
E�ient Cahe-oblivious String Algorithms forBioinformatis ⋆Rezaul Alam Chowdhury1, Hai-Son Le2, and Vijaya Ramahandran1

1 Department of Computer Sienes, University of Texas, Austin, TX 78712, USA,{shaikat,vlr}�s.utexas.edu
2 Google In., Mountain View, CA 94043, USA,haison3000�mail.utexas.eduAbstrat. We present theoretial and experimental results on ahe-e�ient and parallel algorithms for some well-studied string problems inbioinformatis: global pairwise sequene alignment andmedian (both witha�ne gap osts), and RNA seondary struture predition with simplepseudoknots. For eah problem we present ahe-oblivious algorithmsthat math the best-known time omplexity, math or improve the best-known spae omplexity, improve signi�antly over the ahe-e�ienyof earlier algorithms, and have e�ient parallel implementations.We present experimental results that show that these ahe-obliviousalgorithms run signi�antly faster than urrently available software.Our methods are appliable to several other problems inluding loalalignment, generalized global alignment with intermittent similarities,multiple sequene alignment under several soring funtions suh as `sum-of-pairs' objetive funtion and RNA seondary struture predition withsimple pseudoknots using energy funtions based on adjaent base pairs.1 IntrodutionAlgorithms for sequene alignment and for RNA seondary struture are someof the most widely studied and widely-used methods in bioinformatis. Many ofthese algorithms are dynami programs that run in polynomial time, and manyhave been further improved in their spae usage [10℄. However, most of thesealgorithms are de�ient with respet to ahe-e�ieny.Cahe-e�ieny and Cahe-oblivious Algorithms. Memory in modernomputers is typially organized in a hierarhy with registers in the lowest levelfollowed by L1 ahe, L2 ahe, L3 ahe, main memory, and disk, with the a-ess time of eah memory level inreasing with its level. Data is transferred inbloks between adjaent levels in order to amortize the aess time ost.The two-level I/O model [1℄ is a simple abstration of the memory hierarhythat onsists of an internal memory (or ahe) of size M , and an arbitrarilylarge external memory partitioned into bloks of size B. The I/O omplexity orahe-omplexity of an algorithm is the number of bloks transferred betweenthese two levels on a given input.The ideal-ahe model [7℄ is an extension of the two-level I/O model thatassumes an optimal o�ine ahe replaement poliy, and requires that algorithmsremain oblivious of ahe parameters M and B. A well-designed ahe-obliviousalgorithm is �exible and portable, and simultaneously adapts to all levels of

⋆ This work was supported in part by NSF Grant CCF-0514876 and NSF CISE Re-searh Infrastruture Grant EIA-0303609.

a multi-level memory hierarhy. Standard ahe replaement methods suh asLRU allow for a reasonable approximation to an ideal ahe.Our Results. In this paper we present an e�ient ahe-oblivious frameworkfor solving a general lass of reurrene relations that are amenable to solutionby dynami programs with `loal dependenies' (see Setion 2). In priniple ourframework an be generalized to any number of dimensions, although we studyexpliitly only the 2- and 3-dimensional ases. We also show that our frameworkan be parallelized with little e�ort, and analyze its parallel performane (inSetion 3). We use this framework to develop ahe-oblivious algorithms for threewell-known string problems in bioinformatis: global pairwise sequene alignmentandmedian (both with a�ne gap osts), and RNA seondary struture preditionwith simple pseudoknots (Setion 4). We present extensive experimental resultsshowing that our algorithms are faster than urrent software for these problems(Setion 5).The results in this paper extend and generalize our earlier work in [5℄, wherewe presented a relatively simple ahe-oblivious algorithm for �nding the longestommon subsequene (LCS) of two sequenes. In [5℄ we also presented more in-volved ahe-oblivious algorithms for other problems inluding pairwise sequenealignment with general gap osts and RNA seondary struture without pseu-doknots.We note that often in pratie, biologially signi�ant solutions are soughtthat may be sub-optimal under the preise optimization measure used. However,in suh ases, an algorithm for the preise optimal solution is often used as asubroutine in onjuntion with other methods that determine biologial featuresnot aptured by the ombinatorial problem spei�ation. Therefore, our algo-rithms are likely to be of use even when suh solutions are sought that are notneessarily optimal under our de�nitions.2 CO Framework for a DP Class with Loal DependeniesGiven d ≥ 1 sequenes Si = si,1si,2 . . . si,n, 1 ≤ i ≤ d, and funtions h(·) and
f(·, ·, ·), we onsider dynami programs that ompute entries of a d-dimensionalmatrix c[0 : n, 0 : n, . . . , 0 : n] as follows, where i = i1, i2, . . . , id and Si is thetuple 〈 s1,i1 , s2,i2 , . . . , sd,id

〉 ontaining the ij-th symbol of Sj in j-th position.
c[i] =

�
h (〈 i 〉) if ∃ ij = 0,
f
�
〈 i 〉, Si, c[i1 − 1 : i1, i2 − 1 : i2, . . . , id − 1 : id] \ c[i]

� otherwise. (2.1)Funtion f an be arbitrary exept that it is allowed to use exatly one ellfrom its third argument to ompute the �nal value of c[i1, i2, . . . , id] (though itan onsider all ells), and we all that spei� ell the parent ell of c[i1, i2, . . . , id].Typially, two types of outputs are expeted when evaluating this reurrene:
(i) the �nal value of c[n, n, . . . , n], and (ii) the traebak path starting from
c[n, n, . . . , n]. The traebak path from any ell c[i1, i2, . . . , id] is the path followingthe hain of parent ells through c that ends at some c[i′1, i

