
The Limits of Alias Analysis for Scalar Optimizations

Rezaul A. Chowdhury
�
, Peter Djeu

�
, Brendon Cahoon

�
,

James H. Burrill
�
, and Kathryn S. McKinley

�

�
Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712, USA,�

shaikat, djeu, mckinley � @cs.utexas.edu�
Conformative Systems, Austin, TX 78759, USA,
brendon.cahoon@conformative.com�

Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA,
burrill@cs.umass.edu

Abstract. In theory, increasing the precision of alias analysis should improve
the results of compiler optimizations on C programs. This paper compares the
effectiveness of several popular alias analyses on nine scalar optimizations. We
include an analysis that assumes no aliases to establish a very loose upper bound
on optimization opportunities. We statically measure the number of optimiza-
tion opportunities in the Scale compiler for each analysis performed on thirty-six
C programs. We find that, in practice, the precision of the alias analysis rarely
inhibits these optimization opportunities. Previous work finds similarly that the
increased precision of specific alias algorithms provide little benefit for scalar op-
timizations, and that simple static alias algorithms uncover almost all dynamically
determined aliases. This paper, however, is the first to provide a static methodol-
ogy that indicates that additional precision is unlikely to yield improvements for
a wide set of optimizations. For clients with higher alias accuracy demands, this
methodology can help pinpoint the cases where additional accuracy is needed.

1 Introduction

An enormous amount of research is devoted to developing compiler alias analysis for C
programs in order to determine if two distinct variables may reference the same mem-
ory location [1, 5, 9, 16, 23, 28, 29, 34, 35]. The literature shows an essential tradeoff:
improving the precision of alias analysis increases the cost of performing it, and this in-
crease can be substantial. In theory, a more precise alias analysis improves the clients’
results. The clients of alias analysis are numerous, and include, for example, improving
program performance [17], finding bugs [18], and pinpointing memory leaks [19]. In
some cases the theory holds true. For instance, error detection [18] avoids many false
positives through the judicious application of precise alias analysis. Certain paralleliza-
tion optimizations, likewise, may significantly benefit from increased precision [34].

This paper studies using alias analysis on scalar compiler optimizations designed to
improve performance. We implement three analyses: address-taken, Steensgaard [29],
and Shapiro-Horwitz [27]. In addition, we include an upper bound methodology that
assumes there are no alias relations. Most alias analysis evaluations count the number
of aliases statically and assume that fewer aliases are better. We instead use a static
upper bound of no aliases. This bound is not guaranteed to be tight, but the compiler is



never inhibited by an alias when applying optimizations. This bound is only useful for
static evaluation.

We use nine scalar optimizations to determine the difference between using alias
analyses and the upper bound on the number of optimizations that the compiler per-
forms on thirty-six C programs from popular benchmark suites. The optimizations are
sparse conditional constant propagation, global variable replacement, loop unrolling,
loop invariant code motion, global value numbering, copy propagation, useless copy
removal, array access strength reduction, and scalar replacement. We measure optimiza-
tion applications individually and as a group across our set of alias analyses. Experi-
ments show there is very only a small gap between Shapiro-Horwitz and our static upper
bound. The increased precision of Shapiro-Horwitz attains minor improvements over
Steensgaard with respect to optimization, and both are somewhat better than address-
taken. The largest difference is for loop invariant code motion, for which the upper
bound methodology detects on average six percent more loop invariant computations
than the best analysis.

Our results are in agreement with the few other studies on the effect of alias analy-
sis on scalar optimizations, which all suggest that a simple alias analysis will suffice [3,
12, 14, 15, 21]. For example, Hind and Pioli show that few additional scalar analysis
opportunities come from increasing alias precision on twenty-three C programs [21].
Diwan et al. measure dynamically the additional opportunities for two optimizations on
Modula-3 programs and find that improving alias analysis will not benefit these opti-
mizations much, if at all [14]. Das et al. measure aliases dynamically, without respect
to an optimization, and find that a simple analysis misses 5% of independent memory
accesses in nine C programs [12].

In their work, Das et al. suggest the following [12]: “Ideally, we would like to repeat
their study [Diwan et al.] for every conceivable optimization and every pointer analy-
sis.” Although we of course do not study “every conceivable optimization,” the range
is more numerous than that in previous work. The most important contribution of this
paper, however, is obviating the need for evaluating all pointer analyses. For thirty-six
C programs, no matter how much additional precision an alias analysis provides over
Steensgaard or Shapiro-Horwitz, that extra precision is unlikely to benefit scalar opti-
mizations.

The remaining sections of this paper are organized as follows. Section 2 further
compares our methodology to previous evaluations of pointer analysis. Section 3 briefly
describes the alias analyses: address-taken, Steensgaard [29], Shapiro-Horwitz [27],
and the no aliases upper bound. Section 4 and 5 introduce our compiler framework,
intermediate representation (IR), how the IR represents aliases, and the test set of scalar
optimizations. Section 6 presents the experimental methodology. Section 7 presents
measurements of optimization opportunities and compile times. It shows that a fast,
simple alias analysis produces the same optimization applications as the loose upper
bound, demonstrating that no additional amount of precision will yield many, if any
improvements to scalar optimizations and thus performance. Other alias analysis clients
can use this methodology to find opportunities for improvement, and of course, clients
such as error detection, memory leaks, and data reorganization are likely to require
additional accuracy.



2 Related Work

This section describes comparative studies of alias analyses. We focus on the closest
related work that use the clients of the alias analyses for evaluation.

The evaluation of most new alias or points-to analysis algorithms reports the size of
the static points-to information they compute. For example, Emami et al. [16], and Wil-
son and Lam [34] introduce new context-sensitive interprocedural points-to algorithms
and evaluate them using the size of the points-to sets.

