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Markov’s Inequality

Theorem 1: Let 𝑋 be a random variable that assumes only 

nonnegative values. Then for all 𝛿 > 0, 

Pr 𝑋 ≥ 𝛿 ≤
𝐸 𝑋

𝛿
.

Proof: For 𝛿 > 0, let

𝐼 = ቊ
1 if 𝑋 ≥ 𝛿;
0 otherwise.

Since 𝑋 ≥ 0,  𝐼 ≤
𝑋

𝛿
.

We also have, 𝐸 𝐼 = Pr 𝐼 = 1 = Pr 𝑋 ≥ 𝛿 .

Then  Pr 𝑋 ≥ 𝛿 = 𝐸 𝐼 ≤ 𝐸
𝑋

𝛿
≤

𝐸 𝑋

𝛿
.



Example: Coin Flipping

Let us bound the probability of obtaining more than 
3𝑛

4
heads in a 

sequence of 𝑛 fair coin flips. 

Let

𝑋𝑖 = ቊ
1 if the 𝑖th coin flip is heads;
0 otherwise.

Then the number of heads in 𝑛 flips, 𝑋 = σ𝑖=1
𝑛 𝑋𝑖.

We know, 𝐸 𝑋𝑖 = Pr 𝑋𝑖 = 1 =
1

2
.

Hence, 𝐸 𝑋 = σ𝑖=1
𝑛 𝐸 𝑋𝑖 =

𝑛

2
.

Then applying Markov’s inequality,

Pr 𝑋 ≥
3𝑛

4
≤

𝐸 𝑋

Τ3𝑛 4
=

Τ𝑛 2

Τ3𝑛 4
=

2

3
.



Chebyshev’s Inequality

Theorem 2: For any 𝛿 > 0, 

Pr 𝑋 − 𝐸 𝑋 ≥ 𝛿 ≤
𝑉𝑎𝑟 𝑋

𝛿2
.

Proof: Observe that Pr 𝑋 − 𝐸 𝑋 ≥ 𝛿 = Pr 𝑋 − 𝐸 𝑋 2 ≥ 𝛿2 . 

Since 𝑋 − 𝐸 𝑋 2 is a nonnegative random variable, we can use 

Markov’s inequality, 

Pr 𝑋 − 𝐸 𝑋 2 ≥ 𝛿2 ≤
𝐸 𝑋−𝐸 𝑋 2

𝛿2
=

𝑉𝑎𝑟 𝑋

𝛿2
.



Example: 𝒏 Fair Coin Flips

𝑋𝑖 = ቊ
1 if the 𝑖th coin flip is heads;
0 otherwise.

Then the number of heads in 𝑛 flips, 𝑋 = σ𝑖=1
𝑛 𝑋𝑖.

We know, 𝐸 𝑋𝑖 = Pr 𝑋𝑖 = 1 =
1

2
and  𝐸 𝑋𝑖

2 = 𝐸 𝑋𝑖 =
1

2
.

Then 𝑉𝑎𝑟 𝑋𝑖 = 𝐸 𝑋𝑖
2 − 𝐸 𝑋𝑖

2 =
1

2
−

1

4
=

1

4
.

Hence, 𝐸 𝑋 = σ𝑖=1
𝑛 𝐸 𝑋𝑖 =

𝑛

2
and  𝑉𝑎𝑟 𝑋 = σ𝑖=1

𝑛 𝑉𝑎𝑟 𝑋𝑖 =
𝑛

4
.

Then applying Chebyshev’s inequality,

Pr 𝑋 ≥
3𝑛

4
≤ Pr 𝑋 − 𝐸 𝑋 ≥

𝑛

4
≤

𝑉𝑎𝑟 𝑋

Τ𝑛 4 2 =
Τ𝑛 4

Τ𝑛 4 2 =
4

𝑛
.



Coin Flipping and Randomized Algorithms

Suppose we have an algorithm that is

− correct ( heads ) only with probability 𝑝 ∈ 0,1 , and

− incorrect ( tails ) with probability 1 − 𝑝.

Question: How many times should we run the algorithm to be 

reasonably confident that it returns at least one correct solution?

− Las Vegas Algorithm: You keep running the algorithm until you get 

a correct solution. What is the bound on running time?

− Monte Carlo Algorithm: You stop after a certain number of 

iterations no matter whether you found a correct solution or not. 

What is the probability that your solution is correct ( or you found 

a solution )?



