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t. We present theoreti
al and experimental results on 
a
he-e�
ient and parallel algorithms for some well-studied string problems inbioinformati
s: global pairwise sequen
e alignment andmedian (both witha�ne gap 
osts), and RNA se
ondary stru
ture predi
tion with simplepseudoknots. For ea
h problem we present 
a
he-oblivious algorithmsthat mat
h the best-known time 
omplexity, mat
h or improve the best-known spa
e 
omplexity, improve signi�
antly over the 
a
he-e�
ien
yof earlier algorithms, and have e�
ient parallel implementations.We present experimental results that show that these 
a
he-obliviousalgorithms run signi�
antly faster than 
urrently available software.Our methods are appli
able to several other problems in
luding lo
alalignment, generalized global alignment with intermittent similarities,multiple sequen
e alignment under several s
oring fun
tions su
h as `sum-of-pairs' obje
tive fun
tion and RNA se
ondary stru
ture predi
tion withsimple pseudoknots using energy fun
tions based on adja
ent base pairs.1 Introdu
tionAlgorithms for sequen
e alignment and for RNA se
ondary stru
ture are someof the most widely studied and widely-used methods in bioinformati
s. Many ofthese algorithms are dynami
 programs that run in polynomial time, and manyhave been further improved in their spa
e usage [10℄. However, most of thesealgorithms are de�
ient with respe
t to 
a
he-e�
ien
y.Ca
he-e�
ien
y and Ca
he-oblivious Algorithms. Memory in modern
omputers is typi
ally organized in a hierar
hy with registers in the lowest levelfollowed by L1 
a
he, L2 
a
he, L3 
a
he, main memory, and disk, with the a
-
ess time of ea
h memory level in
reasing with its level. Data is transferred inblo
ks between adja
ent levels in order to amortize the a

ess time 
ost.The two-level I/O model [1℄ is a simple abstra
tion of the memory hierar
hythat 
onsists of an internal memory (or 
a
he) of size M , and an arbitrarilylarge external memory partitioned into blo
ks of size B. The I/O 
omplexity or
a
he-
omplexity of an algorithm is the number of blo
ks transferred betweenthese two levels on a given input.The ideal-
a
he model [7℄ is an extension of the two-level I/O model thatassumes an optimal o�ine 
a
he repla
ement poli
y, and requires that algorithmsremain oblivious of 
a
he parameters M and B. A well-designed 
a
he-obliviousalgorithm is �exible and portable, and simultaneously adapts to all levels of
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a multi-level memory hierar
hy. Standard 
a
he repla
ement methods su
h asLRU allow for a reasonable approximation to an ideal 
a
he.Our Results. In this paper we present an e�
ient 
a
he-oblivious frameworkfor solving a general 
lass of re
urren
e relations that are amenable to solutionby dynami
 programs with `lo
al dependen
ies' (see Se
tion 2). In prin
iple ourframework 
an be generalized to any number of dimensions, although we studyexpli
itly only the 2- and 3-dimensional 
ases. We also show that our framework
an be parallelized with little e�ort, and analyze its parallel performan
e (inSe
tion 3). We use this framework to develop 
a
he-oblivious algorithms for threewell-known string problems in bioinformati
s: global pairwise sequen
e alignmentandmedian (both with a�ne gap 
osts), and RNA se
ondary stru
ture predi
tionwith simple pseudoknots (Se
tion 4). We present extensive experimental resultsshowing that our algorithms are faster than 
urrent software for these problems(Se
tion 5).The results in this paper extend and generalize our earlier work in [5℄, wherewe presented a relatively simple 
a
he-oblivious algorithm for �nding the longest
ommon subsequen
e (LCS) of two sequen
es. In [5℄ we also presented more in-volved 
a
he-oblivious algorithms for other problems in
luding pairwise sequen
ealignment with general gap 
osts and RNA se
ondary stru
ture without pseu-doknots.We note that often in pra
ti
e, biologi
ally signi�
ant solutions are soughtthat may be sub-optimal under the pre
ise optimization measure used. However,in su
h 
ases, an algorithm for the pre
ise optimal solution is often used as asubroutine in 
onjun
tion with other methods that determine biologi
al featuresnot 
aptured by the 
ombinatorial problem spe
i�
ation. Therefore, our algo-rithms are likely to be of use even when su
h solutions are sought that are notne
essarily optimal under our de�nitions.2 CO Framework for a DP Class with Lo
al Dependen
iesGiven d ≥ 1 sequen
es Si = si,1si,2 . . . si,n, 1 ≤ i ≤ d, and fun
tions h(·) and
f(·, ·, ·), we 
onsider dynami
 programs that 
ompute entries of a d-dimensionalmatrix c[0 : n, 0 : n, . . . , 0 : n] as follows, where i = i1, i2, . . . , id and Si is thetuple 〈 s1,i1 , s2,i2 , . . . , sd,id

〉 
ontaining the ij-th symbol of Sj in j-th position.
c[ i ] =

�
h ( 〈 i 〉 ) if ∃ ij = 0,
f
�
〈 i 〉, Si, c[i1 − 1 : i1, i2 − 1 : i2, . . . , id − 1 : id] \ c[ i ]

