
CSE 613: Parallel Programming

Lecture 4

(Greedy Scheduling)
(inspiration for some slides comes from lectures given

by Charles Leiserson)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2019

Scheduler

A runtime/online scheduler

maps tasks to processing

elements dynamically at

runtime.

The map is called a schedule.

An offline scheduler prepares

the schedule prior to the

actual execution of the

program.

Greedy Scheduling

A strand / task is called

ready provided all its parents

(if any) have already been

executed.

A greedy scheduler tries to

perform as much work as

possible at every step.

executed task

ready to be executed

not yet ready

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

11

A Centralized Greedy Scheduler

Let p = number of cores

At every step:

― if p tasks are ready:

execute any p of them

(complete step)

― if p tasks are ready:

execute all of them

(incomplete step)

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

11

12

Greed Scheduling Theorem

Theorem [Graham’68, Brent’74]:

For any greedy scheduler,

𝑇𝑝
𝑇1
𝑝
+ 𝑇

Proof:

𝑇𝑝= #complete steps

+ #incomplete steps

― Each complete step

performs p work:

#complete steps
𝑇1

𝑝

― Each incomplete step reduces

the span by 1:

#incomplete steps 𝑇

p = 3
1

2

3 3

4 4 4 5

5 5 6 6 6

7 7 7

8 8

9

10

11

12

Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler 𝑇𝑝 ≤ 2𝑇𝑝
∗ , where 𝑇𝑝

∗ is the

running time due to optimal scheduling on p processing elements.

Proof:

Work law: 𝑇𝑝
∗ ≥

𝑇1

𝑝

Span law: 𝑇𝑝
∗ ≥ 𝑇

 From Graham-Brent Theorem:

𝑇𝑝
𝑇1

𝑝
+ 𝑇 ≤ 𝑇𝑝

∗ + 𝑇𝑝
∗ = 2𝑇𝑝

∗

Optimality of the Greedy Scheduler

Corollary 2: Any greedy scheduler achieves 𝑆𝑝 𝑝 (i.e., nearly

linear speedup) provided
𝑇1

𝑇
≫ 𝑝.

Proof:

Given,
𝑇1

𝑇
≫ 𝑝

𝑇1

𝑝
≫ 𝑇

 From Graham-Brent Theorem:

𝑇𝑝
𝑇1
𝑝
+ 𝑇

𝑇1
𝑝

𝑇1

𝑇𝑝
 𝑝 𝑆𝑝 𝑝