Coin Flipping and Randomized Algorithms

Suppose we have an algorithm that is

− correct ( heads ) only with probability 𝑝 ∈ 0,1 , and

− incorrect ( tails ) with probability 1 − 𝑝.

Suppose we run the algorithm 𝑘 times. 

Then probability that no run produces a correct solution is 1 − 𝑝 𝑘.

∴ probability of getting at least one correct solution is 1 − 1 − 𝑝 𝑘.

Set 𝑘 = ln 1

1−𝑝

𝑛𝛼

𝑐
, where 𝛼 ≥ 1 and 𝑐 > 0 is a constant.

Then the probability that at least one run produces a correct solution 

is 1 − 1 − 𝑝 𝑘 = 1 −
𝑐

𝑛𝛼
.

An event Π is said to occur with high probability if Pr Π ≥ 1 −
𝑐

𝑛𝛼
.

w.h.p.



Example: A Coloring Problem

Let 𝑆 be a set of 𝑛 items.

For 1 ≤ 𝑙 ≤ 𝑘, let 𝑆𝑙 ⊆ 𝑆 such that for every pair of 𝑖, 𝑗 ∈ [1, 𝑘] with 

𝑖 ≠ 𝑗, 𝑆𝑖 ≠ 𝑆𝑗 but not necessarily 𝑆𝑖 ∩ 𝑆𝑗 = ∅.

For each 𝑙 ∈ 1, 𝑘 , let 𝑆𝑙 = 𝑟, where 𝑘 ≤ 2𝑟−2.

Problem: Color each item of 𝑆 with one of two colors, red and blue, 

such that each 𝑆𝑙 contains at least one red and one blue item.

Algorithm: Take each item of 𝑆 and color it either red or blue

independently at random ( with probability 
1

2
).

Clearly, the algorithm does not always lead to a valid coloring 

( i.e., satisfy the constraints given in our problem statement ).

What is the probability that it produces a valid coloring?



Example: A Coloring Problem
For 1 ≤ 𝑙 ≤ 𝑘, let 𝑅𝑙 and 𝐵𝑙 be the events that all items of 𝑆𝑙 are 

colored red and blue, respectively.

Then Pr 𝑅𝑙 = Pr 𝐵𝑙 =
1

2

𝑟
= 2−𝑟 for every 𝑙 ∈ 1, 𝑘 .

∴ Pr 𝑙=1ڂ
𝑘 𝑅𝑙 = Pr 𝑙=1ڂ

𝑘 𝐵𝑙 = 𝑘2−𝑟 ≤ 2𝑟−22−𝑟 =
1

4
.

Thus Pr 𝑙=1ڂ
𝑘 𝑅𝑙 ∪ 𝐵𝑙 ≤ 2 ×

1

4
=

1

2
.

∴ Pr 𝑙=1ځ
𝑘 ഥ𝑅𝑙 ∩ ഥ𝐵𝑙 =1 − Pr 𝑙=1ڂ

𝑘 𝑅𝑙 ∪ 𝐵𝑙 ≥ 1 −
1

2
=

1

2
.

Hence, the algorithm is correct with probability at least 
1

2
.

To check if the algorithm has produced a correct result we simply 

check the items in each 𝑆𝑙 to verify that neither 𝑅𝑙 nor 𝐵𝑙 holds.

Hence, we can use this simple algorithm to design a Las Vegas 

algorithm for solving the coloring problem!



Example: The Min-Cut Problem

Let 𝐺 = 𝑉, 𝐸 be a connected, undirected multigraph with 𝑉 = 𝑛.

A cut in 𝐺 is a set 𝐶 ⊆ 𝐸, such that 𝐺′ = 𝑉, 𝐸 ∖ 𝐶 is not connected.

A min-cut is a cut of minimum cardinality.

The multigraph on the right has a min-cut

of size 2: 𝑎, 𝑒 , 𝑏, 𝑐 and 𝑐, 𝑑 , 𝑑, 𝑒 .

Most deterministic algorithms for finding min-cuts are based on 

network flows and hence are quite complicated.

Instead in this lecture we will look at a very simple probabilistic 

algorithm that finds min-cuts with some probability 𝑝 > 0.



Example: The Min-Cut Problem

We apply the following contraction step 𝑛 − 2 times on 𝐺 = 𝑉, 𝐸 :

Select an edge ( say, 𝑢, 𝑣 ) from 𝐸 uniformly at random.

Merge 𝑢 and 𝑣 into a single super vertex. 