� otherwise. (2.1)Fun
tion f 
an be arbitrary ex
ept that it is allowed to use exa
tly one 
ellfrom its third argument to 
ompute the �nal value of c[i1, i2, . . . , id] (though it
an 
onsider all 
ells), and we 
all that spe
i�
 
ell the parent 
ell of c[i1, i2, . . . , id].Typi
ally, two types of outputs are expe
ted when evaluating this re
urren
e:
(i) the �nal value of c[n, n, . . . , n], and (ii) the tra
eba
k path starting from
c[n, n, . . . , n]. The tra
eba
k path from any 
ell c[i1, i2, . . . , id] is the path followingthe 
hain of parent 
ells through c that ends at some c[i′1, i

′

2, . . . , i
′

d] with ∃ i′j = 0.Re
urren
e 2.1 
an be evaluated iteratively in O
(

nd
) time, O (

nd
) spa
eand O

(

nd/B
) 
a
he-misses. Though spa
e 
an be redu
ed to O

(

nd−1
) using2



Hirs
hberg's te
hnique [10℄, the 
a
he-
omplexity remains un
hanged if the tra
e-ba
k path must also be 
omputed. If a tra
eba
k path is not required it is easy toredu
e spa
e requirement toO (

nd−1
) even without using Hirs
hberg's te
hnique,and the 
a
he-
omplexity of the algorithm 
an be improved to O (

nd/(BM
1

d−1 )
)using the 
a
he-oblivious sten
il-
omputation te
hnique [8℄.In Se
tion 2.1 we present a 
a
he-oblivious algorithm for solving the 3-dimensional version (i.e., d = 3) of re
urren
e 2.1 along with a tra
eba
k path in

O
(

n3
) time, O (

n2
) spa
e and O

(

n3/(B
√

M)
) 
a
he misses. It improves overthe previous best 
a
he-miss bound by at least a fa
tor of √M , and redu
esspa
e requirement by a fa
tor of n when 
ompared with the traditional iterativesolution. In Se
tions 4.2 and 4.3 we use this algorithm to solve median of threesequen
es and RNA se
ondary stru
ture predi
tion with simple pseudoknots.In the te
hni
al report [4℄ we present a simpler 
a
he-oblivious algorithmthat solves the 2-dimensional version (i.e., d = 2) of re
urren
e 2.1. In Se
tion4.1 we use this algorithm for global pairwise sequen
e alignment with a�ne gap
osts.2.1 Ca
he-oblivious Algorithm for Solving Re
urren
e 2.1 in 3D.Our algorithm works by de
omposing the given 
ube c[1 : n, 1 : n, 1 : n] intosmaller sub
ubes, and is based on the observation that for any su
h sub
ubewe 
an re
ursively 
ompute the entries on its output boundary (i.e., on its right,front and bottom boundaries) provided we know the entries on its input boundary(i.e., entries immediately outside of its left, ba
k and top boundaries). Sin
e thesub
ubes share boundaries, when the output boundaries of all sub
ubes are
omputed the problem of �nding the tra
eba
k path through the entire 
ube isredu
ed to the problem of re
ursively �nding the fragments of the path throughthe sub
ubes. Though we 
ompute all n3 entries of c, at any stage of re
ursionwe only need to save the entries on the boundaries of the sub
ubes and thususe only O

(

n2
) spa
e. The divide and 
onquer strategy also improves lo
alityof 
omputation and 
onsequently leads to an e�
ient 
a
he-oblivious algorithm.As noted before, Hirs
hberg's te
hnique [10℄ 
an also be used to solve re
ur-ren
e 2.1 along with a tra
eba
k path. Unlike our algorithm, however, Hirs
hberg'sapproa
h de
omposes the problem into two subproblems of typi
ally unequalsize, and uses a 
ompli
ated pro
ess involving the appli
ation of the traditionaliterative DP in both forward and ba
kward dire
tions to perform the de
ompo-sition. In 
ontrast, our algorithm always applies DP in one dire
tion and thus issimpler to implement.We des
ribe below the two parts of our algorithm. The pseudo
ode for bothparts 
an be found in Figure 1 of the te
hni
al report [4℄.Compute-Boundary-3D. Given the input boundary of c[i1 : i2, j1 : j2, k1 :

k2] this fun
tion re
ursively 
omputes its output boundary. For simpli
ity ofexposition we assume that i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1 for some integer
q ≥ 0.If q = 0, the fun
tion 
an 
ompute the output boundary dire
tly using re-
urren
e 2.1, otherwise it de
omposes its 
ubi
 
omputation spa
e Q (initially3



Q ≡ c[1 : n, 1 : n, 1 : n]) into 8 sub
ubes Qi,j,k, 1 ≤ i, j, k ≤ 2, where Qi,j,kdenotes the sub
ube that is i-th from the left, j-th from the ba
k and k-thfrom the top. It then 
omputes the output boundary of ea
h sub
ube re
ursivelyas the input boundary of the sub
ube be
omes available during the pro
ess of
omputation. After all re
ursive 
alls terminate, the output boundary of Q is
omposed from the output boundaries of the sub
ubes.Analysis. Let I1(n) be the 
a
he-
omplexity of Compute-Boundary-3D onsequen
es of length n. Then I1(n) = O
(

1 + n2/B
) if the 
omputation 
an be per-formed entirely inside the 
a
he. Otherwise, I1(n) = 8I1 (n/2) + O

