# Midterm Exam ( 2:30 PM – 3:45 PM : 75 Minutes )

- This exam will account for either 15% or 30% of your overall grade depending on your relative performance in the midterm and the final. The higher of the two scores (midterm and final) will be worth 30% of your grade, and the lower one 15%.
- There are three (3) questions, worth 75 points in total. Please answer all of them in the spaces provided.
- There are 16 pages including four (4) blank pages and two (2) pages of appendices. Please use the blank pages if you need additional space for your answers.
- The exam is open slides and open notes. But no books and no computers.

### GOOD LUCK!

| Question                               | Pages | Score | Maximum |
|----------------------------------------|-------|-------|---------|
| 1. A Broken ATM                        | 2-4   |       | 25      |
| 2. Hops                                | 6–9   |       | 25      |
| 3. Recurrences with Triangular Numbers | 11-12 |       | 25      |
| Total                                  |       |       | 75      |

NAME:

**QUESTION 1.** [25 Points] A Broken ATM. This question is about an ATM (Automated Teller Machine) that can store dollar bills of exactly n different integral values, but when a customer tries to withdraw cash the machine fails unless it can output the amount using exactly k bills, where both n and k are positive integers. We assume that the value of the largest bill the machine stores is not more than cn for some constant  $c \ge 1$ . We also assume that before each transaction the machine will have at least k bills of each of the n different dollar values it stores (i.e., it will be refilled as soon as the number of bills of any value drops below k).

Now the question is: with any given n and k as above, how many distinct cash amount the ATM can successfully deliver?

1(a) [ **5** Points ] Show that for any given k you can output all distinct withdrawal amounts the ATM can successfully deliver in  $\mathcal{O}(n^2k^2)$  time. For example, if the ATM stores only \$5, \$10, \$20 and \$50 bills and k = 2, then it can fulfill the following 10 distinct withdrawal amounts:

| <b>1.</b> \$10  | <b>2.</b> \$15 | <b>3. \$20</b>  | <b>4. \$25</b>  | <b>5. \$30</b>   |
|-----------------|----------------|-----------------|-----------------|------------------|
| (= \$5 + \$5)   | (= \$5 + \$10) | (= \$10 + \$10) | (= \$5 + \$20)  | (= \$10 + \$20)  |
| <b>6. \$40</b>  | <b>7.</b> \$55 | <b>8. \$60</b>  | <b>9. \$70</b>  | <b>10.</b> \$100 |
| (= \$20 + \$20) | (= \$5 + \$50) | (= \$10 + \$50) | (= \$20 + \$50) | (= \$50 + \$50)  |

1(b) [ **10 Points** ] Explain how you will output all distinct withdrawal amounts in  $\mathcal{O}(n^{1+\epsilon})$  time when k = 2, where  $\epsilon$  is any given positive constant which can be arbitrarily close to zero.

1(c) [ **10 Points** ] Explain how you will extend your algorithm from part 1(b) to output all distinct withdrawal amounts in  $\mathcal{O}(nk(n^{\epsilon} + k^{\epsilon}))$  time for any given k, where  $\epsilon$  is a given constant as in part 1(b).

QUESTION 2. [25 Points] Hops. Suppose G is an undirected graph that has n vertices. Each vertex of G is identified by a unique integer in [1, n]. We say that two vertices u and v of G are adjacent provided they are connected by an edge. All edges of G are recorded in an  $n \times n$  adjacency matrix A, where A[u][v] is set to 1 provided vertices u and v are connected by an edge (i.e., provided edge (u, v) exists in G), otherwise A[u][v] is set to 0. Since G is undirected A[u][v] = A[v][u] always holds. We say that vertices u and v are connected by an h-hop path provided v can be reached from u following a path containing exactly h edges and vice versa. An  $n \times n$  matrix  $D^{(h)}$  which we call an h-hop matrix, records each pair of vertices that are connected by h-hop paths. Entry  $D^{(h)}[u][v]$  is set to 1 provided u and v are connected by an h-hop path, and 0 otherwise. Again  $D^{(h)}[u][v] = D^{(h)}[v][u]$  for all  $u, v \in [1, n]$ . Clearly,  $D^{(1)} = A$ .