′

2, . . . , i
′

d] with ∃ i′j = 0.Reurrene 2.1 an be evaluated iteratively in O
(

nd
) time, O (

nd
) spaeand O

(

nd/B
) ahe-misses. Though spae an be redued to O

(

nd−1
) using2

Hirshberg's tehnique [10℄, the ahe-omplexity remains unhanged if the trae-bak path must also be omputed. If a traebak path is not required it is easy toredue spae requirement toO (

nd−1
) even without using Hirshberg's tehnique,and the ahe-omplexity of the algorithm an be improved to O (

nd/(BM
1

d−1)
)using the ahe-oblivious stenil-omputation tehnique [8℄.In Setion 2.1 we present a ahe-oblivious algorithm for solving the 3-dimensional version (i.e., d = 3) of reurrene 2.1 along with a traebak path in

O
(

n3
) time, O (

n2
) spae and O

(

n3/(B
√

M)
) ahe misses. It improves overthe previous best ahe-miss bound by at least a fator of √M , and reduesspae requirement by a fator of n when ompared with the traditional iterativesolution. In Setions 4.2 and 4.3 we use this algorithm to solve median of threesequenes and RNA seondary struture predition with simple pseudoknots.In the tehnial report [4℄ we present a simpler ahe-oblivious algorithmthat solves the 2-dimensional version (i.e., d = 2) of reurrene 2.1. In Setion4.1 we use this algorithm for global pairwise sequene alignment with a�ne gaposts.2.1 Cahe-oblivious Algorithm for Solving Reurrene 2.1 in 3D.Our algorithm works by deomposing the given ube c[1 : n, 1 : n, 1 : n] intosmaller sububes, and is based on the observation that for any suh sububewe an reursively ompute the entries on its output boundary (i.e., on its right,front and bottom boundaries) provided we know the entries on its input boundary(i.e., entries immediately outside of its left, bak and top boundaries). Sine thesububes share boundaries, when the output boundaries of all sububes areomputed the problem of �nding the traebak path through the entire ube isredued to the problem of reursively �nding the fragments of the path throughthe sububes. Though we ompute all n3 entries of c, at any stage of reursionwe only need to save the entries on the boundaries of the sububes and thususe only O

(

n2
) spae. The divide and onquer strategy also improves loalityof omputation and onsequently leads to an e�ient ahe-oblivious algorithm.As noted before, Hirshberg's tehnique [10℄ an also be used to solve reur-rene 2.1 along with a traebak path. Unlike our algorithm, however, Hirshberg'sapproah deomposes the problem into two subproblems of typially unequalsize, and uses a ompliated proess involving the appliation of the traditionaliterative DP in both forward and bakward diretions to perform the deompo-sition. In ontrast, our algorithm always applies DP in one diretion and thus issimpler to implement.We desribe below the two parts of our algorithm. The pseudoode for bothparts an be found in Figure 1 of the tehnial report [4℄.Compute-Boundary-3D. Given the input boundary of c[i1 : i2, j1 : j2, k1 :

k2] this funtion reursively omputes its output boundary. For simpliity ofexposition we assume that i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1 for some integer
q ≥ 0.If q = 0, the funtion an ompute the output boundary diretly using re-urrene 2.1, otherwise it deomposes its ubi omputation spae Q (initially3

Q ≡ c[1 : n, 1 : n, 1 : n]) into 8 sububes Qi,j,k, 1 ≤ i, j, k ≤ 2, where Qi,j,kdenotes the subube that is i-th from the left, j-th from the bak and k-thfrom the top. It then omputes the output boundary of eah subube reursivelyas the input boundary of the subube beomes available during the proess ofomputation. After all reursive alls terminate, the output boundary of Q isomposed from the output boundaries of the sububes.Analysis. Let I1(n) be the ahe-omplexity of Compute-Boundary-3D onsequenes of length n. Then I1(n) = O
(

1 + n2/B
) if the omputation an be per-formed entirely inside the ahe. Otherwise, I1(n) = 8I1 (n/2) + O

(

1 + n2/B
).Solving the reurrene, I1(n) = O

(

n3/M + n3/(B
√

M)
). It is straight-forwardto show that the algorithm runs in O

(

n3
) time and O

(

n2
) spae.Compute-Traebak-Path-3D.Given the input boundary of c[i1 : i2, j1 :

j2, k1 : k2] and the entry point of the traebak path on the output boundarythis funtion reursively omputes the entire path.If q = 0, the traebak path an be updated diretly using reurrene 2.1,otherwise it performs two passes: forward and bakward. In the forward pass itomputes the output boundaries of all sububes exept Q2,2,2 as in Compute-Boundary-3D. After this pass the algorithm knows the input boundaries of alleight sububes, and the problem redues to reursively extrating the fragmentsof the traebak path from eah subube and ombining them. In the bakwardpass the algorithm starts at Q2,2,2 and updates the traebak path by allingitself reursively on the sububes in the reverse order of the forward pass.Analysis. Let I2(n) be the ahe-omplexity of Compute-Traebak-Path-3D on input sequenes of length n eah. Then I2(n) = O
(

1 + n2/B
) if theomputation an be performed ompletely inside the ahe. Otherwise, I2(n) =