Other researchers evaluate alias analysis algorithms by reporting changes to the size
of the static points-to information when the precision of the algorithm changes. Ruf
evaluates the effect of context-sensitivity on the precision of alias analysis [25]. Ruf
concludes that adding context-sensitivity does not improve the precision for the bench-
marks he examines. Liang and Harrold introduce a context-sensitive flow-insensitive
algorithm, and they compare their algorithm to three other algorithms [23]. Yong et al.
present a tunable pointer analysis framework that distinguishes fields structures [35].

Other related work focuses on the clients. Hind and Pioli compare five alias analy-
sis algorithms, and they study how the precision of alias analysis affects typical client
analyses, along with two optimizations [21]. The client analyses are Mod/Ref analysis,
live variable analysis, reaching definitions analysis, and interprocedural constant prop-
agation. We corroborate their results, but we do so within the context of a new compiler
and with a focus on a more comprehensive selection of client optimizations, rather than
analyses. In earlier work, Hind and Pioli present an empirical comparison of four alias
analysis algorithms with different levels of flow sensitivity [20]. They measure the pre-
cision of the analysis results, and the time and space to compute the results. They do
not study the effect of analysis quality on optimizations in this earlier work.

Shapiro and Horwitz compare the precision of four flow and context-insensitive
pointer analysis algorithms [27, 28]. They test the precision of the pointer analyses us-
ing GMOD analysis, live variable analysis, truly live variable analysis, and an inter-
procedural slicing algorithm. Shapiro and Horwitz conclude that more precise analysis
does improve the results of some, but not all of the clients. Stocks et al. compare the
flow-sensitive and context-sensitive analysis on Mod analysis [30]. They conclude that
more precision helps improve the precision of Mod analysis. These two papers are fo-
cused on analysis clients rather than the optimization clients we use.

Das et al. measure the effect of pointer analysis on optimizations [12]. Their goal is
to evaluate whether flow-insensitive pointer analysis is sufficient for compiler optimiza-
tions. Das et al. do not use any specific optimization or compiler, but instead develop a
new metric for evaluating the precision of pointer analysis.

Diwan et al. evaluate three alias analysis algorithms using static, dynamic, and up-
per bound metrics [13–15]. They demonstrate the effect of the three analyses using
redundant load elimination and method invocation resolution. They show that a fast
and simple alias analysis is effective for type-safe languages. Bacon and Sweeney find
similar results for C++ method resolution [3].

Ghiya and Hendren empirically show that their points-to analysis and connection
analysis can improve loop-invariant removal and common subexpression elimination,
array dependence testing, and program understanding [17]. They do not experiment



with the precision of the analysis, and they concede that a conservative analysis may
provide the same benefits for the scalar optimizations.

Cooper and Lu use pointer analysis to perform register promotion, which is an op-
timization that converts references to scalar values in memory to a register [10]. Iden-
tifying aliases is important for this optimization, but Cooper and Lu do not show how
the precision of the analysis affects optimization opportunities.

Our work is in the spirit of the last four studies, all of which focus on the client
optimizations. We are, however, broader in scope in terms of the range of optimizations
and the number of programs. In addition, we use a new methodology that computes the
very loose static upper bound that shows, for our programs and optimizations, that no
additional precision is needed.

3 Alias Analysis

We study the following alias analysis algorithms.

– Address-taken
– Steensgaard [29]
– Shapiro-Horwitz [28]
– Assume no aliases

Address-taken is very simple and is linear in the size of the input program. The
compiler assumes all heap objects are potential aliases of each other, and includes in
this set all variables for which the program explicitly takes their address. The address-
taken algorithm produces the most conservative set of alias relations.

Steensgaard’s algorithm is an interprocedural flow-insensitive analysis character-
ized by almost linear running time and linear space complexity, but does not neces-
sarily produce precise results [29]. It is based upon type-inference methods using alias
relations. It results in alias sets that are symmetric and transitive.

The Shapiro-Horwitz algorithm [28] extends and increases the precision of Steens-
gaard’s algorithm without a significant effect on running time. A parameter specifies
the precision between the least precise version (Steensgaard) to the most precise ver-
sion which is equivalent to Andersen’s algorithm [1]. The analysis time varies inversely
with precision. We choose an intermediate point for our evaluation.

Assuming no aliases serves as a static metric for evaluating the effect of alias in-
formation on subsequent clients. It simply generates an empty set of alias relations to
communicate to the optimizations that there are no aliases. Since it makes the typically
false assumption that there are no aliases, the generated executable is usually incorrect.
The purpose of this analysis is not to generate correct code, but rather, to establish a
reference point for the maximum number of optimizations the compiler could perform.
Hence, no aliases provides a loose upper bound.

4 The Scale Compilation System

This section briefly outlines our compilation framework, and then provides details about
how it represents and uses alias information. The next section enumerates the client
optimizations and how they use aliases.



Scale is a flexible, high performance research compiler for C and Fortran, and
is written in Java [24, 32]. Scale transforms programs into a control flow graph, per-
forms alias analysis, and uses the results to build a static single assignment (SSA) [11],
machine-independent intermediate representation (IR) that we call Scribble. Scale per-
forms optimizations on Scribble, and then transforms Scribble to a low-level, more ma-
chine dependent RISC instruction-like IR on which it performs a variant of linear scan
register allocation [31]. It outputs C or assembly for the Alpha and Sparc processors.

The Scale compiler transforms the control flow graph (CFG) to SSA form after it
performs alias analysis. SSA form ensures that each use of a scalar variable, or a vir-
tual variable created during pointer analysis, gets its value from a single definition [11].
Scale utilizes Chow et al.’s technique for representing pointers which makes a distinc-
tion between definitions that must occur and may occur [7]. Chow et al. define virtual
variables to represent indirect variables (e.g., *p). They create a unique virtual variable
for all indirect variables that have similar alias characteristics. They perform alias anal-
ysis on the virtual variables and the scalar variables. It is unclear which alias analysis
algorithm they use.

Scale’s analysis has a subtle difference; it performs alias analysis prior to creating
the virtual variables. After performing the analysis, Scale defines a unique virtual vari-
able for each alias group, where an alias group is the set of variables which share the
same aliases.

