Efficient Cache-oblivious String Algorithms for

Bioinformatics *

Rezaul Alam Chowdhury!, Hai-Son Le?, and Vijaya Ramachandran!
! Department of Computer Sciences, University of Texas, Austin, TX 78712, USA,
{shaikat,vlr}@cs.utexas.edu
2 Google Inc., Mountain View, CA 94043, USA,

haison30000@mail.utexas.edu

Abstract. We present theoretical and experimental results on cache-
efficient and parallel algorithms for some well-studied string problems in
bioinformatics: global pairwise sequence alignment and median (both with
affine gap costs), and RNA secondary structure prediction with simple
pseudoknots. For each problem we present cache-oblivious algorithms
that match the best-known time complexity, match or improve the best-
known space complexity, improve significantly over the cache-efficiency
of earlier algorithms, and have efficient parallel implementations.

We present experimental results that show that these cache-oblivious
algorithms run significantly faster than currently available software.
Our methods are applicable to several other problems including local
alignment, generalized global alignment with intermittent similarities,
multiple sequence alignment under several scoring functions such as ‘sum-
of-pairs’ objective function and RNA secondary structure prediction with
simple pseudoknots using energy functions based on adjacent base pairs.

1 Introduction

Algorithms for sequence alignment and for RNA secondary structure are some
of the most widely studied and widely-used methods in bioinformatics. Many of
these algorithms are dynamic programs that run in polynomial time, and many
have been further improved in their space usage [10]. However, most of these
algorithms are deficient with respect to cache-efficiency.

Cache-efficiency and Cache-oblivious Algorithms. Memory in modern
computers is typically organized in a hierarchy with registers in the lowest level
followed by L1 cache, L2 cache, L3 cache, main memory, and disk, with the ac-
cess time of each memory level increasing with its level. Data is transferred in
blocks between adjacent levels in order to amortize the access time cost.

The two-level I/0 model [1] is a simple abstraction of the memory hierarchy
that consists of an internal memory (or cache) of size M, and an arbitrarily
large external memory partitioned into blocks of size B. The I/O complexity or
cache-complexity of an algorithm is the number of blocks transferred between
these two levels on a given input.

The ideal-cache model [7] is an extension of the two-level I/O model that
assumes an optimal offline cache replacement policy, and requires that algorithms
remain oblivious of cache parameters M and B. A well-designed cache-oblivious
algorithm is flexible and portable, and simultaneously adapts to all levels of

* This work was supported in part by NSF Grant CCF-0514876 and NSF CISE Re-
search Infrastructure Grant EIA-0303609.

a multi-level memory hierarchy. Standard cache replacement methods such as
LRU allow for a reasonable approximation to an ideal cache.

Our Results. In this paper we present an efficient cache-oblivious framework
for solving a general class of recurrence relations that are amenable to solution
by dynamic programs with ‘local dependencies’ (see Section 2). In principle our
framework can be generalized to any number of dimensions, although we study
explicitly only the 2- and 3-dimensional cases. We also show that our framework
can be parallelized with little effort, and analyze its parallel performance (in
Section 3). We use this framework to develop cache-oblivious algorithms for three
well-known string problems in bioinformatics: global pairwise sequence alignment
and median (both with affine gap costs), and RNA secondary structure prediction
with simple pseudoknots (Section 4). We present extensive experimental results
showing that our algorithms are faster than current software for these problems
(Section 5).

The results in this paper extend and generalize our earlier work in [5], where
we presented a relatively simple cache-oblivious algorithm for finding the longest
common subsequence (LCS) of two sequences. In [5] we also presented more in-
volved cache-oblivious algorithms for other problems including pairwise sequence
alignment with general gap costs and RNA secondary structure without pseu-
doknots.

We note that often in practice, biologically significant solutions are sought
that may be sub-optimal under the precise optimization measure used. However,
in such cases, an algorithm for the precise optimal solution is often used as a
subroutine in conjunction with other methods that determine biological features
not captured by the combinatorial problem specification. Therefore, our algo-
rithms are likely to be of use even when such solutions are sought that are not
necessarily optimal under our definitions.

2 CO Framework for a DP Class with Local Dependencies

Given d > 1 sequences S; = $;18i2..-Sin, 1 <14 < d, and functions h(-) and
f(-,-,-), we consider dynamic programs that compute entries of a d-dimensional
matrix ¢[0 : n,0 : n,...,0 : n] as follows, where i = 41,i9,...,iq and S; is the
tuple (s1,i,, S2,iy,--., Sd,i,) containing the ¢;-th symbol of S; in j-th position.
. h((i if 34, =0,
ci]= {f(((<1 >>7)Si7 clin —1:id1,i2 — 1:ido, .. ig—1 :id]\c[i]) otherjwise. (21)
Function f can be arbitrary except that it is allowed to use exactly one cell
from its third argument to compute the final value of c[i1, iz, ...,iq] (though it
can consider all cells), and we call that specific cell the parent cell of c[i1, ia,. .., i4].
Typically, two types of outputs are expected when evaluating this recurrence:
(7) the final value of c¢[n,n,...,n], and (i7) the traceback path starting from
c[n,n,...,n]. The traceback path from any cell c[i1, i2, . .., i4] is the path following
the chain of parent cells through c that ends at some c[i}, i5, . .., ij] with 3 i, = 0.
Recurrence 2.1 can be evaluated iteratively in O (n?) time, O (n?) space
and O (n?/B) cache-misses. Though space can be reduced to O (n?~') using