(

1 + n2/B
).Solving the re
urren
e, I1(n) = O

(

n3/M + n3/(B
√

M)
). It is straight-forwardto show that the algorithm runs in O

(

n3
) time and O

(

n2
) spa
e.Compute-Tra
eba
k-Path-3D.Given the input boundary of c[i1 : i2, j1 :

j2, k1 : k2] and the entry point of the tra
eba
k path on the output boundarythis fun
tion re
ursively 
omputes the entire path.If q = 0, the tra
eba
k path 
an be updated dire
tly using re
urren
e 2.1,otherwise it performs two passes: forward and ba
kward. In the forward pass it
omputes the output boundaries of all sub
ubes ex
ept Q2,2,2 as in Compute-Boundary-3D. After this pass the algorithm knows the input boundaries of alleight sub
ubes, and the problem redu
es to re
ursively extra
ting the fragmentsof the tra
eba
k path from ea
h sub
ube and 
ombining them. In the ba
kwardpass the algorithm starts at Q2,2,2 and updates the tra
eba
k path by 
allingitself re
ursively on the sub
ubes in the reverse order of the forward pass.Analysis. Let I2(n) be the 
a
he-
omplexity of Compute-Tra
eba
k-Path-3D on input sequen
es of length n ea
h. Then I2(n) = O
(

1 + n2/B
) if the
omputation 
an be performed 
ompletely inside the 
a
he. Otherwise, I2(n) =

4I2 (n/2) + 7I1 (n/2) + O
(

1 + n2/B
) sin
e the tra
eba
k path 
annot interse
tmore than 4 sub
ubes and hen
e at most 4 re
ursive 
alls will be made in theba
kward pass. Solving the re
urren
e we obtain I2(n) = O

(

n3/M + n3/(B
√

M)
).The algorithm runs inO

(

n3
) time andO

(

n2
) spa
e as with Hirs
hberg's s
heme.3 Parallel Implementation of the CO FrameworkThe framework in Se
tion 2 has a simple parallel implementation that for general

d performs O (

nd
) work, uses O (

nd−1
) spa
e, in
urs O (

nd/
(

BM
1

d−1

)) 
a
he-misses and terminates in O
(

nd/p + nlog
2
(d+1) log n

) parallel steps when run on
p pro
essors with private 
a
hes (see te
hni
al report [4℄ for details). This is theparallel algorithm we implemented for our experiments in Se
tion 5.In this se
tion we improve the parallel time 
omplexity of our framework to
O

(

nd/p + n
) while keeping the other bounds un
hanged from above. We presenttwo di�erent parallel implementations for the 3-dimensional 
ase for distributedand shared 
a
hes, respe
tively. Implementation for general d is similar.3.1 Distributed Ca
hesWe 
onsider a parallel ma
hine with p pro
essors with ea
h pro
essor having aprivate 
a
he of size M and blo
k size B.4



Par-Compute-Boundary-3D. This fun
tion de
omposes its 
ubi
 
om-putation spa
e Q (≡ c[1 : n, 1 : n, 1 : n]) into p
3

2 sub
ubes of size (n/
√

p) ×
(n/

√
p) × (n/

√
p) ea
h. By Qi,j,k (1 ≤ i, j, k ≤ √

p) we denote the sub
ubethat is i-th from the left boundary of Q, j-th from the ba
k boundary and k-thfrom the top boundary. Then the 
omputation progresses in 3 min(
√

p, n) − 2steps. In step t (1 ≤ t ≤ 3 min(
√

p, n) − 2) output boundaries of all Qi,j,k with
i+ j +k = t+2 are 
omputed in parallel using a modi�ed version of Compute-Boundary-3D whi
h for ea
h 
ell on the output boundary also 
omputes thelo
ation where the tra
eba
k path from that 
ells hits the input boundary.For p ≤ n2, there are Θ

(√
p
) steps of parallel sub
ube 
omputations re-quiring O

(

(n/
√

p)3
) time ea
h, and thus the entire 
omputation terminates in

O
(√

p × (n/
√

p)3
)

= O
(

n3/p
) parallel time. For p > n2, there are Θ (n) steps of

O (1) time ea
h and the 
omputation 
ompletes in O (n) parallel time. The par-allel time 
omplexity of the algorithm is thus O (

n3/p + n
). It is straight-forwardto show that the algorithm performs O (

n3
) work and uses O (

n2
) spa
e.Sin
e there are p3/2 
alls to Compute-Boundary-3D on sequen
es of length

n/
√

p and ea
h of them is exe
uted on a single pro
essor, total number of 
a
he-misses in
urred by all su
h 
alls isO (

p3/2 × (n/
√

p)3/(B
√

M)
)

