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Databases 

 Our interest - relational databases 
 Data is stored in tables.  
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Table 

 Set of rows (no duplicates) 
 Each row - a different entity 
 Each column - a particular fact about each entity 
 Each column has an associated domain 

 
 
 
 
 Domain of  Status = {fresh, soph, junior, senior} 

3 

Id Name Address Status 
1111 John 123 Main fresh 
2222 Mary 321 Oak soph 
1234 Bob 444 Pine soph 
9999 Joan 777 Grand senior 



Relation 

 Mathematical entity corresponding to a table 
 row ~ tuple 
 column ~ attribute 

 

 Values in a tuple are related to each other 
 John is a freshman and lives at 123 Main 

 

 Relation R as predicate R 
 R(x,y,z) is true iff  tuple (x,y,z) is in R 
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Operations 

 Operations on relations are precisely defined 
 Take relation(s) as argument, produce new relation as result 
 Unary  (e.g., delete certain rows) 
 Binary (e.g., union, Cartesian product) 

 Corresponding operations defined on tables as well 
 

 Using mathematical properties, equivalence can be 
decided 
 Important for query optimization: 
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? 
op1(T1,op2(T2))  = op3(op2(T1),T2) 



Structured Query Language: SQL 

 Language for manipulating tables 
 Declarative – Statement specifies what needs to be 

obtained, not how it is to be achieved   
 e.g., how to access data, the order of operations 

 

 DBMS determines evaluation strategies for query 
processing and optimization 
 Simplifies application programs 
 But DBMS is not infallible 

 Programmers must understand the mechanism behind SQL for better 
design and statements  
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Structured Query Language (SQL) 

 
 
 
 

 Language for constructing a new table from argument 
table(s). 
 FROM  - source table(s) 
 WHERE  - which rows to retain  (Filtering) 
 SELECT  - which columns to keep from retained rows (Projection) 

 
 The result is also a table. 
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SELECT <attribute list> 
FROM  <table list > 
WHERE <condition> 



Example 

8 

SELECT Name  
FROM  Student 
WHERE  Id > 4999 

Id       Name     Address     Status 
1234  John      123 Main    fresh 
5522  Mary      77 Pine       senior 
9876  Bill          83 Oak        junior 
 
  Student 

Name 
Mary 
Bill 
 
Result 



Examples  
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SELECT Id, Name FROM Student 
 
SELECT Id, Name FROM Student 
    WHERE Status = ‘senior’ 
 
SELECT * FROM Student 
    WHERE Status = ‘senior’ 
 
 
 
SELECT COUNT(*) FROM Student 
    WHERE Status = ‘senior’ 

result is a table 
with one column 

and one row 
 



More Complex Example 

 Goal: table in which each row names a senior and gives 
a course taken and grade 

 Combines information in two tables: 
 Student: Id, Name, Address, Status 
 Transcript: StudId, CrsCode, Semester, Grade 

10 

SELECT Name, CrsCode, Grade 
FROM  Student, Transcript 
WHERE  StudId = Id AND Status = ‘senior’  



Join 
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T1 T2 
a1 a2 a3 
A 1 xxy 
B 17 rst 

b1 b2 
3.2 17 
4.8 17 

a1 a2 a3 b1 b2 
A 1 xxy 3.2 17 
A 1 xxy 4.8 17 
B 17 rst 3.2 17 
B 17 rst 4.8 17 

B 17 rst 3.2 17 
B 17 rst 4.8 17 
 

B 3.2 
B 4.8 

FROM  T1, T2 
   yields: 

WHERE  a2 = b2 
    yields: 

SELECT  a1, b1 
    yields result: 

SELECT  a1, b1 
FROM  T1, T2 
WHERE  a2 = b2 



Modifying Tables 
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UPDATE  Student 
SET  Status = ‘soph’ 
WHERE  Id = 111111111 
 
INSERT INTO  Student (Id, Name, Address, Status) 
VALUES  (999999999, ‘Bill’, ‘432 Pine’, ‘senior’) 
 