Remove all edges between 𝑢 and 𝑣 from 𝐸.

If as a result of the contraction there are more than one edges 

between some pairs of super vertices retain them all.

Let the initial graph be 𝐺0 = 𝑉0, 𝐸0 , where 𝑉0 = 𝑉 and 𝐸0 = 𝐸.

Let 𝐺𝑖 = 𝑉𝑖 , 𝐸𝑖 be the multigraph after step 𝑖 ∈ 1, 𝑛 − 2 .

Then clearly, 𝑉𝑖 = 𝑛 − 𝑖 and thus 𝑉𝑛−2 = 2.

We return 𝐸𝑛−2 as our solution.



Example: The Min-Cut Problem

Let us fix our attention on a particular min-cut 𝐶 of 𝐺.

What is the probability that 𝐸𝑛−2 = 𝐶?

Suppose 𝐶 = 𝑘. 

Then each vertex of 𝐺0 = 𝐺 must have degree at least 𝑘 as 

otherwise 𝐺0 can be disconnected by removing fewer than 𝑘 edges. 

Hence, 𝐸 = 𝐸0 ≥ 𝑘 𝑉0 /2 = 𝑘𝑛/2.

Let Π𝑖 be the event of not picking an edge of 𝐶 for contraction in 

step 𝑖 ∈ 1, 𝑛 − 2 .

Then clearly, Pr Π1 = 1 −
𝑘

𝐸0
≥ 1 −

𝑘

𝑘𝑛/2
= 1 −

2

𝑛

Also Pr Π2|Π1 = 1 −
𝑘

𝐸1
≥ 1 −

𝑘

𝑘 𝑛−1 /2
= 1 −

2

𝑛−1

In general, Pr Π𝑖| ∩𝑗=1
𝑖−1 Π𝑗 = 1 −

𝑘

𝐸𝑖−1
≥ 1 −

𝑘

𝑘 𝑛−𝑖+1 /2
= 1 −

2

𝑛−𝑖+1



Example: The Min-Cut Problem

The probability that no edge of 𝐶 was ever picked by the algorithm is:

Pr ∩𝑖=1
𝑛−2 Π𝑖 ≥ ς𝑖=1

𝑛−2 1 −
2

𝑛−𝑖+1
=

2

𝑛 𝑛−1
>

2

𝑛2
.

So Pr 𝐸𝑛−2 = 𝐶 >
2

𝑛2
, and Pr 𝐸𝑛−2 ≠ 𝐶 < 1 −

2

𝑛2
.

Suppose we run the algorithm 𝑛2/2 times, and return the smallest 

cut, say 𝐶′, obtained from those 𝑛2/2 attempts.

Then Pr 𝐶′ ≠ 𝐶 < 1 −
2

𝑛2

𝑛2/2
<

1

𝑒
⇒ Pr 𝐶′ = 𝐶 > 1 −

1

𝑒
.

Hence, the algorithm will return a min-cut with probability > 1 −
1

𝑒
.

But we do not know how to detect if the cut returned by the 

algorithm is, indeed, a min-cut.

Still we can design a Monte-Carlo algorithm based on this simple idea 

to produce a min-cut with high probability!



When Only One Success is Not Enough

In both examples we have looked at so far, we were happy with only 

one success. The analysis was easy.

But sometimes we need the algorithm to be successful for at least or 

at most a certain number of times ( we will see a very familiar such 

example shortly ). 

The number of successful runs required often depends on the size of 

the input. 

How do we analyze those algorithms?



Binomial Distribution

RED: Binomial distribution with 𝑛 = 20 and 𝑝 =
1

2

The binomial distribution is the 

discrete probability distribution 

of the #successes in a sequence 

of 𝑛 independent yes/no 

experiments (i.e., Bernoulli 

trials), each of which succeeds 

with probability 𝑝. 