= O
(

n3/(B
√

M)
).Par-Compute-Tra
eba
k-Path-3D. This fun
tion is similar to the se-quential Compute-Tra
eba
k-Path-3D given in Se
tion 2.1 ex
ept for thefollowing di�eren
es.Forward Pass: Instead of 
alling Compute-Boundary-3D des
ribed in Se
tion2.1 we 
all Par-Compute-Boundary-3D des
ribed in this se
tion.Ba
kward Pass: The fragment of the tra
eba
k path inside Q2,2,2 is extra
ted by
alling Par-Compute-Tra
eba
k-Path-3D re
ursively. Now using the extrainformation on tra
eba
k paths 
omputed in the forward pass we 
an �nd in
onstant time where the tra
eba
k path hits all other sub
ubes. Therefore, we
an exe
ute the remaining (at most three) re
ursive 
alls to Par-Compute-Tra
eba
k-Path-3D in parallel.Let Tp(n) denote the parallel running time of Par-Compute-Tra
eba
k-Path-3D when 
alled with p pro
essors. Let T ′

p(n) denote the same for Par-Compute-Boundary-3D. Then for p ≤ n2, Tp(n) ≤ 7 · T ′

p(n/2) + Tp(n/2) +

Tp/3(n/2) + Θ
(

n2/p
). Solving we obtain, Tp(n) = O

(

n3/p
). Therefore, for allvalues of p, Tp(n) = O

(

n3/p + n
). The algorithm performs O

(

n3
) work anduses O (

n2
) spa
e, and in
urs O (

n3/(B
√

M)
) 
a
he-misses.3.2 Shared Ca
hesWe 
onsider a parallel ma
hine with p pro
essors sharing a single 
a
he of size

M and blo
k size B.The algorithms are similar to the sequential algorithms given in Se
tion 2.1until we rea
h a subproblem involving sequen
es of length Θ
(√

p
). At that pointwe 
ompute all entries of the 
ubi
 
omputation spa
e and store all of them in

Θ
(

p3/2
) spa
e. We 
ompute the entries (i.e., 1 × 1 × 1 sub
ubes) of the 
ube5



using the parallel sub
ube 
omputation method des
ribed in Se
tion 3.1 for Par-Compute-Boundary-3D, and then extra
t the tra
eba
k path in Θ
(√

p
) timeby following the parent 
ells through the 
ube sequentially.It is not di�
ult to prove that the algorithms as des
ribed above perform

O
(

n3
) work, use O

(

n2 + p3/2
) spa
e and terminate in O

(

n3/p + n
) parallelsteps. Assuming M = Ω

(

p3/2
), the 
a
he 
omplexity of the algorithms 
an beshown to be O

(

n3/(B
√

M)
). We omit the proofs from here for la
k of spa
e.4 Some Appli
ations of the Ca
he-oblivious Framework4.1 Pairwise Global Sequen
e Alignment with A�ne Gap Penalty.Given two strings X = x1x2 . . . xm and Y = y1y2 . . . yn over a �nite alphabet Σ,an alignment of X and Y is a mat
hing M of sets {1, 2, . . . , m} and {1, 2, . . . , n}su
h that if (i, j), (i′, j′) ∈ M and i < i′ hold then j < j′ must also hold [12℄.The i-th letter of X or Y is said to be in a gap if it does not appear in any pairin M . Given a gap penalty g and a mismat
h 
ost s(a, b) for ea
h pair a, b ∈ Σ,the basi
 (global) pairwise sequen
e alignment problem asks for a mat
hing Moptfor whi
h (m + n − |Mopt|) × g +

∑

(a,b)∈Mopt
s(a, b) is minimized [12℄.For simpli
ity of exposition we will assume m = n for the rest of this se
tion.The formulation of the basi
 sequen
e alignment problem favors a large num-ber of small gaps while real biologi
al pro
esses favor the opposite. The alignment
an be made more realisti
 by using an a�ne gap penalty [9, 3℄ whi
h has twoparameters: a gap introdu
tion 
ost gi and a gap extension 
ost ge. A run of kgaps in
urs a total 
ost of gi + ge × k.In [9℄ Gotoh presented an O

(

n2
) time and O

(

n2
) spa
e DP algorithm forsolving the global pairwise alignment problem with a�ne gap 
osts. The algo-rithm in
urs O (

n2/B
) 
a
he misses. Gotoh's algorithm solves the following DPre
urren
es.

D(i, j) =

�
G(0, j) + ge if i = 0 and j > 0
min {D(i − 1, j), G(i − 1, j) + gi} + ge if i > 0 and j > 0. (4.2)

I(i, j) =

�
G(i, 0) + ge if i > 0 and j = 0
min {I(i, j − 1), G(i, j − 1) + gi} + ge if i > 0 and j > 0. (4.3)

G(i, j) =

8>><>>: 0 if i = 0 and j = 0
gi + ge × j if i = 0 and j > 0
gi + ge × i if i > 0 and j = 0
min {D(i, j), I(i, j), G(i − 1, j − 1) + s(xi, yj)} if i > 0 and j > 0. (4.4)The optimal alignment 
ost is min {G(n, n), D(n, n), I(n, n)} and an optimalalignment 
an be tra
ed ba
k from the smallest of G(n, n), D(n, n) and I(n, n).Ca
he-oblivious Implementation. Re
urren
es 4.2 - 4.4 
an be viewed as asingle re
urren
e evaluating a single matrix c[0 : n, 0 : n] with three �elds: D, Iand G. This re
urren
e mat
hes re
urren
e 2.1 with d = 2 (see te
hni
al report[4℄ for explanation), and thus 
an be solved using our 
a
he-oblivious frameworkin O

(

n2
) time, O (n) spa
e, and only O

(

n2/(BM)
) 
a
he misses.6



4.2 Median of Three Sequen
es.The Median problem is the problem of obtaining an optimal alignment of threesequen
es using an a�ne gap penalty. The median sequen
e under the optimalalignment is also 
omputed. Knudsen [11℄ presented a dynami
 program to �ndmultiple alignment of N sequen
es, ea
h of length n in O
(