DELETE FROM  Student 
WHERE  Id = 111111111 



Creating Tables 
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CREATE TABLE Student ( 
   Id    INTEGER, 
   Name  CHAR(20), 
   Address  CHAR(50), 
   Status   CHAR(10), 
   PRIMARY KEY (Id)  ) 



Integrity Constraints 

 Rules (or limitations) enforced by the enterprise  
 Generally, limit the occurrence of certain real-world events. 
 Student cannot register for a course if current number of 

registrants = maximum allowed 
 Allowable database states are restricted 

 cur_reg <= max_reg 
 

 Expressed as integrity constraints 
 assertions that must be satisfied by the database state. 

14 



Transactions 

 Many enterprises use databases to store information 
about their state 
 E.g., balances of all depositors 

 

 Real world event  corporate database update 
 requires the execution of a program that changes the database 

state in a corresponding way 
 E.g., balance must be updated when you deposit 

 

 A transaction is a program that accesses the database in 
response to real-world events 
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Transactions 

 Transactions are not just ordinary programs 
 Additional requirements 

 

  Atomicity 
  Consistency 
  Isolation 
  Durability 
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ACID properties 



Atomicity 

 A real-world event either happens or does not happen. 
 Student either registers or does not register. 

 

 Whether the transaction runs to completion (commits) 
or,  

 If it does not complete, it has no effect at all (aborts). 
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Consistency 

 Transaction designer must ensure 
 IF the database is in a state that satisfies all integrity 

constraints when execution of a transaction is started 
 THEN when the transaction completes:  

 All integrity constraints are once again satisfied (constraints can be 
violated in intermediate states) 

 New database state satisfies specifications of transaction 
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Isolation 

 Deals with concurrent transaction execution 
 If the initial database state is consistent and accurately reflects 

the real-world state,  
 then the serial (one after another) execution of a set of 

consistent transactions will preserve consistency. 
 However…. Serial execution is inadequate from a performance 

perspective. 

 
 Overall effect of the transaction schedule must be the 

same as if the transactions had executed serially in 
some order. 
 The execution is thus not serial, but serializable 
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Concurrent Transaction Execution 
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Isolation 

 Concurrent (interleaved) transaction execution offers 
performance benefits, but might not be correct. 

 Example:  Two students execute the course registration 
transaction at about the same time 
 cur_reg is the number of current registrants 
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T1:  read(cur_reg : 29)                                                                      write(cur_reg : 30) 
T2:                                read(cur_reg : 29)  write(cur_reg : 30) 
 
   time → 

Result: Database state no longer corresponds to 
real-world state, integrity constraint violated. 



Durability 

 Once a transaction commits, its effect on the database 
state is not lost in spite of subsequently computer 
crashes. 
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ACID Properties 

 The transaction monitor is responsible for ensuring 
atomicity, durability, and (the requested level of) 
isolation. 
 Hence it provides the abstraction of failure-free, non-

concurrent environment, greatly simplifying the task of the 
transaction designer. 

 The transaction designer is responsible for ensuring the 
consistency of each transaction, but doesn’t need to 
worry about concurrency and system failures. 
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Data and Its Structure 

 Schema: Description of data at some abstraction level. 
Each level has its own schema. 

 We will be concerned with three schemas: physical, 
conceptual, and external. 
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Physical Data Level 

 Physical schema describes details of how data is stored 
 tracks, cylinders, indices etc. 
 Early applications worked at this level – explicitly dealt with 

details. 

 Problem:   
 Routines were hard-coded to deal with physical 

representation. 
 Changes to data structure difficult to make. 
 Application code becomes complex since it must deal with 

details. 
 Rapid implementation of new features impossible. 
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Conceptual Data Level 

 Hides details. 
 In the relational model, the conceptual schema presents data 

as a set of tables (or relations). 

 DBMS maps from conceptual to physical schema 
automatically. 