4I2 (n/2) + 7I1 (n/2) + O
(

1 + n2/B
) sine the traebak path annot intersetmore than 4 sububes and hene at most 4 reursive alls will be made in thebakward pass. Solving the reurrene we obtain I2(n) = O

(

n3/M + n3/(B
√

M)
).The algorithm runs inO

(

n3
) time andO

(

n2
) spae as with Hirshberg's sheme.3 Parallel Implementation of the CO FrameworkThe framework in Setion 2 has a simple parallel implementation that for general

d performs O (

nd
) work, uses O (

nd−1
) spae, inurs O (

nd/
(

BM
1

d−1

)) ahe-misses and terminates in O
(

nd/p + nlog
2
(d+1) log n

) parallel steps when run on
p proessors with private ahes (see tehnial report [4℄ for details). This is theparallel algorithm we implemented for our experiments in Setion 5.In this setion we improve the parallel time omplexity of our framework to
O

(

nd/p + n
) while keeping the other bounds unhanged from above. We presenttwo di�erent parallel implementations for the 3-dimensional ase for distributedand shared ahes, respetively. Implementation for general d is similar.3.1 Distributed CahesWe onsider a parallel mahine with p proessors with eah proessor having aprivate ahe of size M and blok size B.4

Par-Compute-Boundary-3D. This funtion deomposes its ubi om-putation spae Q (≡ c[1 : n, 1 : n, 1 : n]) into p
3

2 sububes of size (n/
√

p) ×
(n/

√
p) × (n/

√
p) eah. By Qi,j,k (1 ≤ i, j, k ≤ √

p) we denote the sububethat is i-th from the left boundary of Q, j-th from the bak boundary and k-thfrom the top boundary. Then the omputation progresses in 3 min(
√

p, n) − 2steps. In step t (1 ≤ t ≤ 3 min(
√

p, n) − 2) output boundaries of all Qi,j,k with
i+ j +k = t+2 are omputed in parallel using a modi�ed version of Compute-Boundary-3D whih for eah ell on the output boundary also omputes theloation where the traebak path from that ells hits the input boundary.For p ≤ n2, there are Θ

(√
p
) steps of parallel subube omputations re-quiring O

(

(n/
√

p)3
) time eah, and thus the entire omputation terminates in

O
(√

p × (n/
√

p)3
)

= O
(

n3/p
) parallel time. For p > n2, there are Θ (n) steps of

O (1) time eah and the omputation ompletes in O (n) parallel time. The par-allel time omplexity of the algorithm is thus O (

n3/p + n
). It is straight-forwardto show that the algorithm performs O (

n3
) work and uses O (

n2
) spae.Sine there are p3/2 alls to Compute-Boundary-3D on sequenes of length

n/
√

p and eah of them is exeuted on a single proessor, total number of ahe-misses inurred by all suh alls isO (

p3/2 × (n/
√

p)3/(B
√

M)
)

= O
(

n3/(B
√

M)
).Par-Compute-Traebak-Path-3D. This funtion is similar to the se-quential Compute-Traebak-Path-3D given in Setion 2.1 exept for thefollowing di�erenes.Forward Pass: Instead of alling Compute-Boundary-3D desribed in Setion2.1 we all Par-Compute-Boundary-3D desribed in this setion.Bakward Pass: The fragment of the traebak path inside Q2,2,2 is extrated byalling Par-Compute-Traebak-Path-3D reursively. Now using the extrainformation on traebak paths omputed in the forward pass we an �nd inonstant time where the traebak path hits all other sububes. Therefore, wean exeute the remaining (at most three) reursive alls to Par-Compute-Traebak-Path-3D in parallel.Let Tp(n) denote the parallel running time of Par-Compute-Traebak-Path-3D when alled with p proessors. Let T ′

p(n) denote the same for Par-Compute-Boundary-3D. Then for p ≤ n2, Tp(n) ≤ 7 · T ′

p(n/2) + Tp(n/2) +

Tp/3(n/2) + Θ
(

n2/p
). Solving we obtain, Tp(n) = O

(

n3/p
). Therefore, for allvalues of p, Tp(n) = O

(

n3/p + n
). The algorithm performs O

(

n3
) work anduses O (

n2
) spae, and inurs O (

n3/(B
√

M)
) ahe-misses.3.2 Shared CahesWe onsider a parallel mahine with p proessors sharing a single ahe of size

M and blok size B.The algorithms are similar to the sequential algorithms given in Setion 2.1until we reah a subproblem involving sequenes of length Θ
(√

p
). At that pointwe ompute all entries of the ubi omputation spae and store all of them in

Θ
(

p3/2
) spae. We ompute the entries (i.e., 1 × 1 × 1 sububes) of the ube5

using the parallel subube omputation method desribed in Setion 3.1 for Par-Compute-Boundary-3D, and then extrat the traebak path in Θ
(√

p
) timeby following the parent ells through the ube sequentially.It is not di�ult to prove that the algorithms as desribed above perform