16.81NnN
) time and

O
(

7.442NnN
) spa
e. For the median problem, this gives an O

(

n3
) time andspa
e algorithm that in
urs O

(

n3/B
) 
a
he-misses. An Ukkonen-based algo-rithm is presented in [15℄, whi
h performs well espe
ially for sequen
es whose(3-way) edit distan
e δ is small. On average, it requires O

(

n + δ3
) time andspa
e [15℄.Knudsen's Algorithm [11℄ for three sequen
es (say, X = x1x2 . . . xn, Y =

y1y2 . . . yn and Z = z1z2 . . . , zn) is a dynami
 program over a three-dimensionalmatrix K. Ea
h entry K(i, j, k) is 
omposed of 23 �elds. Ea
h �eld 
orrespondsto an indel 
on�guration q, whi
h des
ribes how the last 
hara
ters xi, yj and
zk are mat
hed. A residue 
on�guration de�nes how the next three 
hara
ters ofthe sequen
es will be mat
hed. Ea
h 
on�guration is a ve
tor e = (e1, e2, e3, e4),where ei ∈ {0, 1}, 1 ≤ i ≤ 4. The entry ei, 1 ≤ i ≤ 3 indi
ates if the aligned
hara
ter of sequen
e i is a gap or a residue, while e4 
orresponds to the aligned
hara
ter of the median sequen
e. There are 10 residue 
on�gurations out of16 possible ones. The re
ursive step 
al
ulates the value of the next entry byapplying residue 
on�gurations to ea
h indel 
on�guration.We de�ne ν(e, q) = q′if applying the residue 
on�guration e to the indel 
on�guration q gives the indel
on�guration q′. The re
urren
e relation used by Knudsen's algorithm is:
K(i, j, k)q =

8>><>>: 0 if i = j = k = 0 ∧ q = qo

∞ if i = j = k = 0 ∧ q 6= qo

mine,q′:q=ν(e,q′)

�
K(i′, j′, k′)q′ + Ge,q

+M(i′,j′,k′)→(i,j,k)

� otherwise. (4.5)where qo is the 
on�guration where all 
hara
ters mat
h, i′ = i− e1, j′ = j − e2and k′ = k − e3, M(i′,j′,k′)=(i,j,k) is the mat
hing 
ost between 
hara
ters of thesequen
es, and Ge,q is the 
ost for introdu
ing or extending the gap.The M and G matri
es 
an be pre-
omputed. Therefore, Knudsen's algorithmruns in O
(

n3
) time and spa
e with O

(

n3/B
) 
a
he-misses.Ca
he-oblivious Algorithm. In the te
hni
al report [4℄ we show how to redu
ere
urren
e 4.5 to an instan
e of the general re
urren
e 2.1 with d = 3 using a sim-ple transformation. Therefore, fun
tion Compute-Boundary-3D (see Se
tion2.1) 
an be used to 
ompute the matrix K and fun
tion Compute-Tra
eba
k-Path-3D to retrieve an optimal alignment and the median in O

(

n3
) time,

O
(

n2
) spa
e and O

(

n3/(B
√

M)
) 
a
he-misses.4.3 RNA Se
ondary Stru
ture Predi
tion with Simple Pseudoknots.A single-stranded RNA 
an be viewed as a string X = x1x2 . . . xn over thealphabet {A, U, G, C} of bases. An RNA strand tends to give rise to interestingstru
tures by forming 
omplementary base pairs with itself. An RNA se
ondarystru
ture (w/o pseudoknots) is a planar graph with the nesting 
ondition: if

{xi, xj} and {xk, xl} form base pairs and i < j, k < l and i < k hold then either7



i < k < l < j or i < j < k < l [19, 16, 2℄. An RNA se
ondary stru
ture withpseudoknots is a stru
ture where this nesting 
ondition is violated [16, 2℄.In [2℄ Akutsu presented a DP to 
ompute RNA se
ondary stru
tures withmaximum number of base pairs in the presen
e of simple pseudoknots (see [2℄for de�nition) whi
h runs in O
(

n4
) time, O (

n3
) spa
e and O

(

n4/B
) 
a
he-misses. In this Se
tion we improve its spa
e and 
a
he 
omplexities to O

(

n2
)and O

(

n4/(B
√

M)
), respe
tively, without 
hanging its time 
omplexity.We list below the DP re
urren
es used in Akutsu's algorithm [2℄. For everypair (i0, k0) with 1 ≤ i0 ≤ k0 − 2 ≤ n − 2, re
urren
es 4.6 - 4.10 
ompute themaximum number of base pairs in a pseudoknot with endpoints at the i0-th and

k0-th residues. The value 
omputed by re
urren
e 4.10, i.e., Spseudo(i0, k0), is thedesired value. In re
urren
es 4.6 and 4.7, v(x, y) = 1 if (x, y) form a base pair,otherwise v(x, y) = −∞. All uninitialized entries are assumed to have value 0.
SL(i, j, k) =

�
v(ai, aj) if i0 ≤ i < j ≥ k,
v(ai, aj) + SMAX(i − 1, j + 1, k) if i0 ≤ i < j < k. (4.6)

SR(i, j, k) =

�
v(aj , ak) if i0 − 1 = i < j − 1 = k − 2,
v(aj , ak) + SMAX(i, j + 1, k − 1) if i0 ≤ i < j < k. (4.7)