In Scale, the SSA form thus includes may and must definitions which are linked
to uses by corresponding edges. The optimizations traverse these edges to find defini-
tions, recurrences, etc. All scalar optimizations in Scale (except useless copy removal)
manipulate the SSA form of the control flow graph. The precision of disambiguation
information derived from alias analysis directly affects the quality of this SSA form.
Thus, alias analysis precision has a direct effect on the number of optimizations that a
scaler optimization performs.

5 Scalar Optimizations

We study the effects that alias information has on the following scalar optimizations.
Scale performs these optimizations on SSA Scribble format except for useless copy
removal. We briefly describe each optimization and the criteria that we measure to
expose optimization opportunities. These optimizations target scalar variables, loads,
scalar expressions, array address arithmetic, and heap allocated arrays. We expect that
alias analysis will have more effect on additional optimizations that specifically target
heap pointers.

Loop Invariant Code Motion (LICM) LICM recognizes computations (including loads)
in loops that produce the same value on every iteration of the loop and moves them to
appropriate locations outside the loop. For nested loops, it moves computation out of
as many inner-loops as possible without destroying program semantics. LICM speeds
up program execution by reducing the number of instructions executed. In Scale, SSA
use-def links indicate where the CFG node gets its definitions, and LICM moves com-
putations to the outer-most basic block in which the definition is available. More precise
alias information provides more accurate dependency information and thus allows safe



movement of CFG nodes out of more inner-loops. In order to preserve the program se-
mantics, it only moves stores for temporary variables. Procedure calls and expressions
involving global variables are never moved.

Criteria: number of expression moved.
Sparse Conditional Constant Propagation (SCCP) SCCP discovers variables and ex-
pressions that are constant and propagates them throughout the program. SCCP cor-
rectly propagates constants even in the presence of conditional control flow. This op-
timization speeds up program execution by evaluating expressions at compile time in-
stead of runtime and improves the effectiveness of other optimizations, such as value
numbering. Scale uses Wegman and Zadeck’s SCCP algorithm on SSA-form [33]. If
alias analysis is performed, there will be more instances where one can determine
whether an expression is constant. Scale uses the alias analysis information to obtain
the value through pointer operations with the may-use/may-def information.

Criteria: number of constants propagated.
Copy Propagation (CP) CP discovers assignments of the form �
	�� and replaces any
later use of variable � by � as long as neither � nor � is changed by any intervening
instructions. CP then removes the original assignment statement. Scale does not prop-
agate a copy if (1) the right hand side variable of the assignment statement contains
May-Use information indicating that it may be involved in an alias relationship, or (2)
either of the two arguments in the assignment are global variables.

Criteria: number of copies propagated.
Global Value Numbering (GVN) Scale uses the dominator tree-based value numbering
technique by Briggs et al. [4]. GVN determines whether two computations are equiv-
alent and if so, removes one of them. It does so by assigning a value number to each
computation in such a way that any two computations with the same value number
always compute the same value. SSA form simplifies this process. GVN works on en-
tire procedures instead of single basic blocks, as does traditional value numbering. It
improves program running time by removing redundant computations.

Criteria: number of expressions removed.
Loop Unrolling (LU) LU replaces the body of a loop by several copies of the body and
adjusts the loop control code accordingly. Aliases inhibit loop unrolling only if the loop
control variables may be aliased with loop varying variables. LU reduces the number
of instructions executed during runtime at the cost of increased code size. This opti-
mization may also improve the effectiveness of other optimizations, such as common-
subexpression elimination and strength reduction.

Criteria: number of loops unrolled.
Scalar Replacement (SR) Register allocators usually do not allocate subscripted vari-
ables to registers. Scalar Replacement tricks the allocator by replacing subscripted vari-
ables by scalars and thus making them available for register allocation. Dependence
analysis is used to locate patterns of consistent re-use of array elements and then SR
replaces those re-uses by references to scalar temporaries. The same trick is used for
both array loads and array stores. This optimization reduces the number of loads and
stores in programs and is very effective in reducing execution times.

Criteria: number of array loads replaced.



Global Variable Replacement (GVR) This transformation replaces references to global
variables with references to local variables by copying the global into a local. The vari-
able may not be aliased to another variable that the procedure modifies.

Criteria: number of loads to global variables replaced.

Array Access Strength Reduction (AASR) AASR uses the method of finite differences
to replace expensive operators in array element address calculations with cheaper ones.
Scale targets array index calculations in the inner-most loops, and replaces multiplica-
tions with additions when possible. It also moves any resulting loop invariants outside
the loop and folds constant expressions as part of this process. AASR reduces the num-
ber of multiplication operations executed during runtime.

Criteria: number of array index calculations replaced.

Useless Copy Removal - (UCR) Useless copy statements are of the form �
	�� . Scale
creates these statements by transitioning to and from SSA form and via other opti-
mizations. Because transitioning from SSA form introduces copies and new temporary
variables, this optimization is very sensitive to the form of the SSA graph. Scale finds
and removes useless copy statements in the CFG form.

Criteria: number of useless copies removed.

6 Methodology

Table 1 enumerates our test suite, which consists of programs from the following bench-
marks: SPEC 95, SPEC 2000, Austin from Todd Austin [2], McCAT from McGill [16],
and Landi-PROLANGS from Rutgers [22, 26, 25]. Our testing suite is closely modeled
after Hind and Pioli’s [21] and all but two of their programs appear in our study. We
omitted 052.alvinn from SPEC 92 because the benchmark suite is subsumed by SPEC
2000. We omitted 17.bintr from McCAT because of a Scale compilation bug with this
program.

We used the most recent development version of Scale, as of the time of this report.
Scale’s default parameters are used except for the following cases.

When invoking Scale, we specify a version of alias analysis from Table 2. Shapiro-
Horwitz with one category behaves the same as Steensgaard (although the implementa-
tions are distinct). We select four categories as the input parameter to Shapiro-Horwitz
so that it behaves as an intermediate point that is more precise than Steensgaard, but not
as expensive as Andersen [1].