O
(

n3
) work, use O

(

n2 + p3/2
) spae and terminate in O

(

n3/p + n
) parallelsteps. Assuming M = Ω

(

p3/2
), the ahe omplexity of the algorithms an beshown to be O

(

n3/(B
√

M)
). We omit the proofs from here for lak of spae.4 Some Appliations of the Cahe-oblivious Framework4.1 Pairwise Global Sequene Alignment with A�ne Gap Penalty.Given two strings X = x1x2 . . . xm and Y = y1y2 . . . yn over a �nite alphabet Σ,an alignment of X and Y is a mathing M of sets {1, 2, . . . , m} and {1, 2, . . . , n}suh that if (i, j), (i′, j′) ∈ M and i < i′ hold then j < j′ must also hold [12℄.The i-th letter of X or Y is said to be in a gap if it does not appear in any pairin M . Given a gap penalty g and a mismath ost s(a, b) for eah pair a, b ∈ Σ,the basi (global) pairwise sequene alignment problem asks for a mathing Moptfor whih (m + n − |Mopt|) × g +

∑

(a,b)∈Mopt
s(a, b) is minimized [12℄.For simpliity of exposition we will assume m = n for the rest of this setion.The formulation of the basi sequene alignment problem favors a large num-ber of small gaps while real biologial proesses favor the opposite. The alignmentan be made more realisti by using an a�ne gap penalty [9, 3℄ whih has twoparameters: a gap introdution ost gi and a gap extension ost ge. A run of kgaps inurs a total ost of gi + ge × k.In [9℄ Gotoh presented an O

(

n2
) time and O

(

n2
) spae DP algorithm forsolving the global pairwise alignment problem with a�ne gap osts. The algo-rithm inurs O (

n2/B
) ahe misses. Gotoh's algorithm solves the following DPreurrenes.

D(i, j) =

�
G(0, j) + ge if i = 0 and j > 0
min {D(i − 1, j), G(i − 1, j) + gi} + ge if i > 0 and j > 0. (4.2)

I(i, j) =

�
G(i, 0) + ge if i > 0 and j = 0
min {I(i, j − 1), G(i, j − 1) + gi} + ge if i > 0 and j > 0. (4.3)

G(i, j) =

8>><>>: 0 if i = 0 and j = 0
gi + ge × j if i = 0 and j > 0
gi + ge × i if i > 0 and j = 0
min {D(i, j), I(i, j), G(i − 1, j − 1) + s(xi, yj)} if i > 0 and j > 0. (4.4)The optimal alignment ost is min {G(n, n), D(n, n), I(n, n)} and an optimalalignment an be traed bak from the smallest of G(n, n), D(n, n) and I(n, n).Cahe-oblivious Implementation. Reurrenes 4.2 - 4.4 an be viewed as asingle reurrene evaluating a single matrix c[0 : n, 0 : n] with three �elds: D, Iand G. This reurrene mathes reurrene 2.1 with d = 2 (see tehnial report[4℄ for explanation), and thus an be solved using our ahe-oblivious frameworkin O

(

n2
) time, O (n) spae, and only O

(

n2/(BM)
) ahe misses.6

4.2 Median of Three Sequenes.The Median problem is the problem of obtaining an optimal alignment of threesequenes using an a�ne gap penalty. The median sequene under the optimalalignment is also omputed. Knudsen [11℄ presented a dynami program to �ndmultiple alignment of N sequenes, eah of length n in O
(

16.81NnN
) time and

O
(

7.442NnN
) spae. For the median problem, this gives an O

(

n3
) time andspae algorithm that inurs O

(

n3/B
) ahe-misses. An Ukkonen-based algo-rithm is presented in [15℄, whih performs well espeially for sequenes whose(3-way) edit distane δ is small. On average, it requires O

(

n + δ3
) time andspae [15℄.Knudsen's Algorithm [11℄ for three sequenes (say, X = x1x2 . . . xn, Y =

y1y2 . . . yn and Z = z1z2 . . . , zn) is a dynami program over a three-dimensionalmatrix K. Eah entry K(i, j, k) is omposed of 23 �elds. Eah �eld orrespondsto an indel on�guration q, whih desribes how the last haraters xi, yj and
zk are mathed. A residue on�guration de�nes how the next three haraters ofthe sequenes will be mathed. Eah on�guration is a vetor e = (e1, e2, e3, e4),where ei ∈ {0, 1}, 1 ≤ i ≤ 4. The entry ei, 1 ≤ i ≤ 3 indiates if the alignedharater of sequene i is a gap or a residue, while e4 orresponds to the alignedharater of the median sequene. There are 10 residue on�gurations out of16 possible ones. The reursive step alulates the value of the next entry byapplying residue on�gurations to eah indel on�guration.We de�ne ν(e, q) = q′if applying the residue on�guration e to the indel on�guration q gives the indelon�guration q′. The reurrene relation used by Knudsen's algorithm is:
K(i, j, k)q =

8>><>>: 0 if i = j = k = 0 ∧ q = qo

∞ if i = j = k = 0 ∧ q 6= qo

mine,q′:q=ν(e,q′)

�
K(i′, j′, k′)q′ + Ge,q

+M(i′,j′,k′)→(i,j,k)

� otherwise. (4.5)where qo is the on�guration where all haraters math, i′ = i− e1, j′ = j − e2and k′ = k − e3, M(i′,j′,k′)=(i,j,k) is the mathing ost between haraters of thesequenes, and Ge,q is the ost for introduing or extending the gap.The M and G matries an be pre-omputed. Therefore, Knudsen's algorithmruns in O
(

n3
) time and spae with O

(

n3/B
) ahe-misses.Cahe-oblivious Algorithm. In the tehnial report [4℄ we show how to reduereurrene 4.5 to an instane of the general reurrene 2.1 with d = 3 using a sim-ple transformation. Therefore, funtion Compute-Boundary-3D (see Setion2.1) an be used to ompute the matrix K and funtion Compute-Traebak-Path-3D to retrieve an optimal alignment and the median in O