Figure 1: An undirected graph whose edges (i.e., 1-hop paths) are captured by the matrix  $D^{(1)}$  which is also the adjacency matrix of this graph.

Figure 2: The solid edges show the vertices connected by 2-hop paths in the graph on the left. Matrix  $D^{(2)}$  marks every pair of vertices connected by 2-hop paths in that graph.

Figure 1 shows an example undirected graph containing 6 vertices and its  $D^{(1)}$  matrix which is the same as its adjacency matrix. Figure 2 shows the  $D^{(2)}$  matrix for the graph in Figure 1.

| lter-F      | Reach(Z, X, Y)                        | { X, Y, Z are n × n matrices,<br>where n is a positive integer } |
|-------------|---------------------------------------|------------------------------------------------------------------|
| 1. <i>f</i> | for $i \leftarrow 1$ to $n$ do        |                                                                  |
| 2.          | for $j \leftarrow 1$ to n do          |                                                                  |
| 3.          | <i>Z</i> [ <i>i</i> ][ <i>j</i> ] ← 0 |                                                                  |
| 4.          | for $k \leftarrow 1$ to n             | do                                                               |
| 5.          | Z[ i ][ j ] ←                         | - Z[ i ][ j ] ⊕ X[ i ][ k ] ⊗ Y[ k ][ j ]                        |
| 5.          | Z[ i ][ j ] ←                         | - Z[ i ][ j ] ⊕ X[ i ][ k ] ⊗ Y[ k ][ j ]                        |

Figure 3: Combining an  $h_1$ -hop matrix  $X = D^{(h_1)}$  and an  $h_2$ -hop matrix  $Y = D^{(h_2)}$  to obtain an  $(h_1 + h_2)$ -hop matrix  $Z = D^{(h_1+h_2)}$ .

| lter-N      | ИМ ( Z, X, Y )                        | { X, Y, Z are n × n matrices,<br>where n is a positive integer } |
|-------------|---------------------------------------|------------------------------------------------------------------|
| 1. <i>f</i> | for $i \leftarrow 1$ to n do          |                                                                  |
| 2.          | for $j \leftarrow 1$ to n do          |                                                                  |
| 3.          | <i>Z</i> [ <i>i</i> ][ <i>j</i> ] ← 0 |                                                                  |
| 4.          | for $k \leftarrow 1$ to n d           | 0                                                                |
| 5.          | Z[ i ][ j ] ← 2                       | Z[ i ][ j ] + X[ i ][ k ] · Y[ k ][ j ]                          |
|             |                                       |                                                                  |

Figure 4: Multiplying two  $n \times n$  matrices X and Y and putting the result in another  $n \times n$  matrix Z.

Figure 3 shows an iterative algorithm ITER-REACH that uses bitwise OR  $(\oplus)$  and bitwise AND

( $\otimes$ ) operators to obtain a new  $(h_1 + h_2)$ -hop matrix  $Z = D^{(h_1+h_2)}$  by combining an  $h_1$ -hop matrix  $X = D^{(h_1)}$  and an  $h_2$ -hop matrix  $Y = D^{(h_2)}$ .

Observe that ITER-REACH can be obtained from the standard iterative matrix multiplication algorithm ITER-MM shown in Figure 4 simply by replacing the standard addition (+) and multiplication (×) operators with the bitwise OR ( $\oplus$ ) and bitwise AND ( $\otimes$ ) operators, respectively. Both algorithms run in  $\Theta(n^3)$  time.

Now answer the following questions.