We either select a fixed sequence of optimizations or choose a single optimization,
with all other optimizations turned off. Table 3 enumerates the optimizations, their Scale
option letter, and our abbreviation.

We also collect data on Partial Redundancy Elimination (PRE), which Scale imple-
ments using Chow et al.’s algorithm for SSA [6]. This algorithm requires SSA form,
but does not produce SSA form as output, which makes it difficult to measure and
use in Scale. Furthermore, our PRE results show more optimization opportunities with
Steensgaard and Shapiro-Horwitz than with no aliases. We believe this anomaly results
from either a bug in Scale or an interaction with SSA. We decided to omit the PRE



Table 1. Benchmark suites

Abbr. Benchmark suite
A Austin’s
MC McCAT
LP Landi-PROLANGS
S95 SPEC 95
S00 SPEC 2000

Table 2. Alias analysis algorithms

Abbr. Algorithm
AT Address-taken analysis

ST
Steensgaard’s interprocedural
algorithm

SH-4
Shapiro-Horwitz’s interprocedural
algorithm with 4 categories

NA Assume no aliases

Table 3. Optimizations

Abbr.
Scale
option

Optimization

AASR a
Array Access Strength
Reduction

SCCP c
Sparse Conditional Constant
Propagation

GVR g Global Variable Replacement
LU j Loop Unrolling
LICM m Loop Invariant Code Motion
GVN n Global Value Numbering
CP p Copy Propagation
UCR u Useless Copy Removal
SR x Scalar Replacement

results here since we believe the underlying problem is orthogonal to alias analysis. A
companion technical report contains these results [8].

We measure compile times on a 502 MHz UltraSPARC-IIe Sun Blade 100 running
SunOS 5.8 with 256 MB of RAM and 1475 MB of swap space. We specified an initial
heap size of 100 MB and a maximum heap size of 1000 MB for Sun’s Java virtual
machine running Scale.

7 Results

This section first compares the compilation times of the benchmark programs and then
optimization opportunities utilized by the scalar optimizations in Table 3. A companion
technical report [8] contains complete per program results, and we summarize these
results below.

7.1 Compile Time

Table 4 describes some characteristics of the 36 benchmark programs. The column
marked “Source” identifies the benchmark suite to which the program belongs. The
column marked “NCLC” reports the number of non-blank and non-commented lines of
code in the program. The column marked “CFG Nodes” shows the number of nodes
in the Control Flow Graph created by Scale for the program. This number gives us an
idea on the size of the program as seen by the compiler. The programs in the table are
arranged in ascending order of the number of CFG nodes. The next three columns list
the compile times (in seconds) of the program: the first column is for the case when
address-taken analysis is performed, the second one is for Steensgaard’s interprocedu-
ral algorithm, and the third one is for Shapiro-Horwitz’s interprocedural analysis with



4 categories. Each compile time is the smallest among 5 independent compiles of the
same program with the same parameter values. The last two rows of the table report
the normalized average compile times over all the programs. The compile time of the
program for each alias analysis algorithm is first divided by the compile time of the pro-
gram using address-taken analysis. Then, we take the arithmetic and geometric means
(AM & GM) of those normalized compile times. Geometric mean reduces the effect of
extreme values.

The means in Table 4 suggest that using Steensgaard instead of address-taken in-
creases the compile time by 5-6% on the average while the average increase in compile
time due to the use of Shapiro-Horwitz is 20-30%. But the results also show that for
large programs (like 186.crafty, 300.twolf, and 099.go), these percentages may grow to
150-200% and 350-400%, respectively. We think this result is due to paging.

The compile times in Table 4 are represented as a bar graph in Fig. 1.

7.2 Optimization Opportunities

We measure the optimization opportunities utilized by each of the 9 scalar optimizations
over each of the 36 benchmark programs over each of the 4 alias analyses based on the
selected criteria (see Section 5). For each optimization, we report this counter and the
higher the counter, the more effective the optimization is.

For a given optimization, we report the counter using each of the 4 alias analyses and
normalize the counters by dividing by the value obtained for NA (no aliases). During the
normalization process, if �����
�������������! "���#���
$%�#�&�������(' , we assume the normalized
value is 1. If ���)�
�����������*�+'-,�+ &���#���.$%�#������� , we set the ���)�
����������� to '0/21 and
proceed with the division. Although the case “ ���)�
�����&�����!�3 &�4�#���
$%�#�������(�3' ”
occurs many times in our experiments, the case “ ���)�
�����������
�5'*,�5 "���#���
$%�#�&����� ”
occurs only once: in 01.qbsort for LICM in Table 6. After calculating the normalized
counters for all programs, we take the geometric mean of these values for each alias
analysis.

We perform two sets of experiments. In the first set we enable all 9 optimizations
in the order “jgcamnpxnmpu” (see Table 3) during each compilation and in the second
set, we enable only one optimization per compilation. Table 5 summarizes the results
for all optimizations enabled, and Table 6 for each one individually.

Table 5 contains one row for each of the 9 optimizations and one column for each
of the 4 alias analyses. In each optimization row, in the column corresponding to each
alias analysis, we report the geometric mean of of the normalized optimization counters
of all 36 programs after performing that analysis. Each mean is subscripted by the
average deviation of the counter values from that mean. For a given optimization, the
column marked “Total for NA” contains the summation of the NA counter values for
that optimization over all programs. The bar graph in Fig. 2 presents this table.

To understand these results, we first define a sequence anomaly.