Probability mass function:

𝑓 𝑘; 𝑛, 𝑝 = Pr 𝑋 = 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘 , 0 ≤ 𝑘 ≤ 𝑛

Cumulative distribution function:

𝐹 𝑘; 𝑛, 𝑝 = Pr 𝑋 ≤ 𝑘 =෍

𝑖=0

𝑘
𝑛
𝑖
𝑝𝑖 1 − 𝑝 𝑛−𝑖 , 0 ≤ 𝑘 ≤ 𝑛

Source
Prof. Nick Harvey 

( UBC )



Approximating with Normal Distribution

RED: Binomial distribution with

𝑛 = 20 and 𝑝 =
1

2

BLUE: Normal distribution with

𝜇 = 𝑛𝑝 = 10

and 𝜎2 = 𝑛𝑝 1 − 𝑝 = 5

Normal distribution with mean 𝜇 and variance 𝜎2 is given by:

𝑓 𝑥; 𝜇, 𝜎2 =
1

𝜎 2𝜋
𝑒
−
1
2
𝑥−𝜇
𝜎

2

, 𝑥 ∈ 

For fixed 𝑝 as 𝑛 increases the binomial distribution with parameters 

𝑛 and 𝑝 is well approximated by a normal distribution with 𝜇 = 𝑛𝑝

and 𝜎2 = 𝑛𝑝 1 − 𝑝 .

Source
Prof. Nick Harvey 

( UBC )



Approximating with Normal Distribution

The probability that a normally distributed random variable lies in 

the interval (∞, 𝑥] is given by:

𝐹 𝑥; 𝜇, 𝜎2 =
1

2
1 + erf

𝑥−𝜇

𝜎 2
, 

where, erf 𝑧 =
2

𝜋
0׬
𝑧
𝑒−𝑡

2
𝑑𝑡.

But erf 𝑧 cannot be expressed

in closed form in terms of

elementary functions, and 

hence difficult to evaluate.

Normal distribution with mean 𝜇 and variance 𝜎2 is given by:

𝑓 𝑥; 𝜇, 𝜎2 =
1

𝜎 2𝜋
𝑒
−
1
2
𝑥−𝜇
𝜎

2

, 𝑥 ∈ 

Source
Prof. Nick Harvey 

( UBC )



Approximating with Poisson Distribution

Poisson distribution with mean 𝜇 > 0 is given by:

𝑓 𝑘; 𝜇 =
𝜇𝑘𝑒−𝜇

𝑘!
, 𝑘 = 0,1,2, …

If 𝑛𝑝 is fixed and 𝑛 increases the binomial distribution with 

parameters 𝑛 and 𝑝 is well approximated by a Poisson distribution 

with 𝜇 = 𝑛𝑝.

RED: Binomial distribution with

𝑛 = 50 and 𝑝 =
4

𝑛

BLUE: Poisson distribution with

𝜇 = 𝑛𝑝 = 200

Observe that the asymmetry in the plot 

cannot be well approximated by a 

symmetric normal distribution.

Source
Prof. Nick Harvey 

( UBC )



Preparing for Chernoff Bounds

Lemma 1: Let 𝑋1, … , 𝑋𝑛 be independent Poisson trials, that is, each 

𝑋𝑖 is a 0-1 random variable with Pr 𝑋𝑖 = 1 = 𝑝𝑖 for some 𝑝𝑖. Let 

𝑋 = σ𝑖=1
𝑛 𝑋𝑖 and 𝜇 = 𝐸 𝑋 . Then for any 𝑡 > 0, 

𝐸 𝑒𝑡𝑋 ≤ 𝑒 𝑒𝑡−1 𝜇.

Proof: 𝐸 𝑒𝑡𝑋𝑖 = 𝑝𝑖𝑒
𝑡×1 + 1 − 𝑝𝑖 𝑒

𝑡×0 = 𝑝𝑖𝑒
𝑡 + 1 − 𝑝𝑖

= 1 + 𝑝𝑖 𝑒
𝑡 − 1

But for any 𝑦, 1 + 𝑦 ≤ 𝑒𝑦. Hence, 𝐸 𝑒𝑡𝑋𝑖 ≤ 𝑒𝑝𝑖 𝑒
𝑡−1 .

Now,  𝐸 𝑒𝑡𝑋 = 𝐸 𝑒𝑡 σ𝑖=1
𝑛 𝑋𝑖 = 𝐸 ς𝑖=1

𝑛 𝑒𝑡𝑋𝑖 = ς𝑖=1
𝑛 𝐸 𝑒𝑡𝑋𝑖

≤ෑ
𝑖=1

𝑛

𝑒𝑝𝑖 𝑒
𝑡−1 = 𝑒 𝑒𝑡−1 σ𝑖=1

𝑛 𝑝𝑖

But, 𝜇 = 𝐸 𝑋 = 𝐸 σ𝑖=1
𝑛 𝑋𝑖 = σ𝑖=1

𝑛 𝐸 𝑋𝑖 = σ𝑖=1
𝑛 𝑝𝑖 .