(

n3
) time,

O
(

n2
) spae and O

(

n3/(B
√

M)
) ahe-misses.4.3 RNA Seondary Struture Predition with Simple Pseudoknots.A single-stranded RNA an be viewed as a string X = x1x2 . . . xn over thealphabet {A, U, G, C} of bases. An RNA strand tends to give rise to interestingstrutures by forming omplementary base pairs with itself. An RNA seondarystruture (w/o pseudoknots) is a planar graph with the nesting ondition: if

{xi, xj} and {xk, xl} form base pairs and i < j, k < l and i < k hold then either7

i < k < l < j or i < j < k < l [19, 16, 2℄. An RNA seondary struture withpseudoknots is a struture where this nesting ondition is violated [16, 2℄.In [2℄ Akutsu presented a DP to ompute RNA seondary strutures withmaximum number of base pairs in the presene of simple pseudoknots (see [2℄for de�nition) whih runs in O
(

n4
) time, O (

n3
) spae and O

(

n4/B
) ahe-misses. In this Setion we improve its spae and ahe omplexities to O

(

n2
)and O

(

n4/(B
√

M)
), respetively, without hanging its time omplexity.We list below the DP reurrenes used in Akutsu's algorithm [2℄. For everypair (i0, k0) with 1 ≤ i0 ≤ k0 − 2 ≤ n − 2, reurrenes 4.6 - 4.10 ompute themaximum number of base pairs in a pseudoknot with endpoints at the i0-th and

k0-th residues. The value omputed by reurrene 4.10, i.e., Spseudo(i0, k0), is thedesired value. In reurrenes 4.6 and 4.7, v(x, y) = 1 if (x, y) form a base pair,otherwise v(x, y) = −∞. All uninitialized entries are assumed to have value 0.
SL(i, j, k) =

�
v(ai, aj) if i0 ≤ i < j ≥ k,
v(ai, aj) + SMAX(i − 1, j + 1, k) if i0 ≤ i < j < k. (4.6)

SR(i, j, k) =

�
v(aj , ak) if i0 − 1 = i < j − 1 = k − 2,
v(aj , ak) + SMAX(i, j + 1, k − 1) if i0 ≤ i < j < k. (4.7)

SM (i, j, k) = max

8<:SL(i − 1, j, k), SM (i − 1, j, k),
SMAX(i, j + 1, k),

SM (i, j, k − 1), SR(i, j, k − 1)

9=; if i0 ≤ i < j < k. (4.8)
SMAX(i, j, k) = max { SL(i, j, k), SM (i, j, k), SR(i, j, k) } (4.9)

Spseudo(i0, k0) = max
i0≤i<j<k≤k0

{ SMAX(i, j, k) } (4.10)After omputing all entries of SMAX for a �xed i0, all Spseudo(i0, k0) values for
k0 ≥ i0 +2 an be omputed using 4.10 in O

(

n3
) time and spae and O

(

n3/B
)ahe-misses. Sine there are n − 2 possible values for i0, all Spseudo(i0, k0) anbe omputed in O

(

n4
) time, O (

n3
) spae and O

(

n4/B
) ahe-misses.Finally, the following reurrene omputes the optimal sore S(1, n) for theentire struture in O

(

n3
) time, O (

n2
) spae and O

(

n3/B
) ahe-misses [2℄.

S(i, j) = max

�
Spseudo(i, j), S(i + 1, j − 1) + v(ai, aj),

maxi<k≤j {S(i, k − 1), S(k, j)}

� (4.11)Reurrene 4.11 an be evaluated in only O
(

n3/(B
√

M)
) ahe-misses and

O
(

n2
) spae without hanging the other bounds using our GEP framework [5℄.Spae Redution. We now desribe our spae redution result. Observe thatevaluating reurrene 4.10 requires retaining all O (

n3
) values omputed by re-urrene 4.9. We avoid using this extra spae by omputing all required Spseudo(i0, k0)values on the �y while evaluating reurrene 4.9. We ahieve this goal by in-troduing reurrene 4.12, replaing reurrene 4.10 with reurrene 4.13 for

S′

pseudo, and using S′

pseudo instead of Spseudo for evaluating reurrene 4.11. Alluninitialized entries in reurrenes 4.12 and 4.13 are assumed to have value −∞.
SP (i, j, k) =

�
max { SMAX(i, j, k), SP (i, j + 1, k) } if i0 ≤ i < j < k,
SP (i, j + 1, k) if i0 ≤ i ≥ j < k. (4.12)8

S′
pseudo(i0, k0) = max

�
S′

pseudo(i0, k0 − 1),
maxi0≤i<k0−1 {SP (i, i0 + 1, k0)}

� if k0 ≥ i0 + 2. (4.13)We prove in the tehnial report [4℄ that for 1 ≤ i0 ≤ k0 − 2 ≤ n − 2,
S′

pseudo(i0, k0) = Spseudo(i0, k0).Now observe that in order to evaluate reurrene 4.13 we only need thevalues SP (i, j, k) for j = i0 + 1, and eah entry (i, j, k) in reurrenes 4.6 -4.9 and 4.12 depends only on entries (·, j, ·) and (·, j + 1, ·). Therefore, we willevaluate the reurrenes for j = n �rst, then for j = n− 1, and ontinue downto
j = i0 + 1. Observe that in order to evaluate for j = j′ we only need to retainthe O (

n2
) entries omputed for j = j′ +1. Thus for a �xed i0 all SP (i, i0 +1, k)and onsequently all relevant S′

pseudo(i0, k0) an be omputed using only O
(

n2
)spae, and the same spae an be reused for all n values of i0.Cahe-oblivious Algorithm. The evaluation of reurrenes 4.6 - 4.9 and 4.12an be viewed as evaluating a single n× n× n matrix c with �ve �elds: SL, SR,

