CSE 613: Parallel Programming

Lecture 4 (Greedy Scheduling)

(inspiration for some slides comes from lectures given by Charles Leiserson)

Rezaul A. Chowdhury

Department of Computer Science SUNY Stony Brook Spring 2019

Scheduler

A *runtime/online scheduler* maps tasks to processing elements dynamically at runtime.

The map is called a *schedule*.

An *offline scheduler* prepares the schedule prior to the actual execution of the program.

Greedy Scheduling

A strand / task is called *ready* provided all its parents (if any) have already been executed.

executed task

- ready to be executed
- \bigcirc not yet ready

A *greedy scheduler* tries to perform as much work as possible at every step.

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Let *p* = number of cores

- if ≥ p tasks are ready:
 execute any p of them
 (complete step)
- if
 execute all of them
 (incomplete step)

Greed Scheduling Theorem

Theorem [Graham'68, Brent'74]:

For any greedy scheduler,

 $T_p \leq \frac{T_1}{p} + T_{\infty}$

Proof:

T_p= #complete steps + #incomplete steps

Each complete step
 performs *p* work:

#complete steps $\leq \frac{T_1}{p}$

Each incomplete step reduces
 the span by 1:
 #incomplete steps $\leq T_{\infty}$

Optimality of the Greedy Scheduler

Corollary 1: For any greedy scheduler $T_p \le 2T_p^*$, where T_p^* is the running time due to optimal scheduling on *p* processing elements.

Proof:

Work law:
$$T_p^* \ge \frac{T_1}{p}$$

Span law: $T_p^* \ge T_{\infty}$

.:. From Graham-Brent Theorem:

$$T_p \le \frac{T_1}{p} + T_\infty \le T_p^* + T_p^* = 2T_p^*$$

Optimality of the Greedy Scheduler

Corollary 2: Any greedy scheduler achieves $S_p \approx p$ (i.e., nearly linear speedup) provided $\frac{T_1}{T_{\infty}} \gg p$.

Proof:

Given,
$$rac{T_1}{T_\infty} \gg p \Rightarrow rac{T_1}{p} \gg T_\infty$$

.:. From Graham-Brent Theorem:

$$T_p \leq \frac{T_1}{p} + T_{\infty} \approx \frac{T_1}{p}$$
$$\Rightarrow \frac{T_1}{T_p} \approx p \Rightarrow S_p \approx p$$