Hence, 𝐸 𝑒𝑡𝑋 ≤ 𝑒 𝑒𝑡−1 𝜇.



Chernoff Bound 1

Theorem 3: Let 𝑋1, … , 𝑋𝑛 be independent Poisson trials, that is, 

each 𝑋𝑖 is a 0-1 random variable with Pr 𝑋𝑖 = 1 = 𝑝𝑖 for some 𝑝𝑖. 

Let 𝑋 = σ𝑖=1
𝑛 𝑋𝑖 and 𝜇 = 𝐸 𝑋 . Then for any 𝛿 > 0, 

Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1+𝛿 1+𝛿

𝜇

.

Proof: Applying Markov’s inequality for any 𝑡 > 0,

Pr 𝑋 ≥ 1 + 𝛿 𝜇 = Pr 𝑒𝑡𝑋 ≥ 𝑒𝑡 1+𝛿 𝜇 ≤
𝐸 𝑒𝑡𝑋

𝑒𝑡 1+𝛿 𝜇

≤
𝑒

𝑒𝑡−1 𝜇

𝑒𝑡 1+𝛿 𝜇 [ Lemma 1 ]

Setting 𝑡 = ln 1 + 𝛿 > 0, i.e., 𝑒𝑡 = 1 + 𝛿, we get,

Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1+𝛿 1+𝛿

𝜇

. 



Chernoff Bound 2

Theorem 4: For 0 < 𝛿 < 1, Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒−
𝜇𝛿2

3 .

Proof: From Theorem 3, for 𝛿 > 0, Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1+𝛿 1+𝛿

𝜇

. 

We will show that for 0 < 𝛿 < 1, 
𝑒𝛿

1+𝛿 1+𝛿 ≤ 𝑒−
𝛿2

3

 𝛿 − 1 + 𝛿 ln 1 + 𝛿 ≤ −
𝛿2

3

That is, 𝑓 𝛿 = 𝛿 − 1 + 𝛿 ln 1 + 𝛿 +
𝛿2

3
≤0

We have, 𝑓′ 𝛿 = − ln 1 + 𝛿 +
2

3
𝛿, and 𝑓′′ 𝛿 = −

1

1+𝛿
+

2

3

Observe that 𝑓′′ 𝛿 < 0 for 0 ≤ 𝛿 ≤
1

2
, and 𝑓′′ 𝛿 > 0 for 𝛿 >

1

2
.



Chernoff Bound 2

Theorem 4: For 0 < 𝛿 < 1, Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒−
𝜇𝛿2

3 .

Proof: From Theorem 3, for 𝛿 > 0, Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1+𝛿 1+𝛿

𝜇

. 

We will show that for 0 < 𝛿 < 1, 
𝑒𝛿

1+𝛿 1+𝛿 ≤ 𝑒−
𝛿2

3

 𝛿 − 1 + 𝛿 ln 1 + 𝛿 ≤ −
𝛿2

3

That is, 𝑓 𝛿 = 𝛿 − 1 + 𝛿 ln 1 + 𝛿 +
𝛿2

3
≤0

We have, 𝑓′ 𝛿 = − ln 1 + 𝛿 +
2

3
𝛿, and 𝑓′′ 𝛿 = −

1

1+𝛿
+

2

3

Observe that 𝑓′′ 𝛿 < 0 for 0 ≤ 𝛿 ≤
1

2
, and 𝑓′′ 𝛿 > 0 for 𝛿 >

1

2
.



Chernoff Bound 2

Theorem 4: For 0 < 𝛿 < 1, Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒−
𝜇𝛿2

3 .

Proof: From Theorem 3, for 𝛿 > 0, Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1+𝛿 1+𝛿

𝜇

. 

We will show that for 0 < 𝛿 < 1, 
𝑒𝛿

1+𝛿 1+𝛿 ≤ 𝑒−
𝛿2

3

 𝛿 − 1 + 𝛿 ln 1 + 𝛿 ≤ −
𝛿2

3

That is, 𝑓 𝛿 = 𝛿 − 1 + 𝛿 ln 1 + 𝛿 +
𝛿2

3
≤0

We have, 𝑓′ 𝛿 = − ln 1 + 𝛿 +
2

3
𝛿, and 𝑓′′ 𝛿 = −

1

1+𝛿
+

2

3

Observe that 𝑓′′ 𝛿 < 0 for 0 ≤ 𝛿 ≤
1

2
, and 𝑓′′ 𝛿 > 0 for 𝛿 >

1

2
.