Sequence Anomaly: When a sequence of optimizations is applied on a program, ef-
fectiveness of the optimizations later in the sequence is influenced by the type and
number of opportunities exposed by earlier optimizations. Since optimizations interact
with each other in a non-linear fashion, it is possible for a more precise alias analysis



Table 4. Comparison of NCLC, number of CFG nodes and
total compile times (in seconds) with all optimizations en-
abled in order “jgcamnpxnmpu”

Program Source NCLC
CFG
nodes

Compile time (sec)
AT ST SH-4

15.trie MC 311 197 5.0 5.1 5.5
fixoutput LP 368 206 6.0 5.7 5.9
allroots LP 155 272 10.0 9.9 10.2
01.qbsort MC 200 294 6.9 7.5 8.0
04.bisect MC 217 331 11.1 11.8 12.0
06.matx MC 191 439 7.9 7.8 7.9
anagram A 352 532 9.9 9.4 9.3
lex315 LP 598 658 8.2 8.1 9.0
ul LP 472 773 11.2 11.0 11.2
129.compress S95 1457 923 12.1 12.4 12.9
ks A 585 987 11.6 10.9 10.9
09.vor MC 984 1031 12.0 12.0 12.6
loader LP 802 1082 15.8 16.0 17.0
ansitape LP 1203 1113 17.0 16.1 17.1
08.main MC 990 1115 12.0 11.7 12.6
ft A 1113 1116 12.1 12.9 13.1
compress LP 1071 1119 10.3 9.8 10.7
05.eks MC 575 1498 22.0 21.9 23.0
xmodem LP 1392 1718 19.0 19.6 20.0
181.mcf S00 1482 1722 24.3 29.9 29.5
compiler LP 2073 1789 19.0 18.1 19.0
assembler LP 1891 2052 21.0 22.9 23.9
unzip LP 2808 2637 26.1 29.1 29.7
patch LP 2461 3248 24.1 24.4 27.2
simulator LP 2881 3532 29.8 30.1 30.7
yacr2 A 2710 3753 27.2 27.8 31.5
256.bzip2 S00 3236 4888 38.0 35.4 39.8
flex LP 4841 5405 42.5 44.1 48.2
bc A 5449 5618 36.1 40.1 48.8
football LP 1975 5765 143.1 140.4 149.7
agrep LP 3434 8185 74.5 70.0 73.2
197.parser S00 7921 15418 72.0 81.9 99.8
175.vpr S00 11301 17935 111.0 144.2 238.8
186.crafty S00 12985 22379 388.1 595.9 691.4
300.twolf S00 17934 31414 209.3 365.9 788.1
099.go S95 25895 35018 232.2 256.4 814.6

AM of norm. comp. times (wrt AT) 1.000 1.062 1.271

GM of norm. comp. times (wrt AT) 1.000 1.052 1.190

Comparison of Compile Times of the Benchmark 
Programs Used

1 10 100 1000

099.go
300.twolf

186.crafty
175.vpr

197.parser
agrep

football
bc

flex
256.bzip2

yacr2
simulator

patch
unzip

assembler
compiler
181.mcf
xmodem

05.eks
compress

ft
08.main
ansitape

loader
09.vor

ks
129.compress

ul
lex315

anagram
06.matx

04.bisect
01.qbsort

allroots
fixoutput

15.trie

P
ro

gr
am

s

Compile Time in Seconds
(Logarithmic Scale)

AT

ST

SH-4

Fig. 1. Comparison of compile times of the
benchmark programs used.

to have a negative impact on optimizations that come later in the sequence. We refer to
these effects as sequence anomalies. Sequence anomalies cannot occur when only one
optimization is applied to a program.

7.3 Optimizations in Sequence

We first summarize the average effect of AT, ST, and SH-4 using a fixed sequence of
optimizations, and then summarize the results for each particular optimization.

Address-taken: For LU, GVR, and SR, the effectiveness of address-taken analysis is
within 0.1% of that of any alias analysis, no matter how precise it is. For AASR, it
is within 1%, and for SCCP, GVN and CP it is within 3% of the most precise alias
analysis. It is least effective on LICM, but still within 9% of the effectiveness of the
best possible analysis.



Table 5. Effectiveness of alias analysis on optimizations with all of them enabled in order “jg-
camnpxnmpu” (Geometric mean of normalized (w.r.t. NA) criteria counts with avg. deviation
from the mean as subscript)

Opt. Criteria AT ST SH-4 NA
Total

for NA
LU loops unrolled 687 9�9�9;:2<>= <�< ��? 6@7 949�9A:B<>= <�< ��? 687 949�9;:B<>= <�< ��? C 7 646�6;:B<>= <�<�< ? 1004
GVR loads replaced 6@7 9�949D:2<>= <�< �E? 6@7 949�9A:B<>= <�< �E? 687 949�9;:B<>= <�< �E? C 7 646�6;:B<>= <�<�< ? 16825
SCCP constants propagated 6@7 9�F�G;:2<>= <�H�I ? 6@7 9�G46A:B<>= <�H �J? 687 9�G46;:B<>= <�H �J? C 7 646�6;:B<>= <�<�< ? 25258
AASR calculations replaced 6@7 9�9�K;:2<>= <�<�I ? 6@7 949�9A:B<>= <�< �J? 687 949�9;:B<>= <�< �J? C 7 646�6;:B<>= <�<�< ? 7996
LICM expressions moved 6@7 9 C K;:2<>= �E�%�J? 6@7 9ML�6A:B<>= <�N�I ? 687 9ML�6;:B<>= <�N�I ? C 7 646�6;:B<>= <�<�< ? 2136
GVN expressions removed 6@7 9�GM9D:2<>= < � < ? 6@7 949�KO:B<>= < � < ? 687 949�KA:B<>= < � < ? C 7 646�6;:B<>= <�<�< ? 24054
CP copies propagated 6@7 9�GMP :2<>= < �J��? 6@7 94P�G :B<>= < � < ? 687 94P�G :B<>= < � < ? C 7 646�6 :B<>= <�<�< ? 21247
SR array loads replaced 6@7 9�949 :2<>= <�< ��? 6@7 949�9 :B<>= <�< �E? 687 949�P :B<>= <�< �J? C 7 646�6 :B<>= <�<�< ? 8143
UCR useless copies removed C 7 6 C G :2<>= < ��Q�? C 7 646�G :B<>= < �E��? C 7 646�F :B<>= < �E��? C 7 646�6 :B<>= <�<�< ? 101543

