CSE548, AMS542: Analysis of Algorithms, Spring 2019

Date: March 13, 2019

Midterm Exam
(2:30 PM — 3:45 PM : 75 Minutes)

e This exam will account for either 15% or 30% of your overall grade depending on your relative
performance in the midterm and the final. The higher of the two scores (midterm and final)
will be worth 30% of your grade, and the lower one 15%.

e There are three (3) questions, worth 75 points in total. Please answer all of them in the

spaces provided.

e There are 16 pages including four (4) blank pages and two (2) pages of appendices. Please
use the blank pages if you need additional space for your answers.

e The exam is open slides and open notes. But no books and no computers.

Goobp Luck!

Question Pages | Score | Maximum
1. A Broken ATM 2-4 25
2. Hops 6-9 25
3. Recurrences with Triangular Numbers | 11-12 25
Total 75
NAME:

QUESTION 1. [25 Points | A Broken ATM. This question is about an ATM (Automated Teller
Machine) that can store dollar bills of exactly n different integral values, but when a customer tries
to withdraw cash the machine fails unless it can output the amount using exactly k bills, where
both n and k are positive integers. We assume that the value of the largest bill the machine stores
is not more than cn for some constant ¢ > 1. We also assume that before each transaction the
machine will have at least k bills of each of the n different dollar values it stores (i.e., it will be
refilled as soon as the number of bills of any value drops below k).

Now the question is: with any given n and k as above, how many distinct cash amount the ATM
can successfully deliver?

1(a) [5 Points | Show that for any given k you can output all distinct withdrawal amounts the
ATM can successfully deliver in O (n2k2) time. For example, if the ATM stores only $5, $10,
$20 and $50 bills and k = 2, then it can fulfill the following 10 distinct withdrawal amounts:

1. $10 2. 815 3. $20 4. $25 5. $30

(=$5+ $5) (= $5+ $10) (= $10 + $10) (= $5+ $20) (= $10 + $20)
6. $40 7. $55 8. $60 9. $70 10. $100

(= $20 + $20) (= $5+ $50) (= $10 + $50) (= $20 + $50) (= $50 + $50)

1(b) [10 Points] Explain how you will output all distinct withdrawal amounts in O (n!*€) time
when k& = 2, where € is any given positive constant which can be arbitrarily close to zero.

1(c) [10 Points | Explain how you will extend your algorithm from part 1(b) to output all distinct
withdrawal amounts in O (nk(n€+ k¢)) time for any given k, where € is a given constant as
in part 1(b).

Use this page if you need additional space for your answers.

QUESTION 2. [25 Points | Hops. Suppose G is an undirected graph that has n vertices. Each
vertex of G is identified by a unique integer in [1,n]. We say that two vertices u and v of G are
adjacent provided they are connected by an edge. All edges of G are recorded in an n x n adjacency
matrix A, where Afu][v] is set to 1 provided vertices v and v are connected by an edge (i.e., provided
edge (u,v) exists in G), otherwise A[u|[v] is set to 0. Since G is undirected Afu][v] = A[v][u] always
holds. We say that vertices u and v are connected by an h-hop path provided v can be reached
from wu following a path containing exactly h edges and vice versa. An n x n matrix D" which
we call an h-hop matrix, records each pair of vertices that are connected by h-hop paths. Entry
DWW [y][v] is set to 1 provided u and v are connected by an h-hop path, and 0 otherwise. Again
DM [y][v] = DM [v][u] for all u,v € [1,n]. Clearly, DV = A.

D =

D@ =

corooco
OR RO OR
m o OoR Rk O
coor oo
coroooO
oRrROOCO
—oomoo
o oo RO
o oo OoRr
coroOR
coorRr o

0
0
1
0
0
0

Figure 1: An undirected graph whose edges Figure 2: The solid edges show the vertices con-
(i.e., 1-hop paths) are captured by the matrix = nected by 2-hop paths in the graph on the left.
D which is also the adjacency matrix of this ~ Matrix D) marks every pair of vertices con-
graph. nected by 2-hop paths in that graph.

Figure 1 shows an example undirected graph containing 6 vertices and its D(*) matrix which is the
same as its adjacency matrix. Figure 2 shows the D) matrix for the graph in Figure 1.

Iter-Reach (Z, X, Y') {X, Y, Zare nx n matrices, iter-MM (Z, X, Y) {X, Y, Zare nx n matrices,
where n is a positive integer } where n is a positive integer }

1. fori«1tondo 1. fori<«1tondo

2 for j <« 1tondo 2. for j < 1tondo

3. Z[il[jl1«0 3. Z[i][j]1«0

4 for k <~ 1 tondo 4, for k < 1tondo

5 ZLili1 e« ZLiN 1@ X[kI® YT kI[)] 5 ZLiNj1« ZIPlJT1+Xilk]-YIKI[J]

Figure 3: Combining an hj-hop matrix X = Figure 4: Multiplying two n x n matrices X and
D) and an hy-hop matrix Y = D"2) to obtain Y and putting the result in another n xn matrix
an (h1 4 hg)-hop matrix Z = D(1+h2), 7

Figure 3 shows an iterative algorithm ITER-REACH that uses bitwise OR (@) and bitwise AND

(®) operators to obtain a new (hy + hy)-hop matrix Z = D"1+h2) by combining an hi-hop matrix
X = D) and an hy-hop matrix Y = D(h2),

Observe that ITER-REACH can be obtained from the standard iterative matrix multiplication al-
gorithm ITER-MM shown in Figure 4 simply by replacing the standard addition (4) and multipli-
cation (x) operators with the bitwise OR (&) and bitwise AND (®) operators, respectively. Both
algorithms run in © (n3) time.

