
Ilchul Yoon
Assistant Professor

State University of New York, Korea

Adapted from book authors’ slides

CSE 532 – Theory of Database Systems

Lecture 02
The Big Picture

CSE 305 / CSE532

Lecturer: Sael Lee

Slide adapted from the author’s slides and Dr. Ilchul Yoon’s slides.

Databases

 Our interest - relational databases
 Data is stored in tables.

2

Table

 Set of rows (no duplicates)
 Each row - a different entity
 Each column - a particular fact about each entity
 Each column has an associated domain

 Domain of Status = {fresh, soph, junior, senior}

3

Id Name Address Status
1111 John 123 Main fresh
2222 Mary 321 Oak soph
1234 Bob 444 Pine soph
9999 Joan 777 Grand senior

Relation

 Mathematical entity corresponding to a table
 row ~ tuple
 column ~ attribute

 Values in a tuple are related to each other
 John is a freshman and lives at 123 Main

 Relation R as predicate R
 R(x,y,z) is true iff tuple (x,y,z) is in R

4

Operations

 Operations on relations are precisely defined
 Take relation(s) as argument, produce new relation as result
 Unary (e.g., delete certain rows)
 Binary (e.g., union, Cartesian product)

 Corresponding operations defined on tables as well

 Using mathematical properties, equivalence can be
decided
 Important for query optimization:

5

?
op1(T1,op2(T2)) = op3(op2(T1),T2)

Structured Query Language: SQL

 Language for manipulating tables
 Declarative – Statement specifies what needs to be

obtained, not how it is to be achieved
 e.g., how to access data, the order of operations

 DBMS determines evaluation strategies for query
processing and optimization
 Simplifies application programs
 But DBMS is not infallible

 Programmers must understand the mechanism behind SQL for better
design and statements

6

Structured Query Language (SQL)

 Language for constructing a new table from argument
table(s).
 FROM - source table(s)
 WHERE - which rows to retain (Filtering)
 SELECT - which columns to keep from retained rows (Projection)

 The result is also a table.

7

SELECT <attribute list>
FROM <table list >
WHERE <condition>

Example

8

SELECT Name
FROM Student
WHERE Id > 4999

Id Name Address Status
1234 John 123 Main fresh
5522 Mary 77 Pine senior
9876 Bill 83 Oak junior

 Student

Name
Mary
Bill

Result

Examples

9

SELECT Id, Name FROM Student

SELECT Id, Name FROM Student
 WHERE Status = ‘senior’

SELECT * FROM Student
 WHERE Status = ‘senior’

SELECT COUNT(*) FROM Student
 WHERE Status = ‘senior’

result is a table
with one column

and one row

More Complex Example

 Goal: table in which each row names a senior and gives
a course taken and grade

 Combines information in two tables:
 Student: Id, Name, Address, Status
 Transcript: StudId, CrsCode, Semester, Grade

10

SELECT Name, CrsCode, Grade
FROM Student, Transcript
WHERE StudId = Id AND Status = ‘senior’

Join

11

T1 T2
a1 a2 a3
A 1 xxy
B 17 rst

b1 b2
3.2 17
4.8 17

a1 a2 a3 b1 b2
A 1 xxy 3.2 17
A 1 xxy 4.8 17
B 17 rst 3.2 17
B 17 rst 4.8 17

B 17 rst 3.2 17
B 17 rst 4.8 17

B 3.2
B 4.8

FROM T1, T2
 yields:

WHERE a2 = b2
 yields:

SELECT a1, b1
 yields result:

SELECT a1, b1
FROM T1, T2
WHERE a2 = b2

Modifying Tables

12

UPDATE Student
SET Status = ‘soph’
WHERE Id = 111111111

INSERT INTO Student (Id, Name, Address, Status)
VALUES (999999999, ‘Bill’, ‘432 Pine’, ‘senior’)

DELETE FROM Student
WHERE Id = 111111111

Creating Tables

13

CREATE TABLE Student (
 Id INTEGER,
 Name CHAR(20),
 Address CHAR(50),
 Status CHAR(10),
 PRIMARY KEY (Id))

Integrity Constraints

 Rules (or limitations) enforced by the enterprise
 Generally, limit the occurrence of certain real-world events.
 Student cannot register for a course if current number of

registrants = maximum allowed
 Allowable database states are restricted

 cur_reg <= max_reg

 Expressed as integrity constraints
 assertions that must be satisfied by the database state.