Hirschberg’s technique [10], the cache-complexity remains unchanged if the trace-
back path must also be computed. If a traceback path is not required it is easy to
reduce space requirement to O (n?~1) even without using Hirschberg’s technique,

and the cache-complexity of the algorithm can be improved to O (nd /(BM T))

using the cache-oblivious stencil-computation technique [8].
In Section 2.1 we present a cache-oblivious algorithm for solving the 3-
dimensional version (i.e., d = 3) of recurrence 2.1 along with a traceback path in

O (n?) time, O (n?) space and O (n?’/(B\/M)) cache misses. It improves over

the previous best cache-miss bound by at least a factor of v/M, and reduces
space requirement by a factor of n when compared with the traditional iterative
solution. In Sections 4.2 and 4.3 we use this algorithm to solve median of three
sequences and RNA secondary structure prediction with simple pseudoknots.

In the technical report [4] we present a simpler cache-oblivious algorithm
that solves the 2-dimensional version (i.e., d = 2) of recurrence 2.1. In Section
4.1 we use this algorithm for global pairwise sequence alignment with affine gap
costs.

2.1 Cache-oblivious Algorithm for Solving Recurrence 2.1 in 3D.
Our algorithm works by decomposing the given cube ¢[1 : n,1 : n,1 : n] into
smaller subcubes, and is based on the observation that for any such subcube
we can recursively compute the entries on its output boundary (i.e., on its right,
front and bottom boundaries) provided we know the entries on its input boundary
(i.e., entries immediately outside of its left, back and top boundaries). Since the
subcubes share boundaries, when the output boundaries of all subcubes are
computed the problem of finding the traceback path through the entire cube is
reduced to the problem of recursively finding the fragments of the path through
the subcubes. Though we compute all n3 entries of ¢, at any stage of recursion
we only need to save the entries on the boundaries of the subcubes and thus
use only O (n2) space. The divide and conquer strategy also improves locality
of computation and consequently leads to an efficient cache-oblivious algorithm.

As noted before, Hirschberg’s technique [10] can also be used to solve recur-
rence 2.1 along with a traceback path. Unlike our algorithm, however, Hirschberg’s
approach decomposes the problem into two subproblems of typically unequal
size, and uses a complicated process involving the application of the traditional
iterative DP in both forward and backward directions to perform the decompo-
sition. In contrast, our algorithm always applies DP in one direction and thus is
simpler to implement.

We describe below the two parts of our algorithm. The pseudocode for both
parts can be found in Figure 1 of the technical report [4].

COMPUTE-BOUNDARY-3D. Given the input boundary of c[i; : 2, j1 : jo, k1 :
k2] this function recursively computes its output boundary. For simplicity of
exposition we assume that io — i3 = jo — j1 = ko — k1 = 29 — 1 for some integer
q>0.

If ¢ = 0, the function can compute the output boundary directly using re-
currence 2.1, otherwise it decomposes its cubic computation space @ (initially

Q =c[l:n,1:n,1:n])into 8 subcubes Q;;x, 1 < i,7,k < 2, where Q; ;x
denotes the subcube that is i-th from the left, j-th from the back and k-th
from the top. It then computes the output boundary of each subcube recursively
as the input boundary of the subcube becomes available during the process of
computation. After all recursive calls terminate, the output boundary of @ is
composed from the output boundaries of the subcubes.

Analysis. Let I1(n) be the cache-complexity of COMPUTE-BOUNDARY-3D on
sequences of length n. Then I; (n) = O (1 4+ n?/B) if the computation can be per-
formed entirely inside the cache. Otherwise, I1(n) = 811 (n/2) + O (1 + n?/B).

Solving the recurrence, I1(n) = O (ng/M +n3/(BV M)) It is straight-forward
to show that the algorithm runs in O (n3) time and O (n2) space.

COMPUTE-TRACEBACK-PATH-3D. Given the input boundary of c[i; : is, j; :
Jo, k1 : ko] and the entry point of the traceback path on the output boundary
this function recursively computes the entire path.

If ¢ = 0, the traceback path can be updated directly using recurrence 2.1,
otherwise it performs two passes: forward and backward. In the forward pass it
computes the output boundaries of all subcubes except Q22,2 as in COMPUTE-
BOUNDARY-3D. After this pass the algorithm knows the input boundaries of all
eight subcubes, and the problem reduces to recursively extracting the fragments
of the traceback path from each subcube and combining them. In the backward
pass the algorithm starts at (222 and updates the traceback path by calling
itself recursively on the subcubes in the reverse order of the forward pass.

