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Symmetry Breaking: List Ranking

1. Flip a coin for each list node

2. If a node 𝑢 points to a node 𝑣, and 𝑢 got a head while 𝑣 got a tail, 

combine 𝑢 and 𝑣

3. Recursively solve the problem on the contracted list

4. Project this solution back to the original list

1 1 1 1 1 11 1 1

t h t h h t t h

1 2 1 2 1 11

1 3 4 6 7 18

1 2 3 4 5 16 7 8

solve recursively

break symmetry:

contract:

expand:



Symmetry Breaking: List Ranking

In every iteration a node gets removed with probability 
1

4

( as a node gets head with probability 
1

2
and the next node gets tail 

with probability 
1

2
).

Hence, a quarter of the nodes get removed in each iteration 

( expected number ).

Thus the expected number of iterations is  log 𝑛 .

In fact, it can be shown that with high probability,

𝑇1 𝑛 =  𝑛 and 𝑇∞ 𝑛 =  log 𝑛



Graph Connectivity
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Connected Components: A connected component C of an undirected 

graph G is a maximal subgraph of G such that every vertex in C is 

reachable from every other vertex in C following a path in G.

Problem: Given an undirected graph identify all its connected 

components.

Suppose n is the number of vertices in the graph, and

m is the number of edges.
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Problem: Identify All connected components of an undirected graph.

Suppose n is the number of vertices in the graph, and

m is the number of edges.

Serial Algorithms: Easy to solve in  𝑚 + 𝑛 time using

― Depth First Search ( DFS )

― Breadth First Search ( BFS ) 

Parallel Algorithms:

― DFS: Inherently sequential

― BFS: Depth equal to the diameter of the graph

― Graph Contraction: Can reach polylogarithmic depth
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Randomized Parallel Connected Components (CC) 

Par-Randomized-CC ( n, E, L )

3.  parallel for v  1 to n do C[ v ]  RANDOM{ Head, Tail }

2.  array C[ 1 : n ], M[ 1 : n ], S[ 1 : |E| ]

5.       if C[ u ] = Tail and C[ v ] = Head then L[ u ]  L[ v ]

8.  S  Par-Prefix-Sum (  S,  + )

1.  if |E| = 0 then return L

4.  parallel for each ( u, v )  E do

7.       if L[ E[ i ].u ]  L[ E[ i ].v ] then S[ i ]  1 else S[ i ]  0

15.  return M

6.  parallel for i  1 to |E| do

9.  array F[ 1 : S[ |E| ] ]

11.      if L[ E[ i ].u ]  L[ E[ i ].v ] then

10.  parallel for i  1 to |E| do

12.  M  Par-Randomized-CC ( n, F, L )

13.  parallel for each ( u, v )  E do

14.       if v = L[ u ] then M[ u ]  M[ v ]

unbiased coin toss 
at each vertex

group: hook child 
to a parent ( race! )

prepare to remove 
intra-group edges

find the rank of each 
inter-group edge 

among all such edges

find CC in the 
contracted graph

Map results back 
to the original 

graph

Input: n is the number of vertices in the graph numbered from 1 to n, E is 
the set of edges, and L[ 1 : n ] are vertex labels with L[ v ] = v initially for all v.

Output: An array M[ 1: n ] where for all v, M[ v ] is the unique id of the 
connected component containing v.

copy the inter-group 
edges to F

F[ S[ i ] ]  ( L[ E[ i ].u ], L[ E[ i ].v ] )



Randomized Parallel Connected Components (CC) 

Suppose n is the number of vertices and m is 

the number of edges in the original graph. 

Each contraction is expected to reduce 

#vertices of +𝑣𝑒 degree by a factor ≥
1

4
. [why?]

So, the expected number of contraction steps, 

𝐷 =  log 𝑛 . [ show: the bound holds w.h.p. ]

For each contraction step span is  log2𝑛 , 

and work is  𝑛 + 𝑚 . [ why? ]

Parallelism: 
𝑇1 𝑛,𝑚

𝑇∞ 𝑛,𝑚
= 

𝑛+𝑚

log2 𝑛

Work:  𝑇1 𝑛,𝑚 =  𝐷 𝑛 +𝑚

=  𝑛 + 𝑚 log𝑛 ( w.h.p. )

Span:  𝑇∞ 𝑛,𝑚 =  𝐷log2𝑛

=  log3𝑛 ( w.h.p. )

Par-Randomized-CC ( n, E, L )

3.  parallel for v  1 to n do

2.  array C[ 1 : n ], M[ 1 : n ], S[ 1 : |E| ]

5.       if C[ u ] = Tail and C[ v ] = Head then L[ u ]  L[ v ]