SM , SMAX and SP . If we replae all j with n− j +1 in the resulting reurreneit onforms to reurrene 2.1 for d = 3. Therefore, for any �xed i0 we an useCompute-Boundary-3D from Setion 2.1 to ompute all entries SP (i, i0+1, k)and onsequently all relevant S′

pseudo(i0, k0). All S′

pseudo(i0, k0) values an beomputed by n appliations (one for eah i0) of Compute-Boundary-3D.For any given pair (i0, k0) the pseudoknot with the optimal sore an betraed bak ahe-obliviously by allingCompute-Traebak-Path-3D. There-fore, the required RNA seondary struture an be omputed ahe-obliviouslyin O
(

n4
) time, O (

n2
) spae and O

(

n4/(B
√

M)
) ahe misses. Using an ex-planation similar to that in Setion 4.3 of the tehnial report [4℄ we an showthat the parallel algorithm in Setion 3 an solve the problem in O

(

n4
) workand O

(

n4/p + n
) parallel steps while keeping the other bounds unhanged.Extensions.Our ahe-oblivious framework also applies to several extensions ofthe basi DP for simple pseudoknots [2℄. See our tehnial report [4℄ for details.5 Experimental ResultsModel Proessors Speed L1 Cahe L2 Cahe RAMIntel P4 Xeon 2 3.06 GHz 8 KB (4-way) 512 KB (8-way) 4 GBAMD Opteron 250 2 2.4 GHz 64 KB (2-way) 1 MB (8-way) 4 GBAMD Opteron 850 8 2.2 GHz 64 KB (2-way) 1 MB (8-way) 32 GBTable 1. Mahines for experiments. All blok sizes: 64 bytes. OS: Ubuntu Linux 5.10.We ran our experiments on the mahines listed in Table 1. We used the Cahegrindpro�ler [17℄ for simulating ahe e�ets. All our algorithms were implementedin C++ (ompiled with g++ 3.3.4) while some software pakages we used foromparison were written in C (ompiled with g 3.3.4). Optimization parameter-O3 was used in all ases. Eah mahine was exlusively used for experiments.We now desribe our experimental results on pairwise sequene alignmentand the median problem. Results on RNA seondary struture predition anbe found in the tehnial report [4℄. 9

5.1 Pairwise Global Sequene Alignment with A�ne Gap Penalty.We performed experimental evaluation of the algorithms in Table 2.Algorithm Desription Time Spae Cahe MissesPA-CO our algorithm (see Setion 4.1) O
�
n2
�
O (n) O

�
n2/(BM)

�PA-LS linear-spae Gotoh [13℄ (our ode) O
�
n2
�
O (n) O

�
n2/B

�PA-FASTA linear-spae Gotoh [13℄ (from fasta2 [14℄) O
�
n2
�
O (n) O

�
n2/B

�Table 2. Pairwise sequene alignment algorithms used in our experiments.Sequential Performane. For random sequenes both PA-FASTA and PA-LSalways ran slower than PA-CO on AMD Opteron (see Figure 1), e.g., PA-FASTAran around 27% slower and PA-LS about 55% slower than PA-CO for sequenesof length 512 K. Relative performane of PA-CO improved over PA-FASTAand PA-LS as sequene length inreased. The trends were similar on Intel Xeonexept that improvements of PA-CO over PA-FASTA/PA-LS were more modest.Runtimes of Pairwise Alignment Algorithms on AMD Opteronfor Random Sequenes (Normalized w.r.t. PA-CO)����� �������������
	
�	
�
	

�
�
�
�
�

 � � � � � � � � � �� � �� � �� � ��� � �� ��������� ������ �� !"##$#%&$'()#*!'+,$-(./0!0& 0123456 Fig. 1. Comparison of run-ning times of pairwise se-quene alignment algorithms(see Table 2) on AMDOpteron 250. All runningtimes are normalized w.r.t.PA-CO. Eah data point isthe average of 3 independentruns on randomly generatedstrings over { A, T, G, C }.For real-world CFTR DNA sequenes [18℄ PA-FASTA ran around 20%-30%slower than PA-CO on AMD Opteron (see Table 3).Runtimes of PA-FASTA and PA-CO on CFTR DNA Sequenes [18℄ (on Opteron)Sequene pairs with lengths (106) PA-FASTA (t1) PA-CO (t2) ratio (t1/t2)human/baboon (1.80/1.51) 20h 34m 17h 23m 1.18human/himp (1.80/1.32) 19h 51m 15h 25m 1.29baboon/himp (1.51/1.32) 16h 43m 12h 43m 1.31human/rat (1.80/1.50) 24h 1m 18h 16m 1.31rat/mouse (1.50/1.49) 16h 49m 13h 55m 1.21Table 3. Comparison of runtimes (on Opteron 250) of PA-CO with PA-FASTA (seeTable 2) on CFTR DNA sequenes [18℄. Column 4 gives the ratio of runtime of PA-FASTA to that of PA-CO. Eah number in ols 2 and 3 is the time for a single run.Cahe Performane. Though PA-FASTA auses fewer ahe-misses than PA-CO when the input �ts into the ahe, it inurs signi�antly more misses thanPA-CO as the input size grows beyond ahe size (Figure 2). On AMD OpteronPA-FASTA inurs upto 300 times more L1 misses and 2500 times more L2 missesthan PA-CO while on Intel Xeon the �gures are 10 and 1000, respetively.Parallel Performane. Our experimental results in Figure 3(a) show that PA-CO ahieves reasonable speed-up as the number of proessors inreases, and fora �xed number of proessors the speed-up fator improves with sequene length.For example, with 8 proessors PA-CO ahieves a speed-up fator of 1.7 when
n = 8 K, and about 5 when n = 1024 K.10