Analysis. Let I3(n) be the cache-complexity of COMPUTE-TRACEBACK-PATH-
3D on input sequences of length n each. Then Ir(n) = O (1+n?/B) if the
computation can be performed completely inside the cache. Otherwise, I2(n) =
415 (n/2) + 711 (n/2) + O (1 +n?/B) since the traceback path cannot intersect
more than 4 subcubes and hence at most 4 recursive calls will be made in the
backward pass. Solving the recurrence we obtain I (n) = O (n3/M + n3/(B\/M)> .

The algorithm runs in O (n®) time and O (n?) space as with Hirschberg’s scheme.

3 Parallel Implementation of the CO Framework
The framework in Section 2 has a simple parallel implementation that for general
d performs O (nd) work, uses O (ndil) space, incurs O (nd/ (BMﬁ)) cache-

misses and terminates in O (nd/p + nlogz (d+1) Jog n) parallel steps when run on
p processors with private caches (see technical report [4] for details). This is the
parallel algorithm we implemented for our experiments in Section 5.

In this section we improve the parallel time complexity of our framework to
@ (nd /p+ n) while keeping the other bounds unchanged from above. We present
two different parallel implementations for the 3-dimensional case for distributed
and shared caches, respectively. Implementation for general d is similar.

3.1 Distributed Caches
We consider a parallel machine with p processors with each processor having a
private cache of size M and block size B.

PAR-COMPUTE-BOUNDARY-3D. This function decomposes its cubic com-
putation space Q (= ¢[1 : n,1 : n,1 : n]) into p? subcubes of size (n/\/p) x
(n/\/p) x (n/\/p) each. By Q;;r (1 < i,j,k < \/p) we denote the subcube
that is i-th from the left boundary of @, j-th from the back boundary and k-th
from the top boundary. Then the computation progresses in 3min(\/p,n) — 2
steps. In step ¢ (1 < ¢ < 3min(,/p,n) — 2) output boundaries of all Q; ; with
i1+ j+k = t+ 2 are computed in parallel using a modified version of COMPUTE-
BoOUNDARY-3D which for each cell on the output boundary also computes the
location where the traceback path from that cells hits the input boundary.

For p < n?, there are © (\/p) steps of parallel subcube computations re-
quiring O ((n/,/p)?) time each, and thus the entire computation terminates in
O (yp x (n//p)*) = O (n?/p) parallel time. For p > n?, there are © (n) steps of
O (1) time each and the computation completes in O (n) parallel time. The par-
allel time complexity of the algorithm is thus O (n3 /p+ n) It is straight-forward
to show that the algorithm performs O (n3) work and uses O (n2) space.

Since there are p3/2 calls to COMPUTE-BOUNDARY-3D on sequences of length
n//p and each of them is executed on a single processor, total number of cache-

misses incurred by all such calls is O (p3/2 X (n/\/ﬁ)3/(B\/M)) =0 (n3/(B\/M))

PAR-COMPUTE-TRACEBACK-PATH-3D. This function is similar to the se-
quential COMPUTE-TRACEBACK-PATH-3D given in Section 2.1 except for the
following differences.

Forward Pass: Instead of calling COMPUTE-BOUNDARY-3D described in Section
2.1 we call PAR-COMPUTE-BOUNDARY-3D described in this section.

Backward Pass: The fragment of the traceback path inside ()2 2 2 is extracted by
calling PAR-CoMPUTE-TRACEBACK-PATH-3D recursively. Now using the extra
information on traceback paths computed in the forward pass we can find in
constant time where the traceback path hits all other subcubes. Therefore, we
can execute the remaining (at most three) recursive calls to PAR-COMPUTE-
TRACEBACK-PATH-3D in parallel.

Let T,(n) denote the parallel running time of PAR-COMPUTE-TRACEBACK-
PaTH-3D when called with p processors. Let 7)) (n) denote the same for PAR-
ComMPUTE-BOUNDARY-3D. Then for p < n?, Tp(n) < 7-T)(n/2) + T,(n/2) +
T,/3(n/2) + © (n?/p). Solving we obtain, T,(n) = O (n®/p). Therefore, for all
values of p, T,(n) = O (n3/p—|— n) The algorithm performs O (n3) work and

uses O (n?) space, and incurs O (n3/(B\/ M)) cache-misses.

3.2 Shared Caches

We consider a parallel machine with p processors sharing a single cache of size
M and block size B.

The algorithms are similar to the sequential algorithms given in Section 2.1
until we reach a subproblem involving sequences of length © (\/]3) At that point
we compute all entries of the cubic computation space and store all of them in
O (p*/?) space. We compute the entries (i.e., 1 x 1 x 1 subcubes) of the cube

using the parallel subcube computation method described in Section 3.1 for PAR-
CoMPUTE-BOUNDARY-3D, and then extract the traceback path in © (,/p) time
by following the parent cells through the cube sequentially.

It is not difficult to prove that the algorithms as described above perform
O (n®) work, use O (n? + p*/?) space and terminate in O (n®/p+n) parallel
steps. Assuming M = {2 (p3/2), the cache complexity of the algorithms can be

shown to be O (n3/(B\/ M)) We omit the proofs from here for lack of space.