Hence, 𝑓′ 𝛿 first decreases and then increases over 0,1 . 

Since 𝑓′ 0 = 0 and 𝑓′ 1 < 0, we have 𝑓′ 𝛿 ≤ 0 over 0,1 .



Chernoff Bound 2

Theorem 4: For 0 < 𝛿 < 1, Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒−
𝜇𝛿2

3 .

Proof: From Theorem 3, for 𝛿 > 0, Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1+𝛿 1+𝛿

𝜇

. 

We will show that for 0 < 𝛿 < 1, 
𝑒𝛿

1+𝛿 1+𝛿 ≤ 𝑒−
𝛿2

3

 𝛿 − 1 + 𝛿 ln 1 + 𝛿 ≤ −
𝛿2

3

That is, 𝑓 𝛿 = 𝛿 − 1 + 𝛿 ln 1 + 𝛿 +
𝛿2

3
≤0

We have, 𝑓′ 𝛿 = − ln 1 + 𝛿 +
2

3
𝛿, and 𝑓′′ 𝛿 = −

1

1+𝛿
+

2

3

Observe that 𝑓′′ 𝛿 < 0 for 0 ≤ 𝛿 ≤
1

2
, and 𝑓′′ 𝛿 > 0 for 𝛿 >

1

2
.

Hence, 𝑓′ 𝛿 first decreases and then increases over 0,1 . 

Since 𝑓′ 0 = 0 and 𝑓′ 1 < 0, we have 𝑓′ 𝛿 ≤ 0 over 0,1 .



Chernoff Bound 2
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Chernoff Bound 3

Corollary 1: For 0 < 𝛾 < 𝜇, Pr 𝑋 ≥ 𝜇 + 𝛾 ≤ 𝑒
−

𝛾2

3𝜇 .

Proof: From Theorem 2, for 0 < 𝛿 < 1, Pr 𝑋 ≥ 1 + 𝛿 𝜇 < 𝑒−
𝜇𝛿2

3 . 

Setting 𝛾 = 𝜇𝛿,  we get, Pr 𝑋 ≥ 𝜇 + 𝛾 ≤ 𝑒
−

𝛾2

3𝜇 for 0 < 𝛾 < 𝜇.



Example: 𝒏 Fair Coin Flips

𝑋𝑖 = ቊ
1 if the 𝑖th coin flip is heads;
0 otherwise.

Then the number of heads in 𝑛 flips, 𝑋 = σ𝑖=1
𝑛 𝑋𝑖.

We know, 𝐸 𝑋𝑖 = Pr 𝑋𝑖 = 1 =
1

2
.

Hence, 𝜇 = 𝐸 𝑋 = σ𝑖=1
𝑛 𝐸 𝑋𝑖 =

𝑛

2
.

Now putting 𝛿 =
1

2
in Chernoff bound 2, we have,

Pr 𝑋 ≥
3𝑛

4
≤ 𝑒−

𝑛

24 =
1

𝑒
𝑛
24

.



Chernoff Bounds 4, 5 and 6

Corollary 2: For 0 < 𝛾 < 𝜇, Pr 𝑋 ≤ 𝜇 − 𝛾 ≤ 𝑒
−

𝛾2

2𝜇 .

Theorem 5: For 0 < 𝛿 < 1, Pr 𝑋 ≤ 1 − 𝛿 𝜇 ≤
𝑒−𝛿

1−𝛿 1−𝛿

𝜇

.

Theorem 6: For 0 < 𝛿 < 1, Pr 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒−
𝜇𝛿2

2 .



Chernoff Bounds

Lower Tail Upper Tail

𝟎 < 𝜹 < 𝟏: Pr 𝑋 ≤ 1 − 𝛿 𝜇 ≤
𝑒−𝛿

1 − 𝛿 1−𝛿

𝜇

𝜹 > 𝟎: Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1 + 𝛿 1+𝛿

𝜇

𝟎 < 𝜹 < 𝟏: Pr 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒−
𝜇𝛿2

2 𝟎 < 𝜹 < 𝟏: Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒−
𝜇𝛿2

3

𝟎 < 𝜸 < 𝝁: Pr 𝑋 ≤ 𝜇 − 𝛾 ≤ 𝑒
−
𝛾2

2𝜇 𝟎 < 𝜸 < 𝝁: Pr 𝑋 ≥ 𝜇 + 𝛾 ≤ 𝑒
−

𝛾2

3𝜇
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