2(a) [8 Points] Argue that you cannot obtain a  $\Theta(n^{\log_2 7})$  time algorithm for computing  $D^{(h_1+h_2)}$  from  $D^{(h_1)}$  and  $D^{(h_2)}$  by simply replacing the + and × operators with  $\oplus$  and  $\otimes$  operators, respectively, in Strassen's matrix multiplication algorithm given in the Appendix.

2(b) [ **10 Points** ] Give an  $\Theta(n^{\log_2 7})$  time algorithm for correctly computing  $D^{(h_1+h_2)}$  from  $D^{(h_1)}$  and  $D^{(h_2)}$  based on Strassen's matrix multiplication algorithm.

2(c) [**7 Points**] For any positive integer n, explain how you will compute  $D^{(n)}$  in  $\Theta(n^{\log_2 7} \log n)$  time.

**QUESTION 3.** [ **25** Points ] Recurrences with Triangular Numbers. The *k*-th triangular number  $\Delta k$  is defined as follows:  $\Delta k = 1 + 2 + ... + k$ , where *k* is a natural number. The first few triangular numbers ( $\Delta 1$ ,  $\Delta 2$ ,  $\Delta 3$ ,  $\Delta 4$ ,  $\Delta 5$  and  $\Delta 6$ ) are shown in Figure 5 below.



Figure 5: The first 6 triangular numbers.

3(a) [ **10 Points** ] The time T(n) needed to query a widely used data structure of size n can be described by the following recurrence relation involving triangular numbers:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le 6, \\ \sum_{k=2}^{5} \frac{1}{\Delta k} T\left(\frac{kn}{k+1}\right) + \frac{1}{3} T(n) + \Theta(1) & \text{otherwise.} \end{cases}$$

Solve the recurrence for finding an asymptotic tight bound for T(n).

3(b) [ 15 Points ] The expected running time T(n) of a randomized algorithm on an input of size n can be described by the following recurrence relation involving triangular numbers  $\Delta 2 = 3$ ,  $\Delta 3 = 6$  and  $\Delta 4 = 10$ :

$$T(n) = \begin{cases} \Theta(n) & \text{if } n \le 1024, \\ \frac{1}{3}n^{\frac{2}{3}}T\left(n^{\frac{1}{3}}\right) + \frac{1}{6}n^{\frac{5}{6}}T\left(n^{\frac{1}{6}}\right) + \frac{1}{10}n^{\frac{9}{10}}T\left(n^{\frac{1}{10}}\right) + \frac{2}{5}T(n) + \Theta\left(n\log\log n\right) & \text{otherwise.} \end{cases}$$

Solve the recurrence for finding an asymptotic tight bound for T(n).

## **APPENDIX:** RECURRENCES

**Master Theorem.** Let  $a \ge 1$  and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \le 1, \\ aT\left(\frac{n}{b}\right) + f(n), & \text{otherwise,} \end{cases}$$

where,  $\frac{n}{b}$  is interpreted to mean either  $\lfloor \frac{n}{b} \rfloor$  or  $\lfloor \frac{n}{b} \rfloor$ . Then T(n) has the following bounds:

**Case 1:** If  $f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$  for some constant  $\epsilon > 0$ , then  $T(n) = \Theta(n^{\log_b a})$ . **Case 2:** If  $f(n) = \Theta(n^{\log_b a} \log^k n)$  for some constant  $k \ge 0$ , then  $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ . **Case 3:** If  $f(n) = \Omega(n^{\log_b a + \epsilon})$  for some constant  $\epsilon > 0$ , and  $af(\frac{n}{b}) \le cf(n)$  for some constant c < 1 and all sufficiently large n, then  $T(n) = \Theta(f(n))$ .