4 Some Applications of the Cache-oblivious Framework

4.1 Pairwise Global Sequence Alignment with Affine Gap Penalty.

Given two strings X = x122...2y and Y = y1y2 ... y, over a finite alphabet X,
an alignment of X and Y is a matching M of sets {1,2,...,m} and {1,2,...,n}
such that if (4,7), (¢',7') € M and i < i’ hold then j < j/ must also hold [12].
The i-th letter of X or Y is said to be in a gap if it does not appear in any pair
in M. Given a gap penalty g and a mismatch cost s(a,b) for each pair a,b € X,
the basic (global) pairwise sequence alignment problem asks for a matching Mo
for which (m +n — |Mopi|) X g + 324 pyen,,, $(a;b) is minimized [12].

For simplicity of exposition we will assume m = n for the rest of this section.

The formulation of the basic sequence alignment problem favors a large num-
ber of small gaps while real biological processes favor the opposite. The alignment
can be made more realistic by using an affine gap penalty [9,3] which has two
parameters: a gap introduction cost g; and a gap extension cost g.. A run of k
gaps incurs a total cost of g; + ge X k.

In [9] Gotoh presented an O (n?) time and O (n?) space DP algorithm for
solving the global pairwise alignment problem with affine gap costs. The algo-
rithm incurs O (n2 / B) cache misses. Gotoh’s algorithm solves the following DP
recurrences.

G(0,7) + ge ifi=0andj>0

D(i,j) = {min{D(i -1,7),Gl—1,5)+gi} +ge ifi>0andj>0. (4.2)
.~ [G(,0) + ge ifi>0andj=0
I(Z’J)*{min{](i7j—1)7G(i7j—1)+gi}+9e ifi>0andj>0. (43)
0 ifi=0andj=0
o) gitgexy ifi=0andj>0
C.4) = gi + ge X 1 ifi>0andj:0(4'4)

min{D(¢,5),1(i,5),G(E — 1,5 — 1) + s(z4s,y;)} if i >0and j > 0.

The optimal alignment cost is min {G(n,n), D(n,n), I(n,n)} and an optimal
alignment can be traced back from the smallest of G(n,n), D(n,n) and I(n,n).

Cache-oblivious Implementation. Recurrences 4.2 - 4.4 can be viewed as a
single recurrence evaluating a single matrix ¢[0 : n,0 : n] with three fields: D, T
and G. This recurrence matches recurrence 2.1 with d = 2 (see technical report
[4] for explanation), and thus can be solved using our cache-oblivious framework
in O (n?) time, O (n) space, and only O (n?/(BM)) cache misses.

6

4.2 Median of Three Sequences.

The Median problem is the problem of obtaining an optimal alignment of three
sequences using an affine gap penalty. The median sequence under the optimal
alignment is also computed. Knudsen [11] presented a dynamic program to find
multiple alignment of N sequences, each of length n in O (16.81VnV) time and
O (7.4428nN) space. For the median problem, this gives an O (n?) time and
space algorithm that incurs O (n3 /B) cache-misses. An Ukkonen-based algo-
rithm is presented in [15], which performs well especially for sequences whose
(3-way) edit distance ¢ is small. On average, it requires O (n+ 63) time and
space [15].

Knudsen’s Algorithm [11] for three sequences (say, X = z122...2,, ¥ =
Y1Y2 ... Yn and Z = 2122 ..., 2z,) is a dynamic program over a three-dimensional
matrix K. Each entry K (i, j, k) is composed of 23 fields. Each field corresponds
to an indel configuration g, which describes how the last characters z;, y; and
zk, are matched. A residue configuration defines how the next three characters of
the sequences will be matched. Each configuration is a vector e = (e, e, €3, €4),
where e; € {0,1}, 1 < i < 4. The entry ¢;, 1 < i < 3 indicates if the aligned
character of sequence 7 is a gap or a residue, while e4 corresponds to the aligned
character of the median sequence. There are 10 residue configurations out of
16 possible ones. The recursive step calculates the value of the next entry by
applying residue configurations to each indel configuration. We define v(e, ¢) = ¢’
if applying the residue configuration e to the indel configuration ¢ gives the indel
configuration ¢’. The recurrence relation used by Knudsen’s algorithm is:
0 ifi=7j=k=0Aq=qo
o0 ifi=j=k=0Aq# q

K@, 5,k)y + Ge, .
"’(M(i/,j/,k)/(;ﬁ(i,j,k)q } otherwise.

K(i7j7 k)q = (45)

Mile,q/:q=v(e,q") {

where ¢, is the configuration where all characters match, i’ =i —ey, 7/ = j — e
and k' = k — e3, M1 jo ky=(i,j,k) 18 the matching cost between characters of the
sequences, and G, 4 is the cost for introducing or extending the gap.

The M and G matrices can be pre-computed. Therefore, Knudsen’s algorithm

runs in O (n?) time and space with O (n®/B) cache-misses.

