CSE 613: Parallel Programming

Lecture 11
 (Parallel Maximal Independent Set)

Rezaul A. Chowdhury
Department of Computer Science
SUNY Stony Brook
Spring 2019

Independent Sets

Let $G=(V, E)$ be an undirected graph.
Independent Set: A subset $I \subseteq V$ is said to be independent provided for each $v \in I$ none of its neighbors in G belongs to I.

Maximal Independent Set: An independent set of G is maximal if it is not properly contained in any other independent set in G.

Maximum Independent Set: A maximal independent set of the largest size.

Finding a maximum independent set is NP -hard. But finding a maximal independent set is trivial in the sequential setting.

Maximal Independent Sets (red vertices) of the Cube Graph Source: Wikipedia

Finding a Maximal Independent Set Sequentially

Input: V is the set of vertices, and E is the set of edges. For each $v \in V$, we denote by $\Gamma(v)$ the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

```
Serial-Greedy-MIS (V, E)
    1. MIS }\leftarrow
    2. forv}v1\mathrm{ to }|V| d
    3. if MIS \cap\Gamma(v)=\phi then MIS \leftarrowMIS\cup{v}
    4. return MIS
```

This algorithm can be easily implemented to run in $\Theta(n+m)$ time, where n is the number of vertices and m is the number of edges in the input graph.

The output of this algorithm is called the Lexicographically First MIS (LFMIS).

Finding a Maximal Independent Set Sequentially

Input: V is the set of vertices, and E is the set of edges. For each $v \in V$, we denote by $\Gamma(v)$ the set of neighboring vertices of v.

Output: A maximal independent set MIS of the input graph.

```
Serial-Greedy-MIS-2 (V, E )
    1. MIS }\leftarrow
    2. while |V| > 0 do
    3. pick an arbitrary vertex v\inV
    4. MIS}\leftarrowM/S\cup{v
    5. }R\leftarrow{v}\cup\Gamma(v
    6. }V\leftarrowV\
    7. }E\leftarrowE\{(\mp@subsup{v}{1}{},\mp@subsup{v}{2}{})|\mp@subsup{v}{1}{}\inR\mathrm{ or }\mp@subsup{v}{2}{}\inR
    8. return MIS
```

Always choosing the vertex with the smallest id in the current graph will produce exactly the same MIS as in Serial-Greedy-MIS.

Finding a Maximal Independent Set Sequentially

Input: V is the set of vertices, and E is the set of edges. For each $S \subseteq V$, we denote by $\Gamma(S)$ the set of neighboring vertices of S.

Output: A maximal independent set MIS of the input graph.

```
Serial-Greedy-MIS-3(V, E )
    1. MIS }\leftarrow
    2. while |V| > 0 do
    3. find an independent set S\subseteqV
    4. MIS}\leftarrowMIS\cup
    5. }R\leftarrowS\cup\Gamma(S
    6. }V\leftarrowV\
    7. }E\leftarrowE\{(\mp@subsup{v}{1}{},\mp@subsup{v}{2}{})|\mp@subsup{v}{1}{}\inR\mathrm{ or }\mp@subsup{v}{2}{}\inR
    8. return MIS
```


Parallelizing Serial-Greedy-MIS-3

- Number of iterations can be kept small by finding in each iteration an S with large $S \cup \Gamma(S)$. But this is difficult to do.
- Instead in each iteration we choose an S such that a large fraction of current edges are incident on $S \cup \Gamma(S)$.

Serial-Greedy-MIS-3 (V, E)

1. MIS $\leftarrow \phi$
2. while $|V|>0$ do
3. find an independent set $S \subseteq V$
4. $M I S \leftarrow M I S \cup S$
5. $R \leftarrow S \cup \Gamma(S)$
6. $\quad V \leftarrow V \backslash R$
7. $E \leftarrow E \backslash\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in R\right.$ or $\left.v_{2} \in R\right\}$
8. return MIS

- To select S we start with a random $S^{\prime} \subseteq V$.
- By choosing lower degree vertices with higher probability we are likely to have very few edges with both end-points in S^{\prime}.
- We check each edge with both end-points in S^{\prime}, and drop the endpoint with lower degree from S^{\prime}. Our intention is to keep $\Gamma\left(S^{\prime}\right)$ as large as we can.
- After removing all edges as above we are left with an independent set. This is our S.
- We will prove that if we remove $S \cup \Gamma(S)$ from the current graph a large fraction of current edges will also get removed.