SM (i, j, k) = max

8<:SL(i − 1, j, k), SM (i − 1, j, k),
SMAX(i, j + 1, k),

SM (i, j, k − 1), SR(i, j, k − 1)

9=; if i0 ≤ i < j < k. (4.8)
SMAX(i, j, k) = max { SL(i, j, k), SM (i, j, k), SR(i, j, k) } (4.9)

Spseudo(i0, k0) = max
i0≤i<j<k≤k0

{ SMAX(i, j, k) } (4.10)After 
omputing all entries of SMAX for a �xed i0, all Spseudo(i0, k0) values for
k0 ≥ i0 +2 
an be 
omputed using 4.10 in O

(

n3
) time and spa
e and O

(

n3/B
)
a
he-misses. Sin
e there are n − 2 possible values for i0, all Spseudo(i0, k0) 
anbe 
omputed in O

(

n4
) time, O (

n3
) spa
e and O

(

n4/B
) 
a
he-misses.Finally, the following re
urren
e 
omputes the optimal s
ore S(1, n) for theentire stru
ture in O

(

n3
) time, O (

n2
) spa
e and O

(

n3/B
) 
a
he-misses [2℄.

S(i, j) = max

�
Spseudo(i, j), S(i + 1, j − 1) + v(ai, aj),

maxi<k≤j {S(i, k − 1), S(k, j)}

� (4.11)Re
urren
e 4.11 
an be evaluated in only O
(

n3/(B
√

M)
) 
a
he-misses and

O
(

n2
) spa
e without 
hanging the other bounds using our GEP framework [5℄.Spa
e Redu
tion. We now des
ribe our spa
e redu
tion result. Observe thatevaluating re
urren
e 4.10 requires retaining all O (

n3
) values 
omputed by re-
urren
e 4.9. We avoid using this extra spa
e by 
omputing all required Spseudo(i0, k0)values on the �y while evaluating re
urren
e 4.9. We a
hieve this goal by in-trodu
ing re
urren
e 4.12, repla
ing re
urren
e 4.10 with re
urren
e 4.13 for

S′

pseudo, and using S′

pseudo instead of Spseudo for evaluating re
urren
e 4.11. Alluninitialized entries in re
urren
es 4.12 and 4.13 are assumed to have value −∞.
SP (i, j, k) =

�
max { SMAX(i, j, k), SP (i, j + 1, k) } if i0 ≤ i < j < k,
SP (i, j + 1, k) if i0 ≤ i ≥ j < k. (4.12)8



S′
pseudo(i0, k0) = max

�
S′

pseudo(i0, k0 − 1),
maxi0≤i<k0−1 {SP (i, i0 + 1, k0)}

� if k0 ≥ i0 + 2. (4.13)We prove in the te
hni
al report [4℄ that for 1 ≤ i0 ≤ k0 − 2 ≤ n − 2,
S′

pseudo(i0, k0) = Spseudo(i0, k0).Now observe that in order to evaluate re
urren
e 4.13 we only need thevalues SP (i, j, k) for j = i0 + 1, and ea
h entry (i, j, k) in re
urren
es 4.6 -4.9 and 4.12 depends only on entries (·, j, ·) and (·, j + 1, ·). Therefore, we willevaluate the re
urren
es for j = n �rst, then for j = n− 1, and 
ontinue downto
j = i0 + 1. Observe that in order to evaluate for j = j′ we only need to retainthe O (

n2
) entries 
omputed for j = j′ +1. Thus for a �xed i0 all SP (i, i0 +1, k)and 
onsequently all relevant S′

pseudo(i0, k0) 
an be 
omputed using only O
(

n2
)spa
e, and the same spa
e 
an be reused for all n values of i0.Ca
he-oblivious Algorithm. The evaluation of re
urren
es 4.6 - 4.9 and 4.12
an be viewed as evaluating a single n× n× n matrix c with �ve �elds: SL, SR,

SM , SMAX and SP . If we repla
e all j with n− j +1 in the resulting re
urren
eit 
onforms to re
urren
e 2.1 for d = 3. Therefore, for any �xed i0 we 
an useCompute-Boundary-3D from Se
tion 2.1 to 
ompute all entries SP (i, i0+1, k)and 
onsequently all relevant S′

pseudo(i0, k0). All S′

pseudo(i0, k0) values 
an be
omputed by n appli
ations (on
e for ea
h i0) of Compute-Boundary-3D.For any given pair (i0, k0) the pseudoknot with the optimal s
ore 
an betra
ed ba
k 
a
he-obliviously by 
allingCompute-Tra
eba
k-Path-3D. There-fore, the required RNA se
ondary stru
ture 
an be 
omputed 
a
he-obliviouslyin O
(

n4
) time, O (

n2
) spa
e and O

(

n4/(B
√

M)
) 
a
he misses. Using an ex-planation similar to that in Se
tion 4.3 of the te
hni
al report [4℄ we 
an showthat the parallel algorithm in Se
tion 3 
an solve the problem in O