14

Transactions

 Many enterprises use databases to store information
about their state
 E.g., balances of all depositors

 Real world event  corporate database update
 requires the execution of a program that changes the database

state in a corresponding way
 E.g., balance must be updated when you deposit

 A transaction is a program that accesses the database in
response to real-world events

15

Transactions

 Transactions are not just ordinary programs
 Additional requirements

 Atomicity
 Consistency
 Isolation
 Durability

16

ACID properties

Atomicity

 A real-world event either happens or does not happen.
 Student either registers or does not register.

 Whether the transaction runs to completion (commits)
or,

 If it does not complete, it has no effect at all (aborts).

17

Consistency

 Transaction designer must ensure
 IF the database is in a state that satisfies all integrity

constraints when execution of a transaction is started
 THEN when the transaction completes:

 All integrity constraints are once again satisfied (constraints can be
violated in intermediate states)

 New database state satisfies specifications of transaction

18

Isolation

 Deals with concurrent transaction execution
 If the initial database state is consistent and accurately reflects

the real-world state,
 then the serial (one after another) execution of a set of

consistent transactions will preserve consistency.
 However…. Serial execution is inadequate from a performance

perspective.

 Overall effect of the transaction schedule must be the

same as if the transactions had executed serially in
some order.
 The execution is thus not serial, but serializable

19

Concurrent Transaction Execution

20

Isolation

 Concurrent (interleaved) transaction execution offers
performance benefits, but might not be correct.

 Example: Two students execute the course registration
transaction at about the same time
 cur_reg is the number of current registrants

21

T1: read(cur_reg : 29) write(cur_reg : 30)
T2: read(cur_reg : 29) write(cur_reg : 30)

 time →

Result: Database state no longer corresponds to
real-world state, integrity constraint violated.

Durability

 Once a transaction commits, its effect on the database
state is not lost in spite of subsequently computer
crashes.

22

ACID Properties

 The transaction monitor is responsible for ensuring
atomicity, durability, and (the requested level of)
isolation.
 Hence it provides the abstraction of failure-free, non-

concurrent environment, greatly simplifying the task of the
transaction designer.

 The transaction designer is responsible for ensuring the
consistency of each transaction, but doesn’t need to
worry about concurrency and system failures.

23

Data and Its Structure

 Schema: Description of data at some abstraction level.
Each level has its own schema.

 We will be concerned with three schemas: physical,
conceptual, and external.

24

Physical Data Level

 Physical schema describes details of how data is stored
 tracks, cylinders, indices etc.
 Early applications worked at this level – explicitly dealt with

details.

 Problem:
 Routines were hard-coded to deal with physical

representation.
 Changes to data structure difficult to make.
 Application code becomes complex since it must deal with

details.
 Rapid implementation of new features impossible.

25

Conceptual Data Level

 Hides details.
 In the relational model, the conceptual schema presents data

as a set of tables (or relations).

 DBMS maps from conceptual to physical schema
automatically.

 Physical schema can be changed without changing
application:
 DBMS would change mapping from conceptual to physical

transparently
 This property is referred to as physical data independence

26

Conceptual Data Level (con’t)

27

Application

DBMS

Conceptual
view of data

Physical view
of data

External Data Level

 In the relational model, the external schema also
presents data as a set of relations.

 An external schema specifies a view of the data in terms
of the conceptual level. It is tailored to the needs of a
particular category of users.
 Portions of stored data should not be seen by some users.

 Students should not see their files in full.
 Faculty should not see billing data.

 Information that can be derived from stored data might be
viewed as if it were stored.
 GPA not stored, but calculated when needed.