Ratio of Cahe Misses Inurred by PA-FASTA to that Inurred by PA-CO for Random Sequenes78 9:;<= 7> 9:;<=(a) AMD Opteron 250
?@?A?@A?A@??A?@??A??@??AB???@??A?B???@??

CD ED FD GD CHD IED HFD CEGD EJHDKLMNLOPL QLORST U V WXYZ[\\]̂Y_̀abc[ddadee fghbihjkhlghb̂mn e (b) Intel P4 Xeon
opoqopqoqpooqopooqoopooqrooopoo

st ut vt wt sxt yut xvt suwt uzxt{|}~|��| �|���� � � ���������������������� ���������������� �
Fig. 2. Ratio of ahe-misses inurred by PA-FASTA to that inurred by PA-CO (seeTable 2) for both L1 and L2 ahes. Data was obtained using Cahegrind [17℄.Speed-up Fators Ahieved by Multithreaded Cahe-oblivious Algorithmson AMD Opteron 850 as the Number of Conurrent Threads (p) Vary� ¡ � ¢� £ � ¤ � ¥(a) Pairwise Alignment

¦§¦¦§̈©§¦©§̈ª§¦ª§̈«§¦«§̈¬§¦¬§̈¨§¦
 ® ©¯ ® «ª ® ¯¬ ® ©ª ® ª¨¯ ® ¨©ª ® ©°¦ª¬ ®±²³´²µ¶² ·²µ¸¹º »µ¼½¾¿¿ÀÁÂ¾ÃÄÅÆÇÈ ÉÊÇÈËÄÌÍÎ¿ÀÏÐÈÐÆ Ð¾ÑÒÓ (b) Median

ÔÕÔÖÕÔ×ÕÔØÕÔÙÕÔÚÕÔÛÕÔ
Ö×Ü ×ÚÛ ÚÖ× ÖÝÔ×ÙÞßàáßâãß äßâåæç èâéêëììíîïëðñòóôõ ö÷ôõøñùúûìíüýõýó ýëþÿ�

Fig. 3. Speed-up fators (w.r.t. unthreaded ode) ahieved by multithreaded ahe-oblivious pairwise alignment and median algorithms on 8-proessor Opteron 850 asnumber of threads (p) vary. Sequenes were randomly generated over { A, T, G, C }.5.2 Median of Three Sequenes.We evaluated the algorithms in Table 4. We used gi = 3, ge = 1 and a mismathost of 1 in all experiments.Algorithm Desription Time Spae Cahe MissMED-CO our algorithm (see Setion 4.2) O
�
n3
�

O
�
n2
�

O
�

n3

B
√

M

�MED-Knudsen Knudsen [11℄ (Knudsen's ode) O
�
n3
�

O
�
n3
�

O
�
n3/B

�MED-H n2-spae Knudsen (our ode) O
�
n3
�

O
�
n2
�

O
�
n3/B

�MED-ukk.allo Powell [15℄ (Powell's ode) O
�
n + δ3

�
O
�
n + δ3

�
O
�
δ3/B

�MED-ukk.hekp Powell [15℄ (Powell's ode) O

�
n log δ
+δ3

�
O
�
n + δ2

�
O
�
δ3/B

�Table 4.Median algorithms in experiments. Here, δ = 3-way edit distane of sequenes.Sequential Performane. For random sequenes MED-CO ran at least 1.45times faster than MED-Knudsen and at least 1.25 times faster than MED-Hon Intel Xeon (see Figure 4(a)). MED-ukk.allo and MED-ukk.hekp ran upto
3.3 times (for length 256) and 4.8 times (for length 640) slower than MED-CO,respetively. The trends were similar on AMD Opteron (see Figure 4(b)). None ofMED-Knudsen, MED-ukk.allo and MED-ukk.hekp ould be run for sequeneslonger than 640 due to their high spae overhead on either mahine.11

Performane of Median Algorithms on Random Sequenes (Normalized w.r.t. MED-CO)��������	
� ��������������������
����������������(a) Runtimes on Intel P4 Xeon
���������������������������������

�� � ! �" #� $ % $!� ��! #� #&� ��% &%� &�! !$!"� "�% �'% �()*+),-) .),/01 2,3456676897:; <6=4:>?7@;ABC4C9 CDEFGHIJ
(b) Runtimes on AMD Opteron 250