8.  S  Par-Prefix-Sum (  S,  + )

1.  if |E| = 0 then return L

4.  parallel for each ( u, v )  E do

7.       if L[ E[ i ].u ]  L[ E[ i ].v ] then S[ i ]  1

15.  return M

6.  parallel for i  1 to |E| do

9.  array F[ 1 : S[ |E| ] ]

11.       if L[ E[ i ].u ]  L[ E[ i ].v ] then

10.  parallel for i  1 to |E| do

12.  M  Par-Randomized-CC ( n, F, L )

13.  parallel for each ( u, v )  E do

14.       if v = L[ u ] then M[ u ]  M[ v ]

C[ v ]  RANDOM{ Head, Tail }

else S[ i ]  0

F[ S[ i ] ]  ( L[ E[ i ].u ], L[ E[ i ].v ] )



Pointer Jumping

The pointer jumping ( or path doubling ) technique allows  fast 

processing of data stored in the form of a set of rooted directed trees.

For every node 𝑣 in the set pointer jumping involves replacing 𝑣 →

𝑛𝑒𝑥𝑡 with 𝑣 → 𝑛𝑒𝑥𝑡 → 𝑛𝑒𝑥𝑡 at every step.

Some Applications

― Finding the roots of a forest of directed trees

― Parallel prefix on rooted directed trees

― List ranking



Pointer Jumping: Roots of a Forest of Directed Trees
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Find-Roots ( 𝑛, 𝑃, 𝑆 )    { Input: A forest of rooted directed trees, each 

with a self-loop at its root, such that each 

edge is specified by 𝑣, 𝑃 𝑣 for 1 ≤ 𝑣 ≤ 𝑛. 

Output: For each 𝑣, the root 𝑆 𝑣 of the tree 

containing 𝑣. }

1.  parallel for 𝑣 ← 1 to 𝑛 do

2.       𝑆 𝑣 ← 𝑃 𝑣

7.               𝑆 𝑣 ← 𝑆 𝑆 𝑣

8.               if 𝑆 𝑣 ≠ 𝑆 𝑆 𝑣 then 𝑓𝑙𝑎𝑔 ← 𝑡𝑟𝑢𝑒

3.  𝑓𝑙𝑎𝑔 ← 𝑡𝑟𝑢𝑒

4.  while 𝑓𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 do

5.       𝑓𝑙𝑎𝑔 ← 𝑓𝑎𝑙𝑠𝑒

6.       parallel for 𝑣 ← 1 to 𝑛 do



Pointer Jumping: Roots of a Forest of Directed Trees

Let ℎ be the maximum 

height of any tree in the 

forest.

Observe that the distance 

between 𝑣 and 𝑆 𝑣

doubles after each 

iteration until 𝑆 𝑆 𝑣 is 

the root of the tree 

containing 𝑣.

Work: 𝑇1 𝑛 =  𝑛 log ℎ and  Span: 𝑇∞ 𝑛 =  log ℎ

Parallelism:
𝑇1 𝑛

𝑇∞ 𝑛
=  𝑛

Find-Roots ( 𝑛, 𝑃, 𝑆 )    { Input: A forest of rooted directed trees, each 

with a self-loop at its root, such that each 

edge is specified by 𝑣, 𝑃 𝑣 for 1 ≤ 𝑣 ≤ 𝑛. 

Output: For each 𝑣, the root 𝑆 𝑣 of the tree 

containing 𝑣. }

1.  parallel for 𝑣 ← 1 to 𝑛 do

2.       𝑆 𝑣 ← 𝑃 𝑣

7.               𝑆 𝑣 ← 𝑆 𝑆 𝑣

8.               if 𝑆 𝑣 ≠ 𝑆 𝑆 𝑣 then 𝑓𝑙𝑎𝑔 ← 𝑡𝑟𝑢𝑒

3.  𝑓𝑙𝑎𝑔 ← 𝑡𝑟𝑢𝑒

4.  while 𝑓𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 do

5.       𝑓𝑙𝑎𝑔 ← 𝑓𝑎𝑙𝑠𝑒

6.       parallel for 𝑣 ← 1 to 𝑛 do

Hence, the number of iterations is log ℎ. Thus ( assuming that each 

parallel for loop takes  1 time to execute ),



Deterministic Parallel Connected Components (CC) 

― Form a set of disjoint subtrees

― Use pointer-jumping to reduce each subtree to a single vertex

― Recursively apply the same trick on the contracted graph

Approach

― Hook each vertex to a neighbor with larger label ( if exists )

― Ensures that no cycles are formed

Forming Disjoint Subtrees
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Deterministic Parallel Connected Components (CC) 

― Hook each vertex to a neighbor with larger label ( if exists )

― Ensures that no cycles are formed

Forming Disjoint Subtrees
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― But the number of contraction steps can be as large as n – 1!