Randomized Maximal Independent Set (MIS)

Input: n is the number of vertices, and for each vertex $u \in[1, n], V[u]$ is set to u. E is the set of edges sorted in non-decreasing order of the first vertex. For every edge (u, v) both (u, v) and (v, u) are included in E. Output: For all $u \in[1, n]$, MIS[u] is set to 1 if vertex u is in the MIS.
8. if $d[u]=0$ then $M[u] \leftarrow 1$
9. else $M[u] \leftarrow 1$ (with probability $1 /(2 d[u])$)
10. parallel for each $(u, v) \in E$ do
in

$$
\text { if } M[u]=1 \text { and } M[v]=1 \text { then }
$$

if $d[u] \leq d[v]$ then $M[u] \leftarrow 0$ else $M[v] \leftarrow 0$
13. parallel for $u \leftarrow 1$ to $|V|$ do
14.
if $M[u]=1$ then MIS[$V[u]] \leftarrow 1$ $(V, E) \leftarrow$ Par-Compress (V, E, M)
for each u find the edge with the largest index i such that $E[i] . u \leq u$, and store that i in $c[u$]
mark lower-degree vertices with higher probability

Removing Marked Vertices and Their Neighbors

Input: Arrays V and E, and bit array $M[1:|V|]$. Each entry of E is of the form (u, v), where $1 \leq u, v \leq|V|$. If for some $u, M[u]=1$, then u and all v such that $(u, v) \in E$ must be removed from V along with all edges (u, v) from E. Output: Updated V and E.

Removing Marked Vertices and Their Neighbors

```
Par-Compress ( V, E, M )
    1. \(\operatorname{array} S_{V}[1:|V|]=\{1\}, S_{\prime}^{\prime}[1:|V|]\),
        \(S_{E}[1:|E|]=\{1\}, S_{E}^{\prime}[1:|E|]\)
2. parallel for \(u \leftarrow 1\) to \(|V|\) do
3. if \(M[u]=1\) then \(S_{V}[u] \leftarrow 0\)
4. parallel for \(i \leftarrow 1\) to \(|E|\) do
5. \(u \leftarrow E[i] . u, v \leftarrow E[i] . v\)
6. if \(M[u]=1\) or \(M[v]=1\) then
        \(S_{V}[u] \leftarrow 0, S_{V}[v] \leftarrow 0, S_{E}[i] \leftarrow 0\)
7. \(S_{v}^{\prime} \leftarrow\) Par-Prefix-Sum \(\left(S_{v},+\right)\),
    \(S_{E}^{\prime} \leftarrow \operatorname{Par-Prefix-Sum~}\left(S_{E},+\right)\)
8. \(\operatorname{array} U\left[1: S_{V}^{\prime}[|V|]\right], F\left[1: S_{E}^{\prime}[|E|]\right]\)
9. parallel for \(u \leftarrow \mathbf{1}\) to \(|V|\) do
10. if \(S_{V}[u]=1\) then \(U\left[S^{\prime}[[u]] \leftarrow V[u]\right.\)
11. parallel for \(i \leftarrow 1\) to \(|E|\) do
12. if \(S_{E}[i]=1\) then \(F\left[S_{E}^{\prime}[i]\right] \leftarrow E[i]\)
13. parallel for \(i \leftarrow 1\) to \(|F|\) do
14. \(u \leftarrow F[i] \cdot u, v \leftarrow F[i] . v\)
15. \(F[i] \cdot u \leftarrow S^{\prime}{ }_{v}[u], F[i] \cdot v \leftarrow S^{\prime}{ }_{v}[v]\)
16. return \((U, F)\)
```

The prefix sums in line 7 perform $\Theta(|V|+|E|)$ work and have $\Theta\left(\log ^{2}|V|+\log ^{2}|E|\right)$ depth. The rest of the algorithm also perform $\Theta(|V|+|E|)$ work but in $\Theta(\log |V|+\log |E|)$ depth. Hence,

Work: $\Theta(|V|+|E|)$
Span: $\Theta\left(\log ^{2}|V|+\log ^{2}|E|\right)$

Randomized Maximal Independent Set (MIS)

Par-Randomized-MIS ($n, V, E, M I S$)

1. while $|V|>0$ do
2. $\operatorname{array} d[1:|V|], c[1:|V|]=\{0\}$,

$$
M[1:|V|]=\{0\}
$$

3. parallel for $i \leftarrow 1$ to $|E|$ do
4. if $i=|E|$ then $k \leftarrow n$ else $k \leftarrow E[i+1] . u-1$
5. parallel for $j \leftarrow E[i]$.u to $k d o c[j] \leftarrow i$
6. parallel for $u \leftarrow 1$ to $|V|$ do
7. if $u=1$ then $d[u] \leftarrow c[u]$
else $d[u] \leftarrow c[u]-c[u-1]$
8. if $d[u]=0$ then $M[u] \leftarrow 1$
9. else $M[u] \leftarrow 1$ (with prob $1 /(2 d[u])$)
10. parallel for each $(u, v) \in E$ do
11. if $M[u]=1$ and $M[v]=1$ then
12. if $d[u] \leq d[v]$ then $M[u] \leftarrow 0$ else $M[v] \leftarrow 0$
13. parallel for $u \leftarrow 1$ to $|V|$ do
14. if $M[u]=1$ then $\operatorname{MIS}[V[u]] \leftarrow 1$
15. $(V, E) \leftarrow$ Par-Compress (V, E, M)

Let $n=$ \#vertices, and $m=$ \#edges initially.
Let us assume for the time being that at least a constant fraction of the edges are removed in each iteration of the while loop (we will prove this shortly). Let this fraction be $f(<1)$.