KLKMLKNLKOLKPLKQLKRLK
ST UVW UXV VYS ZV[ZWT TTW YUV Y\S ST[\[T \SW WZV WXS XS[U][VT^_`a_bc_ d_befg hbijkllmlnompq rlsjptumvqwxyjyo yz{|}~��Fig. 4. Comparison of median algorithms (see Table 4). Figures (a) and (b) plot runningtimes on Intel P4 Xeon and AMD Opteron 250, respetively. MED-Knudsen, MED-ukk.allo and MED-ukk.hekp ould not be run for sequenes longer than 640. Eahdata point is the average of 3 independent runs on random strings over { A, T, G, C }.For real-world 16S baterial rDNA sequenes from the Pseudanabaena group[6℄ MED-Knudsen ran around 35�50% slower and MED-ukk.hekp upto 3.2times slower than MED-CO on Intel Xeon. (see Table 5). Running time of MED-ukk.hekp w.r.t. MED-CO degraded as the alignment ost inreased. MED-ukk.allo ould not be run on sequenes with alignment ost larger than 299.However, for small alignment osts both MED-ukk.allo and MED-ukk.hekpran faster than MED-CO (see triplet 6 in Table 5).Running times (in se) on Intel Xeon for random triples of 16S BaterialrDNA Sequenes from the Pseudanabaena Group [6℄ (runtime w.r.t. MED-CO)# Lengths Cost MED-Knudsen MED-ukk.allo MED-ukk.hekp MED-CO

1 367 387 388 299 722 (1.48) 512 (1.05) 601 (1.23) 487 (1.00)

2 378 388 403 324 752 (1.42) − (−) 769 (1.45) 529 (1.00)

3 342 367 389 339 611 (1.35) − (−) 863 (1.91) 451 (1.00)

4 342 370 474 432 764 (1.44) − (−) 1, 701 (3.20) 531 (1.00)

5 370 388 447 336 − (−) − (−) 824 (1.49) 553 (1.00)

6 367 388 389 260 695 (1.42) 330 (0.67) 380 (0.77) 491 (1.00)Table 5. Triplets 1�5 were formed by hoosing random sequenes of length less than500 from the Pseudanabaena group [6℄ while triplet 6 was hosen manually in order tokeep the alignment ost small. Columns 4�7 give time for a single run with the ratioof that running time to the running time of MED-CO given within parentheses. A `−'denotes that the orresponding algorithm ould not be run due to high spae overhead.Parallel Performane. Figure 3(b) shows multithreaded MED-CO ahievingreasonable speed-up as the number of proessors grow and reahing upto a speed-up fator of 5.5 with 8 proessors.Aknowledgement. We thank Mike Brudno for providing us with the CFTRDNA sequenes, and David Zhao for median software pakages.Referenes1. A. Aggarwal and J. Vitter. The input/output omplexity of sorting and relatedproblems. CACM, 31:1116�1127, 1988.2. T. Akutsu. Dynami programming algorithms for RNA seondary struture pre-dition with pseudoknots. Disrete Appl. Math., 104:45-62, 2000.3. S. Altshul and B. Erikson. Optimal sequene alignment using a�ne gap osts.Bulletin of Math. Biol., 48:603�616, 1986.12

4. R. Chowdhury, H. Le, and V. Ramahandran. E�ient ahe-oblivious stringalgorithms for Bioinformatis. CS TR-07-03, UT Austin, 2007.5. R. Chowdhury and V. Ramahandran. Cahe-oblivious dynami programming.Pro. SODA, pp. 591�600, 2006.6. T. DeSantis, I. Dubosarskiy, S. Murray, and G. Andersen. Comprehensive alignedsequene onstrution for automated design of e�etive probes (CASCADE-P)using 16S rDNA. Bioinformatis, 19:1461�1468, 2003.7. M. Frigo, C. Leiserson, H. Prokop, and S. Ramahandran. Cahe-oblivious algo-rithms. Pro. FOCS, pp. 285�297, 1999.8. M. Frigo and V. Strumpen. Cahe-oblivious stenil omputations. Pro. ICS, pp.361�366, 2005.9. O. Gotoh. An improved algorithm for mathing biologial sequenes. JMB,162:705�708, 1982.10. D. Hirshberg. A linear spae algorithm for omputing maximal ommon subse-quenes. CACM, 18(6):341�343, 1975.11. B. Knudsen. Optimal multiple parsimony alignment with a�ne gap ost using aphylogeneti tree. Pro. WABI, pp. 433�446, 2003. S/W pakage: multalign.tar.12. J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesely, 2005.13. E. Myers and W. Miller. Optimal alignments in linear spae. CABIOS, 4(1):11�17,198814. W. Pearson and D. Lipman. Improved tools for biologial sequene omparison.Pro. NAS-USA, 85:2444�2448, 1988.15. D. Powell, L. Allison and T. Dix. Fast, optimal alignment of three sequenesusing linear gap ost. J. Theo. Biol., 207(3):325�336, 2000. S/W pakage:align3str_hekp.tar.gz.16. E. Rivas and S. Eddy. A dynami programming algorithm for RNA struturepredition inluding pseudoknots. JMB, 285(5):2053-68, 1999.17. J. Seward and N. Netherote. Valgrind. http://valgrind.kde.org/index.html18. J. Thomas et al. Comparative analyses of multi-speies sequenes from targetedgenomi regions. Nature, 424:788�793, 2003.19. M. Waterman. Introdution to Computational Biology. Chapman & Hall, 1995.

13