Cache-oblivious Algorithm. In the technical report [4] we show how to reduce
recurrence 4.5 to an instance of the general recurrence 2.1 with d = 3 using a sim-
ple transformation. Therefore, function COMPUTE-BOUNDARY-3D (see Section
2.1) can be used to compute the matrix K and function COMPUTE-TRACEBACK-
PATH-3D to retrieve an optimal alignment and the median in O (n3) time,

O (n?) space and O (nB/(B\/M)) cache-misses.

4.3 RNA Secondary Structure Prediction with Simple Pseudoknots.
A single-stranded RNA can be viewed as a string X = xjxs...x, over the
alphabet {A,U, G, C} of bases. An RNA strand tends to give rise to interesting
structures by forming complementary base pairs with itself. An RNA secondary
structure (w/o pseudoknots) is a planar graph with the nesting condition: if
{z;,z;} and {zk, z;} form base pairs and ¢ < j, k < ! and ¢ < k hold then either

i<k<l<jori<j<k<l][19,16,2]. An RNA secondary structure with
pseudoknots is a structure where this nesting condition is violated [16, 2].

In [2] Akutsu presented a DP to compute RNA secondary structures with
maximum number of base pairs in the presence of simple pseudoknots (see [2]
for definition) which runs in O (n*) time, O (n®) space and O (n*/B) cache-
misses. In this Section we improve its space and cache complexities to O (n2)
and O (n4 / (B\/M)), respectively, without changing its time complexity.

We list below the DP recurrences used in Akutsu’s algorithm [2]. For every
pair (ig, ko) with 1 < iy < kg —2 < n — 2, recurrences 4.6 - 4.10 compute the
maximum number of base pairs in a pseudoknot with endpoints at the ip-th and
ko-th residues. The value computed by recurrence 4.10, i.e., Spseudo (%0, ko), is the
desired value. In recurrences 4.6 and 4.7, v(z,y) = 1 if (x,y) form a base pair,
otherwise v(x,y) = —oo. All uninitialized entries are assumed to have value 0.

5(7]7)_{va a;) if io <i<j >k,

(as (4.6)
v(ai,a;) + Smwax (i — 1,7+ 1,k)if io <i < j <k

(a], ar) ifip—1l=i<j—1=k—2,
S(Z‘y’)i{ ar) + Smax(i,j+1L,k—1)ifio <i<j<k. (4.7)

Sp(i—1,4,k), Sm(Ei—1,7,k),
Swm (i, j, k) = max SMAxlj+1k) ifip <i<j<k. (4.8)
SM 7]7 - 1) SR(Z .77 1)
SMAX Zv.]vk) = max{ SL(Z .77)7 SM(7‘7J7 k)? SR(iv.jv k) } (49)
Spseudo(i0, ko) = iogi%agcgko{ Smax (i, 5,k) } (4.10)

After computing all entries of Sarax for a fixed i, all Spseudo(t0, ko) values for
ko > ip+ 2 can be computed using 4.10 in O (n3) time and space and O (n3/B)
cache-misses. Since there are n — 2 possible values for ig, all Spseudo (90, ko) can
be computed in O (n4) time, O (ng) space and O (n4/B) cache-misses.

Finally, the following recurrence computes the optimal score S(1,n) for the
entire structure in O (n?) time, O (n?) space and O (n®/B) cache-misses [2|.

. Spseudo(t,7), S(i+ 1,5 —1)4+v(a:,a;),
S(0,9) = max{ ’ maiKZSj {(S(i, k- 1),29(1@](‘)} /) } (4.11)

Recurrence 4.11 can be evaluated in only O (n3 /(BVM)) cache-misses and
o (n2) space without changing the other bounds using our GEP framework [5].

Space Reduction. We now describe our space reduction result. Observe that

evaluating recurrence 4.10 requires retaining all O (n3) values computed by re-
currence 4.9. We avoid using this extra space by computing all required Spseudo (%0, ko)

values on the fly while evaluating recurrence 4.9. We achieve this goal by in-

troducing recurrence 4.12, replacing recurrence 4.10 with recurrence 4.13 for
seudor and using ST, instead of Spseudo for evaluating recurrence 4.11. All
uninitialized entries in recurrences 4.12 and 4.13 are assumed to have value —oo.
max{ Smax (4,4, k), Sp(i,7+1,k) }if io <i<j <k,

Se(i, 5, k) = {Sp(z',j+ 1,k) ifig<i>j<k (412

Spseudo(i0; ko — 1), } if ko > io + 2. (4.13)

S ..
mMaX;,<i<ko—1 {SP(Z, 0+ 1, ko)}

pseudo (%0, ko) = max {

We prove in the technical report [4] that for 1 < ig < kg —2 < n — 2,
S;/Dseudo (io, ko) = SPSBUdO (i07 ko)