This implies that the while loop iterates $\Theta\left(\log _{1 /(1-f)} m\right)=\Theta(\log m)$ times. (how?)

Each iteration performs $\Theta(|V|+|E|)$ work and has $\Theta\left(\log ^{2}|V|+\log ^{2}|E|\right)$ depth. Hence,

Work: $T_{1}(n, m)=\Theta\left((n+m) \sum_{i=0}^{k}(1-f)^{i}\right)$

$$
=\Theta(n+m)
$$

Span: $T_{\infty}(n, m)=\Theta\left(\left(\log ^{2} n+\log ^{2} m\right) \log m\right)$

$$
=\Theta\left(\log ^{3} n\right)
$$

Parallelism: $\frac{T_{1}(n, m)}{T_{\infty}(n, m)}=\Theta\left(\frac{n+m}{\log ^{3} n}\right)$

Analysis of Randomized MIS

Let, $d(v)$ be the degree of vertex v, and $\Gamma(v)$ be its set of neighbors.
Good Vertex: A vertex v is good provided $|L(v)| \geq \frac{d(v)}{3}$, where, $L(v)=\{u \mid(u \in \Gamma(v)) \wedge(d(u) \leq d(v))\}$.

Bad Vertex: A vertex is bad if it is not good.

Good Edge: An edge (u, v) is good if at least one of u and v is good.

Bad Edge: An edge (u, v) is bad if both u and v are bad.

Analysis of Randomized MIS

Lemma 1: In some iteration of the while loop, let v be a good vertex with $d(v)>0$, and let M be the set of vertices that got marked (in lines 8-9). Then

$$
\operatorname{Pr}\{\Gamma(v) \cap M \neq \emptyset\} \geq 1-e^{-1 / 6}
$$

Proof: We have, $\operatorname{Pr}\{\Gamma(v) \cap M \neq \emptyset\}=1-\operatorname{Pr}\{\Gamma(v) \cap M=\emptyset\}$

$$
\begin{aligned}
& =1-\prod_{u \in \Gamma(v)} \operatorname{Pr}\{u \notin M\} \geq 1-\prod_{u \in L(v)} \operatorname{Pr}\{u \notin M\} \\
& =1-\prod_{u \in L(v)}\left(1-\frac{1}{2 d(u)}\right) \geq 1-\prod_{u \in L(v)}\left(1-\frac{1}{2 d(v)}\right) \\
& =1-\left(1-\frac{1}{2 d(v)}\right)^{|L(v)|} \geq 1-\left(1-\frac{1}{2 d(v)}\right)^{d(v) / 3} \\
& \geq 1-e^{-\frac{d(v) / 3}{2 d(v)}}=1-e^{-\frac{1}{6}}
\end{aligned}
$$

Analysis of Randomized MIS

Lemma 2: In any iteration of the while loop, let M be the set of vertices that got marked (in lines 8-9), and let S be the set of vertices that got included in the MIS (in line 14). Then

$$
\operatorname{Pr}\{v \in S \mid v \in M\} \geq \frac{1}{2}
$$

Proof: We have, $\operatorname{Pr}\{v \in S \mid v \in M\}$

$$
\begin{aligned}
& \geq 1-\operatorname{Pr}\{\exists u \in \Gamma(v) \text { s.t. }(d(u) \geq d(v)) \wedge(u \in M)\} \\
& \geq 1-\sum_{\substack{u \in \Gamma(v) \\
d(u) \geq d(v)}} \frac{1}{2 d(u)} \geq 1-\sum_{\substack{u \in \Gamma(v) \\
d(u) \geq d(v)}} \frac{1}{2 d(v)} \\
& \geq 1-\sum_{u \in \Gamma(v)} \frac{1}{2 d(v)}=1-d(v) \times \frac{1}{2 d(v)}=\frac{1}{2}
\end{aligned}
$$

Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let V_{G} be the set of good vertices, and let S be the vertex set that got included in the MIS. Then

$$
\operatorname{Pr}\left\{v \in S \cup \Gamma(S) \mid v \in V_{G}\right\} \geq \frac{1}{2}\left(1-e^{-1 / 6}\right)
$$