Table 6. Effectiveness of alias analysis on optimizations with only one optimization enabled at
a time (Geometric mean of normalized (w.r.t. NA) criteria counts with avg. deviation from the
mean as subscript)

Opt. Criteria AT ST SH-4 NA
Total

for NA
LU loops unrolled 687 949�9;:2<>= <�< ��? 6@7 9�949;:2<>= <�< ��? 6@7 9�949A:2<>= <�< ��? C 7 646�6;:2<>= <�<�< ? 1004
GVR loads replaced C 7 6�6�6;:2<>= <�<�< ? C 7 6�646;:2<>= <�<�< ? C 7 6�646A:2<>= <�<�< ? C 7 646�6;:2<>= <�<�< ? 10701
SCCP constants propagated 687 94L�P;:2<>= <�I�R ? 6@7 94L�P;:2<>= <JS%< ? 6@7 94L�PA:2<>= <JS%< ? C 7 646�6;:2<>= <�<�< ? 9357
AASR calculations replaced 6@7 9�94TD:2<>= < �U�J? 6@7 9�94T;:2<>= < �U�J? 6@7 9�94TA:2<>= < �U�J? C 7 646�6;:2<>= <�<�< ? 2675
LICM expressions moved 687 9�KMLD:2<>= � < �E? 6@7 9�KVLD:2<>= � < �E? 6@7 9�KVL;:2<>= � < �E? C 7 646�6;:2<>= <�<�< ? 1236
GVN expressions removed 687 9�W4T;:2<>= <�I �E? 6@7 9�P�WA:2<>= < � < ? 6@7 9�P�WO:2<>= < � < ? C 7 646�6;:2<>= <�<�< ? 13273
CP copies propagated 687 9�F�P;:2<>= <�H �E? 6@7 9�F4P;:2<>= <�H �E? 6@7 9�F4PA:2<>= <�H �E? C 7 646�6;:2<>= <�<�< ? 9203
SR array loads replaced 687 9�9�P;:2<>= <�< �J? 6@7 9�949;:2<>= <�< ��? C 7 6�646A:2<>= <�< �E? C 7 646�6;:2<>= <�<�< ? 5135

Steensgaard and Shapiro-Horwitz (SH-4): Steensgaard and Shapiro-Horwitz (SH-4)
essentially have the same effect on all the optimizations we considered. For LU, GVR,
AASR, and SR, they are within 0.1% of the most precise analysis. For GVN, they are
within 1%, for CP, within 1.5%, and for SCCP, within 3% of the best possible analysis.
Again, they are least effective on LICM, but still within 6% of the most precise alias
analysis.
LU: Very little opportunity (only 0.1%) is left for improving LU beyond what is already
achieved by applying AT, ST, or SH-4. We also found that for each program, exactly the
same number of loops were unrolled when using AT, ST and SH-4. For only 3 programs
(175.vpr, 300.twolf and 099.go), LU unrolled a few more loops when “no aliases” (NA)
is assumed.
GVR: GVR behaved exactly like LU.
SCCP: ST and SH-4 already achieve about 97% of what NA achieves. In our exper-
iments, ST and SH-4 behaved identically with respect to SCCP on all programs. For
only 4 programs (loader, simulator, flex and 175.vpr), ST and SH-4 triggered more con-
stant propagation than AT did. However, for about 40% (14 out of 36) of the programs,
there is still a little room to improve SCCP.



AASR: The room for improvement is less than 1% and it is, in fact, about 0.1% with
respect to ST and SH-4. For each program, AASR behaved identically with respect to
ST and SH-4 and for only 3 programs (04.bisect, simulator, and 175.vpr) did applying
ST or SH-4 instead of AT have any positive impact. For only 2 programs (04.bisect
and simulator), application of NA instead of ST or SH-4 influenced ASSR positively.
However, a sequence anomaly occurs for 099.go when NA is assumed.

LICM: The room for improvement is about 9% with respect to AT and 6% with re-
spect to ST and SH-4. However, the large improvement opportunity with respect to AT
is slightly misleading because for half of the programs (3 out of 6) on which LICM
improved when NA was applied instead of AT, the number of expressions removed was
quite low (AT vs. NA: 1 vs. 3 for 01.qbsort, 2 vs. 6 for loader, 1 vs. 2 for 181.mcf).
For LICM, too, ST and SH-4 behaved identically for all programs and for only 2 pro-
grams (compress and simulator) had more positive impact than AT. However, a se-
quence anomaly occurs again for 099.go when NA is assumed.

GVN: The room for improvement is about 2% with respect to AT and about 1% with
respect to ST and SH-4. Again, ST and SH-4 behaved identically on all programs, for 15
programs ST and SH-4 improved over AT, and for 14 programs NA improved over ST
and SH-4. Two sequence anomalies occurred: one with 099.go, when NA was assumed,
and another one with 04.bisect when either ST, SH-4 or NA was applied instead of AT.

CP: The room for improvement is slightly more than 2% with respect to AT and
about 1.5% with respect to ST and SH-4. For 3 programs (129.compress, simulator
and 175.vpr) ST improved over AT, for one program (197.parser) SH-4 improved over
ST and for 11 programs NA improved over SH-4. For CP, five sequence anomalies oc-
curred. For one program (099.go), AT was the most effective alias analysis for CP and
NA was the least effective one. For another program (197.parser), SH-4 was the most
effective analysis and both ST and NA were the least effective ones. For yet another
program (300.twolf), AT was the most effective analysis and the rest were identical to
each other. A similar pattern occurred with ST for 256.bzip2. For 186.crafty, AT was
better than ST and SH-4, but the largest number of copies were propagated with NA.

SR: Alias analysis seemed to have very little impact on SR and the only room for im-
provement, if any, is around 0.1%. Only 4 programs (256.bzip2, 197.parser, 175.vpr and
099.go) were slightly affected. However, the effect did not seem to have any particular
trend.