 Physical schema can be changed without changing 
application: 
 DBMS would change mapping from conceptual to physical 

transparently 
 This property is referred to as physical data independence 
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Conceptual Data Level (con’t) 
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Application 

DBMS 

Conceptual 
view of data 

Physical view 
of data 



External Data Level 

 In the relational model, the external schema also 
presents data as a set of relations. 

 An external schema specifies a view of the data in terms 
of the conceptual level. It is tailored to the needs of a 
particular category of users. 
 Portions of stored data should not be seen by some users. 

 Students should not see their files in full. 
 Faculty should not see billing data. 

 Information that can be derived from stored data might be 
viewed as if it were stored. 
 GPA not stored, but calculated when needed. 
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External Data Level (con’t)  

 Application is written in terms of an external schema. 
 A view is computed when accessed (not stored). 
 Different external schemas can be provided to different 

categories of users. 
 Translation from external to conceptual done 

automatically by DBMS at run time. 
 Conceptual schema can be changed without changing 

application: 
 Mapping from external to conceptual must be changed. 

 Referred to as conceptual data independence. 
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ANSI-SPARC 3-level Architecture (1975) 
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ANSI-SPARC 3-level Architecture 

 External Level 
 Multiple independent users or applications 
 Users' view of the database 
 Focus on each user or application 

 

 Conceptual Level 
 Community view of the database  
 Describes what data is stored in database                                 

and relationships among the data   
 Focus on the organization 
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ANSI-SPARC 3-level Architecture 

 Internal Level 
 Physical representation of the database on the computer 
 Describes how the data is stored in the database 
 Focus on the DBMS 
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Data Model 

 Schema:  description of data at some level  
 e.g.,  tables, attributes, constraints, domains 

 

 Model: tools and language for describing: 
 Conceptual and external schema  

 Data definition language (DDL) 

 Integrity constraints, domains (DDL) 
 Operations on data  

 Data manipulation language (DML) 

 Directives that influence the physical schema (affects 
performance, not semantics) 
 Storage definition language (SDL) 
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Relational Model 

 A particular way of structuring data (using relations) 
 Simple 
 Mathematically based 
 Expressions (≡ queries) can be analyzed by DBMS 
 Queries are transformed to equivalent expressions 

automatically  (query optimization) 
 Optimizers have limits 
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Relation Instance 

 Relation is a set of tuples 
 Atomic values 
 Tuple ordering is unimportant 
 No duplicates 
 Cardinality of relation = number of tuples 

 All tuples in a relation have the same structure;  
constructed from the same set of attributes 
 Attributes are named (ordering is immaterial) 
 Value of an attribute is drawn from the attribute’s domain 

 There is also a special value null (value unknown or undefined), which 
belongs to no domain 

 Arity (or degree) of relation = number of attributes 

36 



Relation Instance (Example) 
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    Id          Name   Address     Status 

1111111 John 123 Main  freshman 

2345678 Mary 456 Cedar sophmore 

4433322 Art 77 So. 3rd senior 

7654321 Pat 88 No. 4th sophmore 
 

 Student 



Relation Schema 

 Relation name 
 Attribute names & domains 
 Integrity constraints like  
 The values of a particular attribute in all tuples are unique 
 The values of a particular attribute in all tuples are greater 

than 0   

 Default values 
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Relational Database 

 Finite set of relations 
 Each relation consists of a schema and an instance 

 
 Database schema =  set of relation schemas constraints 

among relations (inter-relational constraints) 
 Database instance = set of (corresponding) relation 

instances 
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Database Schema (Example) 

 Student (Id: INT, Name: STRING, Address: STRING,   
                     Status: STRING) 
 Professor (Id: INT, Name: STRING, DeptId: DEPTS) 
 Course (DeptId: DEPTS, CrsName: STRING,  
                   CrsCode: COURSES) 
 Transcript (CrsCode: COURSES, StudId: INT, 
                        Grade: GRADES, Semester: SEMESTERS) 
 Department(DeptId: DEPTS, Name: STRING) 
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Integrity Constraints 