28

External Data Level (con’t)

 Application is written in terms of an external schema.
 A view is computed when accessed (not stored).
 Different external schemas can be provided to different

categories of users.
 Translation from external to conceptual done

automatically by DBMS at run time.
 Conceptual schema can be changed without changing

application:
 Mapping from external to conceptual must be changed.

 Referred to as conceptual data independence.

29

ANSI-SPARC 3-level Architecture (1975)

30

ANSI-SPARC 3-level Architecture

 External Level
 Multiple independent users or applications
 Users' view of the database
 Focus on each user or application

 Conceptual Level
 Community view of the database
 Describes what data is stored in database

and relationships among the data
 Focus on the organization

31

ANSI-SPARC 3-level Architecture

 Internal Level
 Physical representation of the database on the computer
 Describes how the data is stored in the database
 Focus on the DBMS

32

Ilchul Yoon
Assistant Professor

State University of New York, Korea

Adapted from book authors’ slides

CSE 532 – Theory of Database Systems

Lecture 03
The Big Picture

CSE 305 / CSE532

Data Model

 Schema: description of data at some level
 e.g., tables, attributes, constraints, domains

 Model: tools and language for describing:
 Conceptual and external schema

 Data definition language (DDL)

 Integrity constraints, domains (DDL)
 Operations on data

 Data manipulation language (DML)

 Directives that influence the physical schema (affects
performance, not semantics)
 Storage definition language (SDL)

34

Relational Model

 A particular way of structuring data (using relations)
 Simple
 Mathematically based
 Expressions (≡ queries) can be analyzed by DBMS
 Queries are transformed to equivalent expressions

automatically (query optimization)
 Optimizers have limits

35

Relation Instance

 Relation is a set of tuples
 Atomic values
 Tuple ordering is unimportant
 No duplicates
 Cardinality of relation = number of tuples

 All tuples in a relation have the same structure;
constructed from the same set of attributes
 Attributes are named (ordering is immaterial)
 Value of an attribute is drawn from the attribute’s domain

 There is also a special value null (value unknown or undefined), which
belongs to no domain

 Arity (or degree) of relation = number of attributes

36

Relation Instance (Example)

37

 Id Name Address Status

1111111 John 123 Main freshman

2345678 Mary 456 Cedar sophmore

4433322 Art 77 So. 3rd senior

7654321 Pat 88 No. 4th sophmore

 Student

Relation Schema

 Relation name
 Attribute names & domains
 Integrity constraints like
 The values of a particular attribute in all tuples are unique
 The values of a particular attribute in all tuples are greater

than 0

 Default values

38

Relational Database

 Finite set of relations
 Each relation consists of a schema and an instance

 Database schema = set of relation schemas constraints

among relations (inter-relational constraints)
 Database instance = set of (corresponding) relation

instances

39

Database Schema (Example)

 Student (Id: INT, Name: STRING, Address: STRING,
 Status: STRING)
 Professor (Id: INT, Name: STRING, DeptId: DEPTS)
 Course (DeptId: DEPTS, CrsName: STRING,
 CrsCode: COURSES)
 Transcript (CrsCode: COURSES, StudId: INT,
 Grade: GRADES, Semester: SEMESTERS)
 Department(DeptId: DEPTS, Name: STRING)

40

Integrity Constraints

 Part of schema
 Restriction on state (or of sequence of states) of data

base
 Enforced by DBMS
 Intra-relational - involve only one relation
 Part of relation schema
 e.g., all Ids are unique

 Inter-relational - involve several relations
 Part of relation schema or database schema

41

Constraint Checking

 Automatically checked by DBMS
 Protects database from errors
 Enforces enterprise rules

42

Kinds of Integrity Constraints

 Static – restricts legal states of database
 Syntactic (structural)

 e.g., all values in a column must be unique (atomic values)

 Semantic (involve meaning of attributes)
 e.g., cannot register for more than 18 credits

 Dynamic – limitation on sequences of database states
 e.g., cannot raise salary by more than 5%

43

Key Constraint

 A key constraint is a sequence of attributes A1,…,An of a
relation schema, S, with the following property:
 A relation instance s of S satisfies the key constraint iff at most

one row in s can contain a particular (or unique) set of values,
a1,…,an, for the attributes A1,…,An