Now observe that in order to evaluate recurrence 4.13 we only need the
values Sp(i,j, k) for j = igp + 1, and each entry (4,7,k) in recurrences 4.6 -
4.9 and 4.12 depends only on entries (-, 7,-) and (-, 5 + 1,-). Therefore, we will
evaluate the recurrences for j = n first, then for j = n — 1, and continue downto
j = 1ig + 1. Observe that in order to evaluate for j = j’ we only need to retain
the O (n?) entries computed for j = j’+ 1. Thus for a fixed ig all Sp(i, i+ 1, k)
and consequently all relevant S7 .4, (i0, ko) can be computed using only O (n?)
space, and the same space can be reused for all n values of ig.
Cache-oblivious Algorithm. The evaluation of recurrences 4.6 - 4.9 and 4.12
can be viewed as evaluating a single n X n X n matrix ¢ with five fields: Sy, Sg,
Sar, Spax and Sp. If we replace all j with n — j 41 in the resulting recurrence
it conforms to recurrence 2.1 for d = 3. Therefore, for any fixed iy we can use
CoMPUTE-BOUNDARY-3D from Section 2.1 to compute all entries Sp(,i9+1, k)
and consequently all relevant S, .4, (0, ko). Al S, ;. (i0, ko) values can be
computed by n applications (once for each ip) of COMPUTE-BOUNDARY-3D.

For any given pair (ig, ko) the pseudoknot with the optimal score can be
traced back cache-obliviously by calling COMPUTE-TRACEBACK-PATH-3D. There-
fore, the required RNA secondary structure can be computed cache-obliviously
in O (n*) time, O (n?) space and O (n4/(B\/M)> cache misses. Using an ex-
planation similar to that in Section 4.3 of the technical report [4] we can show
that the parallel algorithm in Section 3 can solve the problem in O (n*) work
and O (n*/p + n) parallel steps while keeping the other bounds unchanged.
Extensions. Our cache-oblivious framework also applies to several extensions of
the basic DP for simple pseudoknots [2]. See our technical report [4] for details.

5 Experimental Results

| Model || Processors | Speed | L1 Cache | L2 Cache | RAM |
Intel P4 Xeon 2 3.06 GHz | 8 KB (4-way) | 512 KB (8-way) | 4 GB

AMD Opteron 250 2 2.4 GHz |64 KB (2-way) | 1 MB (8-way) | 4 GB

AMD Opteron 850 8 2.2 GHz |64 KB (2-way)| 1 MB (8way) |32 GB

Table 1. Machines for experiments. All block sizes: 64 bytes. OS: Ubuntu Linux 5.10.

We ran our experiments on the machines listed in Table 1. We used the Cachegrind
profiler [17] for simulating cache effects. All our algorithms were implemented
in C++ (compiled with g++ 3.3.4) while some software packages we used for
comparison were written in C (compiled with gcc 3.3.4). Optimization parameter
-03 was used in all cases. Each machine was exclusively used for experiments.

We now describe our experimental results on pairwise sequence alignment
and the median problem. Results on RNA secondary structure prediction can
be found in the technical report [4].

5.1 Pairwise Global Sequence Alignment with Affine Gap Penalty.
We performed experimental evaluation of the algorithms in Table 2.

| Algorithm | Description || Time |Space| Cache Misses |
PA-CO our algorithm (see Section 4.1) O (n*)]|O0 (n)]O (n*/(BM))
PA-LS linear-space Gotoh [13] (our code) O (n*)|0(n)]| O(n?*/B)

PA-FASTA|linear-space Gotoh [13] (from fasta2 [14]) [|O (n*)|O (n)| O (n*/B)

Table 2. Pairwise sequence alignment algorithms used in our experiments.
Sequential Performance. For random sequences both PA-FASTA and PA-LS
always ran slower than PA-CO on AMD Opteron (see Figure 1), e.g., PA-FASTA
ran around 27% slower and PA-LS about 55% slower than PA-CO for sequences
of length 512 K. Relative performance of PA-CO improved over PA-FASTA
and PA-LS as sequence length increased. The trends were similar on Intel Xeon
except that improvements of PA-CO over PA-FASTA /PA-LS were more modest.

Runtimes of Pairwise Alignment Algorithms on AMD Opteron

for Random Sequences (Normalized w.r.t. PA-CO)

— & - PA-LS - —A - PA-FASTA —@— PA-CO|

16

15

running ime
(nomalized w£. PA.CO)
28 Lok

o

8K 18K 32K 64K 128K 266K 512K
sequence length (n)

Fig.1. Comparison of run-
ning times of pairwise se-
quence alignment algorithms
(see Table 2) on AMD
Opteron 250. All running
times are normalized w.r.t.
PA-CO. Each data point is
the average of 3 independent
runs on randomly generated
strings over { A, T,G,C }.