Akra-Bazzi Recurrences. Consider the following recurrence:

$$T(x) = \begin{cases} \Theta(1), & \text{if } 1 \le x \le x_0, \\ \sum_{i=1}^k a_i T(b_i x) + g(x), & \text{otherwise,} \end{cases}$$

where,

- 1.  $k \ge 1$  is an integer constant,
- 2.  $a_i > 0$  is a constant for  $1 \le i \le k$ ,
- 3.  $b_i \in (0, 1)$  is a constant for  $1 \le i \le k$ ,
- 4.  $x \ge 1$  is a real number,
- 5.  $x_0$  is a constant and  $\geq \max\left\{\frac{1}{b_i}, \frac{1}{1-b_i}\right\}$  for  $1 \le i \le k$ , and
- 6. g(x) is a nonnegative function that satisfies a polynomial growth condition (e.g.,  $g(x) = x^{\alpha} \log^{\beta} x$  satisfies the polynomial growth condition for any constants  $\alpha, \beta \in \Re$ ).

Let p be the unique real number for which  $\sum_{i=1}^{k} a_i b_i^p = 1$ . Then

$$T(x) = \Theta\left(x^p\left(1 + \int_1^x \frac{g(u)}{u^{p+1}}du\right)\right).$$

#### **APPENDIX: COMPUTING PRODUCTS**

**Integer Multiplication.** Karatsuba's algorithm can multiply two *n*-bit integers in  $\Theta(n^{\log_2 3}) = \mathcal{O}(n^{1.6})$  time (improving over the standard  $\Theta(n^2)$  time algorithm).

Matrix Multiplication. Strassen's algorithm can multiply two  $n \times n$  matrices in  $\Theta(n^{\log_2 7}) = \mathcal{O}(n^{2.81})$  time (improving over the standard  $\Theta(n^3)$  time algorithm).

**Polynomial Multiplication.** One can multiply two *n*-degree polynomials in  $\Theta(n \log n)$  time using the FFT (Fast Fourier Transform) algorithm (improving over the standard  $\Theta(n^2)$  time algorithm).

#### **APPENDIX: STRASSEN'S MATRIX MULTIPLICATION ALGORITHM**

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                     | X <sub>12</sub><br>X <sub>22</sub> X Y <sub>11</sub><br>Y <sub>21</sub>           |                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sums:<br>$X_{r1} = X_{11} + X_{12}$ $X_{r2} = X_{21} + X_{22}$ $X_{c1} = X_{11} - X_{21}$ $X_{c2} = X_{12} - X_{22}$ $X_{d1} = X_{11} + X_{22}$ Products:                                                                                                                  | $Y_{r2} = Y_{21} + Y_{22}$ $Y_{c1} = Y_{11} - Y_{21}$ $Y_{c2} = Y_{12} - Y_{22}$  | $= \frac{\begin{array}{c} -P_{r1} \\ +P_{d1} \\ +P_{c2} \end{array}}{\begin{array}{c} +P_{r2} \\ +P_{r2} \end{array}} + \frac{P_{r2} \\ -P_{r2} \\ +P_{d1} \end{array}} + \frac{P_{r2} \\ +P_{d1} \\ -P_{c1} \end{array}$ |
| $P_{11} = X_{11} \cdot Y_{c2}$ $P_{22} = X_{22} \cdot Y_{c1}$ $P_{r1} = X_{r1} \cdot Y_{22}$ $P_{r2} = X_{r2} \cdot Y_{11}$ <b>Sums:</b> $Z_{11} = -P_{r1} - P_{22} - Z_{12}$ $Z_{12} = +P_{r1} + P_{11}$ $Z_{21} = +P_{r2} - P_{22}$ $Z_{22} = -P_{r2} + P_{11} - P_{11}$ | $P_{c2} = X_{c2} \cdot Y_{r2}$ $P_{d1} = X_{d1} \cdot Y_{d1}$ $+ P_{d1} + P_{c2}$ | <u>Running Time</u> :<br>$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 7T\left(\frac{n}{2}\right) + \Theta(n^2), & \text{otherwise.} \end{cases}$ $= \Theta(n^{\log_2 7})$ $= O(n^{2.81})$                      |