 Minimality: no subset of A1,…,An satisfies the key constraint

 Key
 Set of attributes mentioned in a key constraint

 e.g., Id in Student,
 e.g., (StudId, CrsCode, Semester) in Transcript

 It is minimal: no subset of a key is a key
 (Id, Name) is not a key of Student

44

Key Constraint (cont’d)

 Superkey - set of attributes containing key
 (Id, Name) is a superkey of Student

 Every relation has a key
 Relation can have several keys:
 Primary key: Id in Student (can’t be null)
 Candidate key: (Name, Address) in Student

45

Foreign Key Constraint

 Referential integrity: Item named in one relation must refer to
tuples that describe that item in another
 Transcript (CrsCode) references Course (CrsCode)
 Professor(DeptId) references Department (DeptId)

 Attribute A1 is a foreign key of R1 referring to attribute A2 in R2,
if whenever there is a value v of A1, there is a tuple of R2 in which
A2 has value v, and A2 is a key of R2
 This is a special case of referential integrity: A2 must be a candidate key of

R2 (e.g., CrsCode is a key of Course in the above)
 If no row exists in R2 => violation of referential integrity
 Not all rows of R2 need to be referenced: relationship is not symmetric

(e.g., some course might not be taught)
 Value of a foreign key might not be specified (DeptId column of some

professor might be null)
46

Foreign Key Constraint (Example)

47

A2
v3
v5
v1
v6
v2
v7
v4

A1
v1
v2
v3
v4
null
v3

R1 R2
Foreign key

Candidate key

Foreign Key (cont’d)

 Names of the attributes A1 and A2 can be different.
 With tables:

 ProfId attribute of Teaching references Id attribute of Professor

 R1 and R2 need not be distinct.
 Employee(Id:INT, MgrId:INT, ….)

 Employee(MgrId) references Employee(Id)

 Every manager is also an employee and hence has a unique
row in Employee

48

Teaching(CrsCode: COURSES, Sem: SEMESTERS, ProfId: INT)
Professor(Id: INT, Name: STRING, DeptId: DEPTS)

Foreign Key (cont’d)

 Foreign key might consist of several columns
 (CrsCode, Semester) of Transcript references
 (CrsCode, Semester) of Teaching

 R1(A1, …An) references R2(B1, …Bn)
 Ai and Bi must have same domains (although not necessarily

the same names)
 B1,…,Bn must be a candidate key of R2

49

Inclusion Dependency

 Referential integrity constraint that is not a foreign key
constraint

 (CrsCode, Semester) of Teaching references
 (CrsCode, Semester) of Transcript

 Target attributes is not a CK in Transcript

 No simple enforcement mechanism for inclusion
dependencies in SQL (requires assertions)

50

	Lecture 02�The Big Picture
	Databases
	Table
	Relation
	Operations
	Structured Query Language: SQL
	Structured Query Language (SQL)
	Example
	Examples
	More Complex Example
	Join
	Modifying Tables
	Creating Tables
	Integrity Constraints
	Transactions
	Transactions
	Atomicity
	Consistency
	Isolation
	Concurrent Transaction Execution
	Isolation
	Durability
	ACID Properties
	Data and Its Structure
	Physical Data Level
	Conceptual Data Level
	Conceptual Data Level (con’t)
	External Data Level
	External Data Level (con’t)
	ANSI-SPARC 3-level Architecture (1975)
	ANSI-SPARC 3-level Architecture
	ANSI-SPARC 3-level Architecture
	Lecture 03�The Big Picture
	Data Model
	Relational Model
	Relation Instance
	Relation Instance (Example)
	Relation Schema
	Relational Database
	Database Schema (Example)
	Integrity Constraints
	Constraint Checking
	Kinds of Integrity Constraints
	Key Constraint
	Key Constraint (cont’d)
	Foreign Key Constraint
	Foreign Key Constraint (Example)
	Foreign Key (cont’d)
	Foreign Key (cont’d)
	Inclusion Dependency