For real-world CFTR DNA sequences [18] PA-FASTA ran around 20%-30%
slower than PA-CO on AMD Opteron (see Table 3).

| Runtimes of PA-FASTA and PA-CO on CFTR DNA Sequences [18] (on Opteron)

| Sequence pairs with lengths (10°) | PA-FASTA (t1) | PA-CO (t2) | ratio (t1/t2)

human/baboon (1.80/1.51) 20h 34m 17h 23m 1.18
human /chimp (1.80/1.32) 19% 51m 15h 25m 1.29
baboon/chimp (1.51/1.32) 16h 43m 12h 43m 1.31
human /rat (1.80/1.50) 24h 1m 18h 16m 1.31
rat/mouse (1.50/1.49) 16h 49m 13h 55m 1.21

Table 3. Comparison of runtimes (on Opteron 250) of PA-CO with PA-FASTA (see
Table 2) on CFTR DNA sequences [18]. Column 4 gives the ratio of runtime of PA-
FASTA to that of PA-CO. Each number in cols 2 and 3 is the time for a single run.
Cache Performance. Though PA-FASTA causes fewer cache-misses than PA-
CO when the input fits into the cache, it incurs significantly more misses than
PA-CO as the input size grows beyond cache size (Figure 2). On AMD Opteron
PA-FASTA incurs upto 300 times more L1 misses and 2500 times more L2 misses
than PA-CO while on Intel Xeon the figures are 10 and 1000, respectively.

Parallel Performance. Our experimental results in Figure 3(a) show that PA-
CO achieves reasonable speed-up as the number of processors increases, and for
a fixed number of processors the speed-up factor improves with sequence length.
For example, with 8 processors PA-CO achieves a speed-up factor of 1.7 when
n = 8 K, and about 5 when n = 1024 K.

10

Ratio of Cache Misses Incurred by PA-FASTA to that Incurred by PA-CO for Random Sequences

[—®— L1 Cache —&— L2 Cache

(a) AMD Opteron 250 (b) Intel P4 Xeon

10,000.00
1,000.00 +100.00
100.00

10.00

Ratio of Cache-misses
(PAFASTAIPACO)
Ratio of Cache-misses

(PAFASTAI PACO)

128K
25K
1
2
4
8
5
2
128K
256K

sequence length (n) sequence length (n)

Fig. 2. Ratio of cache-misses incurred by PA-FASTA to that incurred by PA-CO (see
Table 2) for both L1 and L2 caches. Data was obtained using Cachegrind [17].

Speed-up Factors Achieved by Multithreaded Cache-oblivious Algorithms

on AMD Opteron 850 as the Number of Concurrent Threads (p) Vary

[—PpP=1 ——-m- p=2 ——<- p=-4 - ®- p=6 —-L—- p=28 |

(a) Pairwise Alignment (b) Median

speod-up factor
speed-up factor
(romalized wrs. p= 1)

(normalized w.rs. p =

05

0.04
128 256 512 1,024

sequence length (n)

Bk 18K a2k 64K 128K 256K S12K 1024 K
sequence length (m)

Fig. 3. Speed-up factors (w.r.t. unthreaded code) achieved by multithreaded cache-
oblivious pairwise alignment and median algorithms on 8-processor Opteron 850 as
number of threads (p) vary. Sequences were randomly generated over { A, T,G,C }.

5.2 Median of Three Sequences.

We evaluated the algorithms in Table 4. We used g; = 3, g. = 1 and a mismatch
cost of 1 in all experiments.

| Algorithm | Description || Time | Space [Cache Miss]
MED-CO our algorithm (see Section 4.2) O (n?) on* |0 (B"—\;ﬁ)

MED-Knudsen |Knudsen [11] (Knudsen’s code) O (n°) 0 (n”) O(n’/B

MED-H n?-space Knudsen (our code) O (n°) O (n°) O (n’/B

|
MED-ukk.alloc | Powell [15] (Powell’s code) || O (n+4°) [O(n+04°)| O(6°/B)
)

MED-ukk.checkp| Powell [15] (Powell’s code) ||O (" Jlr%%‘s) O(n+6%)| 0(5/B

Table 4. Median algorithms in experiments. Here, § = 3-way edit distance of sequences.

Sequential Performance. For random sequences MED-CO ran at least 1.45
times faster than MED-Knudsen and at least 1.25 times faster than MED-H
on Intel Xeon (see Figure 4(a)). MED-ukk.alloc and MED-ukk.checkp ran upto
3.3 times (for length 256) and 4.8 times (for length 640) slower than MED-CO,
respectively. The trends were similar on AMD Opteron (see Figure 4(b)). None of
MED-Knudsen, MED-ukk.alloc and MED-ukk.checkp could be run for sequences
longer than 640 due to their high space overhead on either machine.

11

Performance of Median Algorithms on Random Sequences (Normalized w.r.t. MED-CO)

— —B - MED-Knudsen - -¢ - MED-ukk.alloc - = - MED-ukk.checkp —-& - MED-H —@— MED-CO]

(a) Runtimes on Intel P4 Xeon (b) Runtimes on AMD Opteron 250

e
N
o 5.0 a e PO

2 oa
5 @ o

C0)
©
o o

running ime

(normalized w.r.t. MED-
running ime

(normalized w.r. MED.CO)

I
o o
Py

o
]
I3
[4
[l
»

e S UREUEE U - .

o o =
o @ o

2z 8 8 8 3 38 88 8¢ 8 8 8 & =28 8 8 3 3§88 2 88 8 88 &

sequence length (m) sequence length (n)

Fig. 4. Comparison of median algorithms (see Table 4). Figures (a) and (b) plot running
times on Intel P4 Xeon and AMD Opteron 250, respectively. MED-Knudsen, MED-
ukk.alloc and MED-ukk.checkp could not be run for sequences longer than 640. Each
data point is the average of 3 independent runs on random strings over { A, 7, G, C }.

