a path containing exactly h edges and vice versa. An n × n matrix D(h) which
we call an h-hop matrix, records each pair of vertices that are connected by h-hop paths. Entry
D(h)[u][v] is set to 1 provided u and v are connected by an h-hop path, and 0 otherwise. Again
D(h)[u][v] = D(h)[v][u] for all u, v ∈ [1, n]. Clearly, D(1) = A.

Figure 1: An undirected graph whose edges
(i.e., 1-hop paths) are captured by the matrix
D(1) which is also the adjacency matrix of this
graph.

Figure 2: The solid edges show the vertices con-
nected by 2-hop paths in the graph on the left.
Matrix D(2) marks every pair of vertices con-
nected by 2-hop paths in that graph.

Figure 1 shows an example undirected graph containing 6 vertices and its D(1) matrix which is the
same as its adjacency matrix. Figure 2 shows the D(2) matrix for the graph in Figure 1.

Figure 3: Combining an h1-hop matrix X =
D(h1) and an h2-hop matrix Y = D(h2) to obtain
an (h1 + h2)-hop matrix Z = D(h1+h2).

Figure 4: Multiplying two n×n matrices X and
Y and putting the result in another n×n matrix
Z.

Figure 3 shows an iterative algorithm Iter-Reach that uses bitwise OR (⊕) and bitwise AND

6

(⊗) operators to obtain a new (h1 + h2)-hop matrix Z = D(h1+h2) by combining an h1-hop matrix
X = D(h1) and an h2-hop matrix Y = D(h2).

Observe that Iter-Reach can be obtained from the standard iterative matrix multiplication al-
gorithm Iter-MM shown in Figure 4 simply by replacing the standard addition (+) and multipli-
cation (×) operators with the bitwise OR (⊕) and bitwise AND (⊗) operators, respectively. Both
algorithms run in Θ

(
n3
)

time.

Now answer the following questions.

2(a) [8 Points] Argue that you cannot obtain a Θ
(
nlog2 7

)
time algorithm for computing D(h1+h2)

from D(h1) and D(h2) by simply replacing the + and × operators with ⊕ and ⊗ operators,
respectively, in Strassen’s matrix multiplication algorithm given in the Appendix.

7

2(b) [10 Points] Give an Θ
(
nlog2 7

)
time algorithm for correctly computing D(h1+h2) from D(h1)

and D(h2) based on Strassen’s matrix multiplication algorithm.

8

2(c) [7 Points] For any positive integer n, explain how you will compute D(n) in Θ
(
nlog2 7 log n

)
time.

9

Use this page if you need additional space for your answers.

10

Question 3. [25 Points] Recurrences with Triangular Numbers. The k-th triangular
number k is defined as follows: k = 1 + 2 + . . . + k, where k is a natural number. The first few
triangular numbers (1, 2, 3, 4, 5 and 6) are shown in Figure 5 below.

Figure 5: The first 6 triangular numbers.

3(a) [10 Points] The time T (n) needed to query a widely used data structure of size n can be
described by the following recurrence relation involving triangular numbers:

T (n) =

{
Θ (1) if n ≤ 6,∑5

k=2
1
kT
(
kn
k+1

)
+ 1

3T (n) + Θ (1) otherwise.

Solve the recurrence for finding an asymptotic tight bound for T (n).

11

3(b) [15 Points] The expected running time T (n) of a randomized algorithm on an input of size
n can be described by the following recurrence relation involving triangular numbers 2 = 3,
3 = 6 and 4 = 10:

T (n) =

{
Θ (n) if n ≤ 1024,
1
3n

2
3T
(
n

1
3

)
+ 1

6n
5
6T
(
n

1
6

)
+ 1

10n
9
10T
(
n

1
10

)
+ 2

5T (n) + Θ (n log logn) otherwise.

Solve the recurrence for finding an asymptotic tight bound for T (n).

12

Use this page if you need additional space for your answers.

13

Use this page if you need additional space for your answers.

14

Appendix: Recurrences

Master Theorem. Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T (n) be
defined on the nonnegative integers by the recurrence

T (n) =

{
Θ (1) , if n ≤ 1,
aT
(
n
b

)
+ f(n), otherwise,

where, n
b is interpreted to mean either

⌊
n
b

⌋
or
⌈
n
b

⌉
. Then T (n) has the following bounds:

Case 1: If f(n) = O
(
nlogb a−ε

)
for some constant ε > 0, then T (n) = Θ

(
nlogb a

)
.

Case 2: If f(n) = Θ
(
nlogb a logk n

)
for some constant k ≥ 0, then T (n) = Θ

(
nlogb a logk+1 n

)
.

Case 3: If f(n) = Ω
(
nlogb a+ε

)
for some constant ε > 0, and af

(
n
b

)
≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T (n) = Θ (f(n)).

Akra-Bazzi Recurrences. Consider the following recurrence:

T (x) =

{
Θ (1) , if 1 ≤ x ≤ x0,∑k

i=1 aiT (bix) + g(x), otherwise,

where,

1. k ≥ 1 is an integer constant,

2. ai > 0 is a constant for 1 ≤ i ≤ k,

3. bi ∈ (0, 1) is a constant for 1 ≤ i ≤ k,

4. x ≥ 1 is a real number,

5. x0 is a constant and ≥ max
{

1
bi
, 1
1−bi

}
for 1 ≤ i ≤ k, and

6. g(x) is a nonnegative function that satisfies a polynomial growth condition (e.g., g(x) =
xα logβ x satisfies the polynomial growth condition for any constants α, β ∈ <).

Let p be the unique real number for which
∑k

i=1 aib
p
i = 1. Then

T (x) = Θ

(
xp
(

1 +

∫ x

1

g(u)

up+1
du

))
.

15

Appendix: Computing Products

Integer Multiplication. Karatsuba’s algorithm can multiply two n-bit integers in Θ
(
nlog2 3

)
=

O
(
n1.6

)
time (improving over the standard Θ

(
n2
)

time algorithm).

Matrix Multiplication. Strassen’s algorithm can multiply two n × n matrices in Θ
(
nlog2 7

)
=

O
(
n2.81

)
time (improving over the standard Θ

(
n3
)

time algorithm).

Polynomial Multiplication. One can multiply two n-degree polynomials in Θ (n log n) time using
the FFT (Fast Fourier Transform) algorithm (improving over the standard Θ

(
n2
)

time algorithm).

Appendix: Strassen's Matrix Multiplication Algorithm

16