(

n4
) workand O

(

n4/p + n
) parallel steps while keeping the other bounds un
hanged.Extensions.Our 
a
he-oblivious framework also applies to several extensions ofthe basi
 DP for simple pseudoknots [2℄. See our te
hni
al report [4℄ for details.5 Experimental ResultsModel Pro
essors Speed L1 Ca
he L2 Ca
he RAMIntel P4 Xeon 2 3.06 GHz 8 KB (4-way) 512 KB (8-way) 4 GBAMD Opteron 250 2 2.4 GHz 64 KB (2-way) 1 MB (8-way) 4 GBAMD Opteron 850 8 2.2 GHz 64 KB (2-way) 1 MB (8-way) 32 GBTable 1. Ma
hines for experiments. All blo
k sizes: 64 bytes. OS: Ubuntu Linux 5.10.We ran our experiments on the ma
hines listed in Table 1. We used the Ca
hegrindpro�ler [17℄ for simulating 
a
he e�e
ts. All our algorithms were implementedin C++ (
ompiled with g++ 3.3.4) while some software pa
kages we used for
omparison were written in C (
ompiled with g

 3.3.4). Optimization parameter-O3 was used in all 
ases. Ea
h ma
hine was ex
lusively used for experiments.We now des
ribe our experimental results on pairwise sequen
e alignmentand the median problem. Results on RNA se
ondary stru
ture predi
tion 
anbe found in the te
hni
al report [4℄. 9



5.1 Pairwise Global Sequen
e Alignment with A�ne Gap Penalty.We performed experimental evaluation of the algorithms in Table 2.Algorithm Des
ription Time Spa
e Ca
he MissesPA-CO our algorithm (see Se
tion 4.1) O
�
n2
�
O (n) O

�
n2/(BM)

�PA-LS linear-spa
e Gotoh [13℄ (our 
ode) O
�
n2
�
O (n) O

�
n2/B

�PA-FASTA linear-spa
e Gotoh [13℄ (from fasta2 [14℄) O
�
n2
�
O (n) O

�
n2/B

�Table 2. Pairwise sequen
e alignment algorithms used in our experiments.Sequential Performan
e. For random sequen
es both PA-FASTA and PA-LSalways ran slower than PA-CO on AMD Opteron (see Figure 1), e.g., PA-FASTAran around 27% slower and PA-LS about 55% slower than PA-CO for sequen
esof length 512 K. Relative performan
e of PA-CO improved over PA-FASTAand PA-LS as sequen
e length in
reased. The trends were similar on Intel Xeonex
ept that improvements of PA-CO over PA-FASTA/PA-LS were more modest.Runtimes of Pairwise Alignment Algorithms on AMD Opteronfor Random Sequen
es (Normalized w.r.t. PA-CO)����� �������������
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 � � � � � � � 
� � �� � �� � 
�� � ��� � �
� ��������� ������ ��  !"##$#%&$'( )#*!'+,$-(./0!0& 0123456 Fig. 1. Comparison of run-ning times of pairwise se-quen
e alignment algorithms(see Table 2) on AMDOpteron 250. All runningtimes are normalized w.r.t.PA-CO. Ea
h data point isthe average of 3 independentruns on randomly generatedstrings over { A, T, G, C }.For real-world CFTR DNA sequen
es [18℄ PA-FASTA ran around 20%-30%slower than PA-CO on AMD Opteron (see Table 3).Runtimes of PA-FASTA and PA-CO on CFTR DNA Sequen
es [18℄ (on Opteron)Sequen
e pairs with lengths (106) PA-FASTA (t1) PA-CO (t2) ratio (t1/t2)human/baboon (1.80/1.51) 20h 34m 17h 23m 1.18human/
himp (1.80/1.32) 19h 51m 15h 25m 1.29baboon/
himp (1.51/1.32) 16h 43m 12h 43m 1.31human/rat (1.80/1.50) 24h 1m 18h 16m 1.31rat/mouse (1.50/1.49) 16h 49m 13h 55m 1.21Table 3. Comparison of runtimes (on Opteron 250) of PA-CO with PA-FASTA (seeTable 2) on CFTR DNA sequen
es [18℄. Column 4 gives the ratio of runtime of PA-FASTA to that of PA-CO. Ea
h number in 
ols 2 and 3 is the time for a single run.Ca
he Performan
e. Though PA-FASTA 
auses fewer 
a
he-misses than PA-CO when the input �ts into the 
a
he, it in
urs signi�
antly more misses thanPA-CO as the input size grows beyond 
a
he size (Figure 2). On AMD OpteronPA-FASTA in
urs upto 300 times more L1 misses and 2500 times more L2 missesthan PA-CO while on Intel Xeon the �gures are 10 and 1000, respe
tively.Parallel Performan
e. Our experimental results in Figure 3(a) show that PA-CO a
hieves reasonable speed-up as the number of pro
essors in
reases, and fora �xed number of pro
essors the speed-up fa
tor improves with sequen
e length.For example, with 8 pro
essors PA-CO a
hieves a speed-up fa
tor of 1.7 when
n = 8 K, and about 5 when n = 1024 K.10