UCR: UCR depends on the form of the SSA graph and how other optimizations change
that graph. Alias analysis influences UCR in a very complex fashion. However, in our
experiments, a more precise alias analysis created fewer useless copy statements than a
less precise one.

7.4 Optimizations Enabled Independently

Table 6 summarizes the results obtained by enabling each optimization independently.
This table is structured almost identically to Table 5. It does not include UCR since
Scale need not perform UCR if no other optimization is applied. Fig. 3 represents the
data in a bar graph.



Effectiveness of Alias Analysis on Optimizations
(All Optmizations are Enabled)

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02

SR

CP

GVN

LICM

AASR

SCCP

GVR

LU

O
pt

im
iz

at
io

ns

Number of Optimizations Performed 
(Normalized w.r.t. NA)

AT
ST
SH-4
NA

Fig. 2. Effectiveness of alias analysis on opti-
mizations (all optimizations enabled).

Effectiveness of Alias Analysis on Optimizations
(Only One Optimization Enabled at a Time)

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02

SR

CP

GVN

LICM

AASR

SCCP

GVR

LU

O
pt

im
iz

at
io

ns
Number of Optimizations Performed 

(Normalized w.r.t. NA)

AT
ST
SH-4
NA

Fig. 3. Effectiveness of alias analysis on opti-
mizations (one optimization enabled at a time).

From the last column of Table 6, we observe that optimization opportunity is, in
general, greatly reduced when each optimization is applied independently of others.
For all optimizations except Scalar Replacement, ST and SH-4 behave identically on
all programs. We first summarize the trends, and then examine each optimization.
Address-taken: For GVR, address-taken analysis is as good as any alias analysis. For
LU and SR, its effectiveness is within 0.2%, for AASR, within 1%, and for SCCP, GVN,
and CP, within 5% of that of the most precise analysis. For LICM, it is within 8% of the
best possible analysis.
Steensgaard and Shapiro-Horwitz (SH-4): Steensgaard and Shapiro-Horwitz (SH-4)
essentially have the same effect on all the optimizations we consider. For GVR, they are
as good as the most precise analysis. For LU and SR, they are within 0.1%, for AASR,
within 1%, for GVN, within 1.5%, and for SCCP and CP, within 5% of the effectiveness
of the best possible alias analysis. Again, they are least effective on LICM, but still
within 8% of the best possible analysis.
LU: This optimization behaved exactly in the same way in all aspects as it did with
all optimizations enabled. This similarity comes from the fact that LU was the first
optimization in the sequence of optimizations applied on programs in the previous set
of experiments.
GVR: Alias analysis precision does not have any effect.
SCCP: For SCCP, the improvement opportunity is slightly more than 5%. For 13 pro-
grams, NA had a more positive impact on SCCP compared to ST and SH-4. For only
one program (175.vpr), ST and SH-4 influenced SCCP more positively than did AT.
AASR: AT, ST, and SH-4 behaved identically for every program. For only 2 programs
(04.bisect and simulator) further improvement (less that 1%) is possible.



LICM: About 8% improvement is possible for LICM. For each program, LICM was
influenced identically by AT, ST, and SH-4. For 7 programs, NA exposed more opti-
mization opportunities than did AT, ST or SH-4.

GVN: The margin for improvement is about 5% with respect to AT and about 1.5% with
respect to ST and SH-4. For 10 programs, ST and SH-4 proved to be more effective than
AT and for 13 programs, NA exposed more optimization opportunities than ST or SH-4.

CP: The room for improvement is slightly more than 3%. For each program, the impact
of AT, ST and SH-4 on CP were identical. For 12 programs, there is a gap between
ST/SH-4 and NA.

SR: Alias analysis precision has very little effect.

8 Conclusion

Our “assume no aliases” methodology provides upper bound analysis that is surpris-
ingly tight for scalar optimizations and easy to implement. Our conclusions are ex-
pressly for the domain of scalar optimizations, and show that there is little room to
improve scalar optimization by improving alias analysis. By studying this upper bound
for other clients, researchers can explore the limits of alias analysis. When the bound
and analysis match, there is no need to test more precise analyses, and in these cases,
the methodology obviates an entire class of iterative testing.

Within other domains, such as error detection and memory leak detection, precise
pointer disambiguation is either required for correctness or critical for good perfor-
mance [18, 19]. However, this upper bound methodology can provide additional insight
into optimization-program pairs that warrant further study. If an optimization applied to
a program produces far fewer transformations than the number of transformations per-
mitted in upper bound analysis, this case may benefit from more precise alias analysis
and should be investigated further.

References

1. L. O. Andersen. Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen, May 1994.

2. T. Austin. Pointer-intensive benchmark suite, version 1.1.
http://www.cs.wisc.edu/ X austin/ptr-dist.html, 1995.

3. D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual function calls. In ACM
Conference Proceedings on Object–Oriented Programming Systems, Languages, and Appli-
cations, pages 324–341, San Jose, CA, Oct. 1996.

4. P. Briggs, K. D. Cooper, and L. T. Simpson. Value numbering. Software—Practice and
Experience, 27(6):701–724, June 1997.

5. J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In Proceedings of the 20th Annual ACM Symposium
on the Principles of Programming Languages, pages 232–245, Charleston, SC, Jan. 1993.

6. F. Chow, S. Chan, R. Kennedy, S. Lo, and P. Tu. A new algorithm for partial redundancy
elimination based on SSA form. In Proceedings of the SIGPLAN ’97 Conference on Pro-
gramming Language Design and Implementation, pages 273–286, Las Vegas, NV, June 1997.



7. F. Chow, S. Chan, S. Liu, R. Lo, and M. Streich. Effective representation of aliases and
indirect memory operations in SSA form. In T. Gyimothy, editor, International Conference
on Compiler Construction, volume 1060 of Lecture Notes in Computer Science, pages 253–
267, Linkoping, Sweden, Apr. 1996. Springer-Verlag.