Deterministic Parallel Connected Components (CC) 

Let 𝐺 = 𝑉, 𝐸 be an undirected graph with 𝑛 vertices in which 

each vertex has at least one neighbor.  Then

either 𝑢 𝑢, 𝑣 ∈ 𝐸  𝑢 < 𝑣 ≥
𝑛

2

or 𝑢 𝑢, 𝑣 ∈ 𝐸  𝑢 > 𝑣 ≥
𝑛

2

Observation: 

Between the two directions of hooking (i.e., smaller to larger 

label, and larger to smaller label) always choose the one that 

hooks more vertices. 

Then in each contraction step the number of vertices will be 

reduced by a factor of at least 
1

2
.

Implication: 



Deterministic Parallel Connected Components (CC) 
Input: n is the number of vertices in the graph numbered from 1 to n, E is 
the set of edges, and L[ 1 : n ] are vertex labels with L[ v ] = v initially for all v.

Output: Updated array L[ 1: n ] where for all v, L[ v ] is the unique id of the 
connected component containing v.

Par-Deterministic-CC ( n, E, L )

3.  parallel for v  1 to n do l2h[ v ]  0, h2l[ v ]  0

2.  array l2h[ 1 : n ], h2l[ 1 : n ], S[ 1 : |E| ]

12.  S  Par-Prefix-Sum (  S,  + )

1.  if |E| = 0 then return L

17.  return L

11.  parallel for i  1 to |E| do S[ i ]  ( L[ E[ i ].u ]  L[ E[ i ].v ] ) ? 1 : 0

13.  array F[ 1 : S[ |E| ] ]

15.      if L[ E[ i ].u ]  L[ E[ i ].v ] then F[ S[ i ] ]  ( L[ E[ i ].u ], L[ E[ i ].v ] )

14.  parallel for i  1 to |E| do

16.  L  Par-Deterministic-CC ( n, F, L )

6.  n1  Par-Sum (  l2h,  + ), n2  Par-Sum (  h2l,  + )

7.  parallel for each ( u, v )  E do

8.       if n1  n2 and u < v then L[ u ]  v

9.       else if n1 < n2 and u > v then L[ u ]  v

10.  Find-Roots (  n, L, L )

5.       if u < v then l2h[ u ]  1 else h2l[ u ]  1

4.  parallel for each ( u, v )  E do

mark hooks from 
smaller to larger 

indices
count hooks from 
smaller to larger 

indices, 
and vice versa

choose hook 
direction to 

maximize #hooks

use pointer 
jumping to label 
each vertex with 
the id of its root

similar to Par-
Randomized-CC, 

except that 
relabeling is not 
needed after the 

recursive call

mark hooks from 
larger to smaller 

indices



Deterministic Parallel Connected Components (CC) 

Par-Deterministic-CC ( n, E, L )

3.  parallel for v  1 to n do

2.  array l2h[ 1 : n ], h2l[ 1 : n ], S[ 1 : |E| ]

l2h[ v ]  0, h2l[ v ]  0

12.  S  Par-Prefix-Sum (  S,  + )

1.  if |E| = 0 then return L

S[ i ]  ( L[ E[ i ].u ]  L[ E[ i ].v ] ) ? 1 : 0

17.  return L

11.  parallel for i  1 to |E| do

13.  array F[ 1 : S[ |E| ] ]

15.      if L[ E[ i ].u ]  L[ E[ i ].v ] then

14.  parallel for i  1 to |E| do

16.  L  Par-Deterministic-CC ( n, F, L )

6.  n1  Par-Sum (  l2h,  + ), n2 Par-Sum (  h2l,  + )

7.  parallel for each ( u, v )  E do

8.       if n1  n2 and u < v then L[ u ]  v

9.       else if n1 < n2 and u > v then L[ u ]  v

10.  Find-Roots (  n, L, L )

Each contraction step reduces the number of 

vertices by a factor of at least 
1

2
. 

So, number of contraction steps, 𝐷 =  log 𝑛 . 

For contraction step 𝑘 ≥ 0 span is  log2𝑛 , 

and work is  𝑛 log𝑛 + 𝑚 . [ why? ]

Work:  𝑇1 𝑛,𝑚 =  σ0≤𝑖<𝐷 𝑛 log 𝑛 + 𝑚

=  (𝑛 log𝑛 + 𝑚)𝐷

=  𝑛 log 𝑛 +𝑚 log𝑛

Span:  𝑇∞ 𝑛,𝑚 =  𝐷log2𝑛

=  log3𝑛

5.       if u < v then l2h[ u ]  1 else h2l[ u ]  1

4.  parallel for each ( u, v )  E do

F[ S[ i ] ]  ( L[ E[ i ].u ], L[ E[ i ].v ] ) How to get 𝑇1 𝑛,𝑚 =  𝑛 +𝑚 log𝑛 ?