 Part of schema 
 Restriction on state (or of sequence of states) of data 

base 
 Enforced by DBMS 
 Intra-relational - involve only one relation 
 Part of relation schema 
 e.g., all Ids are unique 

 Inter-relational - involve several relations 
 Part of relation schema or database schema 
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Constraint Checking 

 Automatically checked by DBMS 
 Protects database from errors 
 Enforces enterprise rules 
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Kinds of Integrity Constraints 

 Static – restricts legal states of database 
 Syntactic (structural) 

 e.g., all values in a column must be unique (atomic values) 

 Semantic (involve meaning of attributes) 
 e.g., cannot register for more than 18 credits 

 Dynamic – limitation on sequences of database states 
 e.g., cannot raise salary by more than 5% 
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Key Constraint 

 A key constraint is a sequence of attributes A1,…,An of a 
relation schema, S, with the following property:  
 A relation instance s of S satisfies the key constraint iff at most 

one row in s can contain a particular (or unique) set of values, 
a1,…,an, for the attributes A1,…,An  

 Minimality:  no subset of A1,…,An satisfies the key constraint 

 Key 
  Set of attributes mentioned in a key constraint 

 e.g., Id  in Student,  
 e.g., (StudId, CrsCode, Semester) in Transcript 

 It is minimal: no subset of a key is a key 
 (Id, Name) is not a key of Student 
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Key Constraint (cont’d) 

 Superkey - set of attributes containing key 
 (Id, Name) is a superkey of Student 

 Every relation has a key 
 Relation can have several keys: 
 Primary key:  Id in Student  (can’t be null) 
 Candidate key:  (Name, Address) in Student 
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Foreign Key Constraint 

 Referential integrity:  Item named in one relation must refer to 
tuples that describe that item in another 
 Transcript (CrsCode)   references  Course (CrsCode ) 
 Professor(DeptId)   references  Department (DeptId) 

 

 Attribute A1 is a foreign key of R1 referring to attribute A2 in R2,  
if whenever there is a value v of A1, there is a tuple of R2 in which 
A2 has value v, and A2 is a key of R2 
 This is a special case of referential integrity:  A2 must be a candidate key of 

R2  (e.g., CrsCode is a key of Course in the above) 
 If no row exists in R2 => violation of referential integrity 
 Not all rows of R2 need to be referenced:  relationship is not symmetric 

(e.g., some course might not be taught) 
 Value of a foreign key might not be specified (DeptId column of some 

professor might be null) 
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Foreign Key Constraint (Example) 
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A2 
v3 
v5 
v1 
v6 
v2 
v7 
v4 

A1 
v1 
v2 
v3 
v4 
null 
v3 

R1 R2 
Foreign key 

Candidate key 



Foreign Key (cont’d) 

 Names of the attributes A1 and A2 can be different. 
 With tables: 

 
 

 ProfId attribute of Teaching references Id attribute of Professor 
 

 R1 and R2 need not be distinct. 
 Employee(Id:INT, MgrId:INT, ….) 

 Employee(MgrId) references Employee(Id) 

 Every manager is also an employee and hence has a unique 
row in Employee 
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Teaching(CrsCode: COURSES,  Sem: SEMESTERS, ProfId: INT) 
Professor(Id: INT, Name: STRING, DeptId: DEPTS) 



Foreign Key (cont’d) 

 Foreign key might consist of several columns 
 (CrsCode, Semester)  of  Transcript  references   
  (CrsCode, Semester)  of  Teaching 

 

 R1(A1, …An) references R2(B1, …Bn) 
 Ai and Bi must have same domains (although not necessarily 

the same names) 
 B1,…,Bn must be a candidate key of R2 
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Inclusion Dependency 

 Referential integrity constraint that is not a foreign key 
constraint 

 (CrsCode, Semester)  of  Teaching references   
  (CrsCode, Semester)  of  Transcript 

 Target attributes is not a CK in Transcript 
 

 No simple enforcement mechanism for inclusion 
dependencies in SQL (requires assertions) 
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