Ratio of Ca
he Misses In
urred by PA-FASTA to that In
urred by PA-CO for Random Sequen
es78 9:;<= 7> 9:;<=(a) AMD Opteron 250
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Fig. 2. Ratio of 
a
he-misses in
urred by PA-FASTA to that in
urred by PA-CO (seeTable 2) for both L1 and L2 
a
hes. Data was obtained using Ca
hegrind [17℄.Speed-up Fa
tors A
hieved by Multithreaded Ca
he-oblivious Algorithmson AMD Opteron 850 as the Number of Con
urrent Threads (p) Vary�   ¡ �   ¢�   £ �   ¤ �   ¥(a) Pairwise Alignment
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Fig. 3. Speed-up fa
tors (w.r.t. unthreaded 
ode) a
hieved by multithreaded 
a
he-oblivious pairwise alignment and median algorithms on 8-pro
essor Opteron 850 asnumber of threads (p) vary. Sequen
es were randomly generated over { A, T, G, C }.5.2 Median of Three Sequen
es.We evaluated the algorithms in Table 4. We used gi = 3, ge = 1 and a mismat
h
ost of 1 in all experiments.Algorithm Des
ription Time Spa
e Ca
he MissMED-CO our algorithm (see Se
tion 4.2) O
�
n3
�

O
�
n2
�

O
�

n3

B
√

M

�MED-Knudsen Knudsen [11℄ (Knudsen's 
ode) O
�
n3
�

O
�
n3
�

O
�
n3/B

�MED-H n2-spa
e Knudsen (our 
ode) O
�
n3
�

O
�
n2
�

O
�
n3/B

�MED-ukk.allo
 Powell [15℄ (Powell's 
ode) O
�
n + δ3

�
O
�
n + δ3

�
O
�
δ3/B

�MED-ukk.
he
kp Powell [15℄ (Powell's 
ode) O

�
n log δ
+δ3

�
O
�
n + δ2

�
O
�
δ3/B

�Table 4.Median algorithms in experiments. Here, δ = 3-way edit distan
e of sequen
es.Sequential Performan
e. For random sequen
es MED-CO ran at least 1.45times faster than MED-Knudsen and at least 1.25 times faster than MED-Hon Intel Xeon (see Figure 4(a)). MED-ukk.allo
 and MED-ukk.
he
kp ran upto
3.3 times (for length 256) and 4.8 times (for length 640) slower than MED-CO,respe
tively. The trends were similar on AMD Opteron (see Figure 4(b)). None ofMED-Knudsen, MED-ukk.allo
 and MED-ukk.
he
kp 
ould be run for sequen
eslonger than 640 due to their high spa
e overhead on either ma
hine.11



Performan
e of Median Algorithms on Random Sequen
es (Normalized w.r.t. MED-CO)��������	
� ����������
����������
����������������(a) Runtimes on Intel P4 Xeon
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(b) Runtimes on AMD Opteron 250
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ST UVW UXV VYS ZV[ ZWT TTW YUV Y\S ST[ \[T \SW WZV WXS XS[ U][VT^_`a_bc_ d_befg hbijkllmlnompq rlsjptumvqwxyjyo yz{|}~��Fig. 4. Comparison of median algorithms (see Table 4). Figures (a) and (b) plot runningtimes on Intel P4 Xeon and AMD Opteron 250, respe
tively. MED-Knudsen, MED-ukk.allo
 and MED-ukk.
he
kp 
ould not be run for sequen
es longer than 640. Ea
hdata point is the average of 3 independent runs on random strings over { A, T, G, C }.For real-world 16S ba
terial rDNA sequen
es from the Pseudanabaena group[6℄ MED-Knudsen ran around 35�50% slower and MED-ukk.
he
kp upto 3.2times slower than MED-CO on Intel Xeon. (see Table 5). Running time of MED-ukk.
he
kp w.r.t. MED-CO degraded as the alignment 
ost in
reased. MED-ukk.allo
 
ould not be run on sequen
es with alignment 
ost larger than 299.However, for small alignment 
osts both MED-ukk.allo
 and MED-ukk.
he
kpran faster than MED-CO (see triplet 6 in Table 5).Running times (in se
) on Intel Xeon for random triples of 16S Ba
terialrDNA Sequen
es from the Pseudanabaena Group [6℄ ( runtime w.r.t. MED-CO )# Lengths Cost MED-Knudsen MED-ukk.allo
 MED-ukk.
he
kp MED-CO

1 367 387 388 299 722 ( 1.48 ) 512 ( 1.05 ) 601 ( 1.23 ) 487 ( 1.00 )

2 378 388 403 324 752 ( 1.42 ) − ( − ) 769 ( 1.45 ) 529 ( 1.00 )

3 342 367 389 339 611 ( 1.35 ) − ( − ) 863 ( 1.91 ) 451 ( 1.00 )

4 342 370 474 432 764 ( 1.44 ) − ( − ) 1, 701 ( 3.20 ) 531 ( 1.00 )

5 370 388 447 336 − ( − ) − ( − ) 824 ( 1.49 ) 553 ( 1.00 )

6 367 388 389 260 695 ( 1.42 ) 330 ( 0.67 ) 380 ( 0.77 ) 491 ( 1.00 )Table 5. Triplets 1�5 were formed by 
hoosing random sequen
es of length less than500 from the Pseudanabaena group [6℄ while triplet 6 was 
hosen manually in order tokeep the alignment 
ost small. Columns 4�7 give time for a single run with the ratioof that running time to the running time of MED-CO given within parentheses. A `−'denotes that the 
orresponding algorithm 
ould not be run due to high spa
e overhead.Parallel Performan
e. Figure 3(b) shows multithreaded MED-CO a
hievingreasonable speed-up as the number of pro
essors grow and rea
hing upto a speed-up fa
tor of 5.5 with 8 pro
essors.A
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