Proof: We have, $\operatorname{Pr}\left\{v \in S \cup \Gamma(S) \mid v \in V_{G}\right\}$

$$
\begin{aligned}
& \geq \operatorname{Pr}\left\{v \in \Gamma(S) \mid v \in V_{G}\right\}=\operatorname{Pr}\left\{\Gamma(v) \cap S \neq \phi \mid v \in V_{G}\right\} \\
& =\operatorname{Pr}\left\{\Gamma(v) \cap S \neq \phi \mid \Gamma(v) \cap M \neq \phi, v \in V_{G}\right\} \\
& \quad \times \operatorname{Pr}\left\{\Gamma(v) \cap M \neq \phi \mid v \in V_{G}\right\} \\
& \geq \operatorname{Pr}\left\{u \in S \mid u \in \Gamma(v) \cap M, v \in V_{G}\right\} \\
& \quad \times \operatorname{Pr}\left\{\Gamma(v) \cap M \neq \phi \mid v \in V_{G}\right\} \\
& \geq \frac{1}{2}\left(1-e^{-1 / 6}\right)
\end{aligned}
$$

Analysis of Randomized MIS

Lemma 3: In any iteration of the while loop, let V_{G} be the set of good vertices, and let S be the vertex set that got included in the MIS. Then

$$
\operatorname{Pr}\left\{v \in S \cup \Gamma(S) \mid v \in V_{G}\right\} \geq \frac{1}{2}\left(1-e^{-1 / 6}\right) .
$$

Corollary 1: In any iteration of the while loop, a good vertex gets removed (in line 15) with probability at least $\frac{1}{2}\left(1-e^{-1 / 6}\right)$.

Corollary 2: In any iteration of the while loop, a good edge gets removed (in line 15) with probability at least $\frac{1}{2}\left(1-e^{-1 / 6}\right)$.

Analysis of Randomized MIS

Lemma 4: In any iteration of the while loop, let E and E_{G} be the sets of all edges and good edges, respectively. Then $\left|\mathrm{E}_{\mathrm{G}}\right| \geq|E| / 2$. Proof: For each edge $(u, v) \in E$, direct (u, v) from u to v if $d(u) \leq$ $d(v)$, and v to u otherwise.

For every vertex v in the resulting digraph let $d_{i}(v)$ and $d_{o}(v)$ denote its in-degree and out-degree, respectively.

Let V_{G} and V_{B} be the set of good and bad vertices, respectively.
Then for each $v \in V_{B}, d_{o}(v)-d_{i}(v) \geq \frac{d(v)}{3}$.
Let $m_{B B}, m_{B G}, m_{G B}$ and $m_{G G}$ be the \#edges directed from V_{B} to V_{B}, from V_{B} to V_{G}, from V_{G} to V_{B}, and from V_{G} to V_{G}, respectively.

Analysis of Randomized MIS

Lemma 4: In any iteration of the while loop, let E and E_{G} be the sets of all edges and good edges, respectively. Then $\left|E_{G}\right| \geq|E| / 2$.
Proof (continued): We have,

$$
\begin{aligned}
& 2 m_{B B}+m_{B G}+m_{G B} \\
& =\sum_{v \in V_{B}} d(v) \leq 3 \sum_{v \in V_{B}}\left(d_{o}(v)-d_{i}(v)\right)=3 \sum_{v \in V_{G}}\left(d_{i}(v)-d_{o}(v)\right) \\
& =3\left(\left(m_{B G}+m_{G G}\right)-\left(m_{G B}+m_{G G}\right)\right)=3\left(m_{B G}-m_{G B}\right) \\
& \leq 3\left(m_{B G}+m_{G B}\right)
\end{aligned}
$$

Thus $2 m_{B B}+m_{B G}+m_{G B} \leq 3\left(m_{B G}+m_{G B}\right)$

$$
\begin{aligned}
& \Rightarrow m_{B B} \leq m_{B G}+m_{G B} \Rightarrow m_{B B} \leq m_{B G}+m_{G B}+m_{G G} \\
& \Rightarrow\left(m_{B G}+m_{G B}+m_{G G}\right)+m_{B B} \leq 2\left(m_{B G}+m_{G B}+m_{G G}\right) \\
& \Rightarrow|E| \leq 2\left|E_{G}\right|
\end{aligned}
$$

Analysis of Randomized MIS

Lemma 5: In any iteration of the while loop, let E be the set of all edges. Then the expected number of edges removed (in line 15) during this iteration is at least $\frac{1}{4}\left(1-e^{-1 / 6}\right)|E|$.

Proof: Follows from Lemma 4 and Corollary 2.