For real-world 16S bacterial rDNA sequences from the Pseudanabaena group
[6] MED-Knudsen ran around 35-50% slower and MED-ukk.checkp upto 3.2
times slower than MED-CO on Intel Xeon. (see Table 5). Running time of MED-
ukk.checkp w.r.t. MED-CO degraded as the alignment cost increased. MED-
ukk.alloc could not be run on sequences with alignment cost larger than 299.
However, for small alignment costs both MED-ukk.alloc and MED-ukk.checkp
ran faster than MED-CO (see triplet 6 in Table 5).

Running times (in sec) on Intel Xeon for random triples of 165 Bacterial
rDNA Sequences from the Pseudanabaena Group [6] (runtime w.r.t. MED-CO)
#|| Lengths [Cost| MED-Knudsen | MED-ukk.alloc | MED-ukk.checkp [MED-CO
1][367 387 388]299 [722 (1.48) 512 (1.05) 601 (1.23) [487 (1.00)
2(|378 388 403|324 | 752 (1.42) —(-) 769 (1.45) [529 (1.00)
3(1342 367 389] 339 | 611 (1.35) —(-) 863 (1.91) [451 (1.00)
4]|342 370 474] 432 764 (1.44) —(-) 1,701 (3.20) | 531 (1.00)
5(]370 388 447] 336 —(-) —(-) 824 (1.49) [553 (1.00)
[6][367 388 389]260| 695 (1.42) [330 (0.67) | 380 (0.77) [491 (1.00)

Table 5. Triplets 1-5 were formed by choosing random sequences of length less than
500 from the Pseudanabaena group [6] while triplet 6 was chosen manually in order to
keep the alignment cost small. Columns 4-7 give time for a single run with the ratio
of that running time to the running time of MED-CO given within parentheses. A ‘—’
denotes that the corresponding algorithm could not be run due to high space overhead.

Parallel Performance. Figure 3(b) shows multithreaded MED-CO achieving

reasonable speed-up as the number of processors grow and reaching upto a speed-
up factor of 5.5 with 8 processors.

Acknowledgement. We thank Mike Brudno for providing us with the CFTR
DNA sequences, and David Zhao for median software packages.

References
1. A. Aggarwal and J. Vitter. The input/output complexity of sorting and related
problems. CACM, 31:1116-1127, 1988.
2. T. Akutsu. Dynamic programming algorithms for RNA secondary structure pre-
diction with pseudoknots. Discrete Appl. Math., 104:45-62, 2000.
3. S. Altschul and B. Erickson. Optimal sequence alignment using affine gap costs.
Bulletin of Math. Biol., 48:603—616, 1986.

12

10.

11.

12.
13.

14.

15.

16.

17.
18.

19.

. R. Chowdhury, H. Le, and V. Ramachandran. Efficient cache-oblivious string
algorithms for Bioinformatics. CS TR-07-03, UT Austin, 2007.

R. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming.
Proc. SODA, pp- 591-600, 2006.

T. DeSantis, I. Dubosarskiy, S. Murray, and G. Andersen. Comprehensive aligned
sequence construction for automated design of effective probes (CASCADE-P)
using 16S rDNA. Bioinformatics, 19:1461-1468, 2003.

M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-
rithms. Proc. FOCS, pp. 285-297, 1999.

M. Frigo and V. Strumpen. Cache-oblivious stencil computations. Proc. ICS, pp.
361-366, 2005.

O. Gotoh. An improved algorithm for matching biological sequences. JMB,
162:705-708, 1982.

D. Hirschberg. A linear space algorithm for computing maximal common subse-
quences. CACM, 18(6):341-343, 1975.

B. Knudsen. Optimal multiple parsimony alignment with affine gap cost using a
phylogenetic tree. Proc. WABI, pp. 433446, 2003. S/W package: multalign.tar.
J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesely, 2005.

E. Myers and W. Miller. Optimal alignments in linear space. CABIOS, 4(1):11-17,
1988

W. Pearson and D. Lipman. Improved tools for biological sequence comparison.
Proc. NAS-USA, 85:2444-2448 1988.

D. Powell, L. Allison and T. Dix. Fast, optimal alignment of three sequences
using linear gap cost. J. Theo. Biol., 207(3):325-336, 2000. S/W package:
align3str_checkp.tar.gz.

E. Rivas and S. Eddy. A dynamic programming algorithm for RNA structure
prediction including pseudoknots. JMB, 285(5):2053-68, 1999.

J. Seward and N. Nethercote. Valgrind. http://valgrind.kde.org/index.html

J. Thomas et al. Comparative analyses of multi-species sequences from targeted
genomic regions. Nature, 424:788-793, 2003.

M. Waterman. Introduction to Computational Biology. Chapman & Hall, 1995.

13