Now answer the following questions.

2(a) [8 Points] Argue that you cannot obtain a © (nlog? 7) time algorithm for computing D(h1+52)
from D) and D"2) by simply replacing the + and x operators with @ and ® operators,
respectively, in Strassen’s matrix multiplication algorithm given in the Appendix.

2(b) [10 Points] Give an © (n°%27) time algorithm for correctly computing D(hith2) from (k)
and D"2) based on Strassen’s matrix multiplication algorithm.

2(c) [7 Points] For any positive integer n, explain how you will compute D™ in © (n1°g2 "log n)
time.

Use this page if you need additional space for your answers.

10

QUESTION 3. [25 Points | Recurrences with Triangular Numbers. The k-th triangular
number sk is defined as follows: Ak =1+ 2+ ... + k, where £ is a natural number. The first few
triangular numbers (al, A2, a3, a4, A5 and a6) are shown in Figure 5 below.

13 L]
10 [] L B
& L] - & - & B8
= - LI] L I B L N B B
i L] - & L I] - & 88 - 8 F ¥
[] - & - & B8 " & & 8 - & & & B - & & 8 & B

Figure 5: The first 6 triangular numbers.

3(a) [10 Points | The time 7'(n) needed to query a widely used data structure of size n can be
described by the following recurrence relation involving triangular numbers:

T ©(1) if n <6,
(n) = 22:2 ﬁT (%) + %T(n) +© (1) otherwise.

Solve the recurrence for finding an asymptotic tight bound for T'(n).

11

3(b) [15 Points | The expected running time 7'(n) of a randomized algorithm on an input of size
n can be described by the following recurrence relation involving triangular numbers A2 = 3,
A3 =6 and A4 = 10:

O (n if n < 1024,
T(n):{ (n) <

%ngT(n%> + %n%T<n%> + Tl()n%T(n%) + 2T(n) + © (nloglogn) otherwise.

Solve the recurrence for finding an asymptotic tight bound for T'(n).

12

Use this page if you need additional space for your answers.

13

Use this page if you need additional space for your answers.

14

APPENDIX: RECURRENCES

Master Theorem. Let a > 1 and b > 1 be constants, let f(n) be a function, and let T'(n) be
defined on the nonnegative integers by the recurrence

(e, ifn <1,
T(n) = { aT (%) + f(n), otherwise,

where, % is interpreted to mean either | %] or [#]. Then T'(n) has the following bounds:

Case 1: If f(n) = O (n'°% %) for some constant € > 0, then T'(n) = © (n'°8 7).

Case 2: If f(n) = © (nlo& @ log” n) for some constant k > 0, then T'(n) = © (n'°8»¢ loght! n).

f=n

Case 3: If f(n) = Q(n'°% %) for some constant € > 0, and af (%) < cf(n) for some
constant ¢ < 1 and all sufficiently large n, then T'(n) = © (f(n)).

Akra-Bazzi Recurrences. Consider the following recurrence:

T(:L’):{@(l)’ if 1 <z <,

2?21 a;T (biz) + g(x), otherwise,
where,

k > 1 is an integer constant,

a; > 01is a constant for 1 <i <k,

b; € (0,1) is a constant for 1 < i <k,
x > 1 is a real number,

o is a constant and > max{%, ﬁ} for 1 <i <k, and

A

g(z) is a nonnegative function that satisfies a polynomial growth condition (e.g., g(z) =
2% log” x satisfies the polynomial growth condition for any constants a, 8 € R).

Let p be the unique real number for which Zle a;b? = 1. Then

T(x) = © (:cp <1 + /135 zﬁﬂdu>> .

15

APPENDIX: COMPUTING PRODUCTS

Integer Multiplication. Karatsuba’s algorithm can multiply two n-bit integers in © (nlog? 3) =
(@) (n1'6) time (improving over the standard © (n2) time algorithm).

Matrix Multiplication. Strassen’s algorithm can multiply two n X n matrices in © (nlog? 7) =
O (n*8!) time (improving over the standard © (n?) time algorithm).

Polynomial Multiplication. One can multiply two n-degree polynomials in © (nlogn) time using
the FFT (Fast Fourier Transform) algorithm (improving over the standard © (n?) time algorithm).

APPENDIX: STRASSEN’S MATRIX MULTIPLICATION ALGORITHM

ZI1 Z‘IZ X11 x11 Y11 Y12 X11Y11+X12 Y21 X11Y12+X12Y22
- %]
23 Z; X3 X3z Y21 Y2 Xy Y+ X2 Yoy | Xgq Yo+ Xpa Yo

Sums:
X1 = X171 + X12 Vii=V1+Y
Xy =Xo1 + Xy Yo=Y + Y,
X1 = X110 — X1 You =VYi1 — Yoy =
Xeg = Xq2 — Xp2 Yoo =Y — Yo
Xa1 = X11 + X2 Yo =Y11+ Y

Products:
Py =Xq1 Y Poy =Xe1 Y Running Time:
Py =X50- Y Py =Xep Yo
Pry = Xpq - Yo Pa1 = Xg1 - Yau
Py e(1), ifn=1,

r2 — Ar2 11 T(n) — n

Sums: 7T (5) +©(n?), otherwise.
Z11=—Pq — Py + Py + P
Z13 = +P + P11 = ®(nlog2 7)
Zy1 = +Py — Py _ O(nz'm)
Zyy = —Pry+ Py + Py — Py

16