8. R. A. Chowdhury, P. Djeu, B. Cahoon, J. H. Burrill, and K. S. McKinley. The limits of alias
analysis for scalar optimizations. Technical report, University of Texas at Austin, Oct. 2003.
http://www.cs.utexas.edu/users/mckinley/papers/alias-tr-2003.ps.gz.

9. K. D. Cooper and K. Kennedy. Fast interprocedural alias analysis. In Proceedings of the
16th Annual ACM Symposium on the Principles of Programming Languages, pages 49–59,
1989.

10. K. D. Cooper and J. Lu. Register promotion in C programs. In Proceedings of the SIGPLAN
’97 Conference on Programming Language Design and Implementation, pages 308–319, Las
Vegas, NV, June 1997.

11. R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. An efficient method of com-
puting static single assignment form. In Proceedings of the 16th Annual ACM Symposium
on the Principles of Programming Languages, pages 25–35, Austin, TX, Jan. 1989.

12. M. Das, B. Liblit, M. Fahndrich, and J. Rehof. Estimating the impact of scalable pointer
analysis on optimization. In The 8th International Static Analysis Symposium, volume 2126
of Lecture Notes in Computer Science, pages 260–278, Paris, France, July 2001. Springer-
Verlag.

13. A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based alias analysis. In Proceedings
of the SIGPLAN ’98 Conference on Programming Language Design and Implementation,
pages 106–117, Montreal, June 1998.

14. A. Diwan, K. S. McKinley, and J. E. B. Moss. Using types to analyze and optimize object-
oriented programs. ACM Transactions on Programming Languages and Systems, 23(1):30–
72, Jan. 2001.

15. A. Diwan, J. E. B. Moss, and K. S. McKinley. Simple and effective analysis of statically-
typed object-oriented languages. In ACM Conference Proceedings on Object–Oriented Pro-
gramming Systems, Languages, and Applications, pages 344–355, San Jose, CA, Oct. 1996.

16. M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-to analysis
in the presence of function pointers. In Proceedings of the SIGPLAN ’94 Conference on
Programming Language Design and Implementation, pages 242–256, June 1994.

17. R. Ghiya and L. J. Hendren. Putting pointer analysis to work. In Proceedings of the 25th
Annual ACM Symposium on the Principles of Programming Languages, San Diego, CA, Jan.
1998.

18. S. Z. Guyer and C. Lin. Client-driven pointer analysis. In International Static Analysis
Symposium, pages 214–236, San Diego, CA, June 2003.

19. D. L. Heine and M. S. Lam. A practical flow-sensitive and context-sensitive C and C++
memory leak detector. In Proceedings of the SIGPLAN 2003 Conference on Programming
Language Design and Implementation, pages 168–181, San Diego, CA, June 2003.

20. M. Hind and A. Pioli. Assessing the effects of flow-sensitivity on pointer alias analysis. In
The 5th International Static Analysis Symposium, volume 1503 of Lecture Notes in Computer
Science, pages 57–81, Pisa, Italy, Sept. 1998. Springer-Verlag.

21. M. Hind and A. Pioli. Which pointer analysis should I use? In Proceediings of the ACM SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA’00), pages 112–
123, Portland, OR, Aug 2000.

22. W. Landi, B. G. Ryder, and S. Zhang. Interprocedural modification side effect analysis with
pointer aliasing. ACM SIGPLAN Notices, 28(6):56–67, 1993.

23. D. Liang and M. J. Harrold. Efficient points-to analysis for whole-program analysis. In Pro-
ceedings of the 7th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering, pages 199–215, Toulouse, France, Sept. 1999.



24. K. S. McKinley, J. Burrill, B. Cahoon, J. E. B. Moss, Z. Wang, and C. Weems. The Scale
compiler. Technical report, University of Massachusetts, 2001. http://ali-www.cs.umass.-
edu/ X scale/.

25. E. Ruf. Context-insensitive alias analysis reconsidered. In Proceedings of the SIGPLAN ’95
Conference on Programming Language Design and Implementation, pages 13–22, La Jolla,
CA, June 1995.

26. Rutgers. PROLANGS benchmark suite, data programs.
http://www.prolangs.rutgers.edu/public.html, 1999.

27. M. Shapiro and S. Horwitz. The effects of the precision of pointer analysis. In P. V. Henten-
ryck, editor, Lecture Notes in Computer Science, 1302, pages 16–34. Springer-Verlag, 1997.
Proceedings from the 4th International Static Analysis Symposium.

28. M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analysis. In Pro-
ceedings of the 24th Annual ACM Symposium on the Principles of Programming Languages,
pages 1–14, Paris, France, Jan. 1997.

29. B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of the 23rd Annual
ACM Symposium on the Principles of Programming Languages, pages 21–24, St. Petersburg,
FL, Jan. 1996.

30. P. A. Stocks, B. G. Ryder, W. Landi, and S. Zhang. Comparing flow and context sensitivity on
the modifications-side-effects problem. In Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 21–31, Clearwater, FL, Mar. 1998.

31. O. Traub, G. Haolloway, and M. D. Smith. Quality and speed in linear-scan register allo-
cation. In Proceedings of the SIGPLAN ’98 Conference on Programming Language Design
and Implementation, pages 142–151, Montreal, June 1998.

32. Z. Wang, D. Burger, K. S. McKinley, S. Reinhardt, and C. C. Weems. Guided region
prefetching: A cooperative hardware/software approach. In Proceedings of the 30th Interna-
tional Symposium on Computer Architecture, pages 388–398, San Diego, CA, June 2003.

33. M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches. ACM
Transactions on Programming Languages and Systems, 13(2):181–210, Apr. 1991.

34. R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C programs.
In Proceedings of the SIGPLAN ’95 Conference on Programming Language Design and
Implementation, pages 1–12, La Jolla, CA, June 1995.

35. S. H. Yong, S. Horwitz, and T. Reps. Pointer analysis for programs with structures and
casting. In Proceedings of the SIGPLAN ’99 Conference on Programming Language Design
and Implementation, pages 91–103, Atlanta, GA, June 1999.


