
Ilchul Yoon
Assistant Professor

State University of New York, Korea

CSE 532 – Theory of Database Systems

Adapted from book authors’ slides

Lecture 03 (Chapter 03)
SQL

CSE 305 / CSE532

Lecturer: Sael Lee

Slide adapted from the author’s slides and Dr. Ilchul Yoon’s slides.

SQL

 Language for describing database schema & operations
on tables

 Data Definition Language (DDL): sublanguage of SQL for
describing schema

2

Tables

 SQL entity that corresponds to a relation
 An element of the database schema

3

Table Declaration

4

CREATE TABLE Student (
 Id: INTEGER,
 Name: CHAR(20),
 Address: CHAR(50),
 Status: CHAR(10)
)

Student

101222333 John 10 Cedar St Freshman
234567890 Mary 22 Main St Sophomore

Id Name Address Status

Primary/Candidate Keys

5

CREATE TABLE Course (
 CrsCode CHAR(6),
 CrsName CHAR(20),
 DeptId CHAR(4),
 Descr CHAR(100),
 PRIMARY KEY (CrsCode),
 UNIQUE (DeptId, CrsName) -- candidate key
)

Comments start with 2
dashes

Null

 Problem: Not all information might be known when row
is inserted (e.g., Grade might be missing from
Transcript)

 A column might not be applicable for a particular row
(e.g., MaidenName if row describes a male)

 Solution: Use place holder – null
 Not a value of any domain (although called null value)

 Indicates the absence of a value

 Not allowed in certain situations
 Primary keys and columns constrained by NOT NULL

6

Default Value

 Value to be assigned if attribute value in a row is not
specified

7

CREATE TABLE Student (
 Id INTEGER,
 Name CHAR(20) NOT NULL,
 Address CHAR(50),
 Status CHAR(10) DEFAULT ‘freshman’,
 PRIMARY KEY (Id))

Semantic Constraints in SQL

 Primary key and foreign key are examples of structural
constraints

 Semantic constraints
 Express the logic of the application at hand:

 e.g., number of registered students ≤ maximum enrollment

8

Semantic Constraints (cont’d)

 Used for application dependent conditions
 Example: limit attribute values

 Each row in table must satisfy condition

9

CREATE TABLE Transcript (
 StudId INTEGER,
 CrsCode CHAR(6),
 Semester CHAR(6),
 Grade CHAR(1),
 CHECK (Grade IN (‘A’, ‘B’, ‘C’, ‘D’, ‘F’)),
 CHECK (StudId > 0 AND StudId < 1000000000))

Semantic Constraints (cont’d)

 Example: relate values of attributes in different columns

10

CREATE TABLE Employee (
 Id INTEGER,
 Name CHAR(20),
 Salary INTEGER,
 MngrSalary INTEGER,
 CHECK (MngrSalary > Salary))

Constraints – Problems

 Problem 1: Empty table always satisfies all CHECK
constraints (an idiosyncrasy of the SQL standard)

 If Employee is empty, there are no rows on which to evaluate
the CHECK condition.

11

CREATE TABLE Employee (
 Id INTEGER,
 Name CHAR(20),
 Salary INTEGER,
 MngrSalary INTEGER,
 CHECK (0 < (SELECT COUNT (*) FROM Employee)))

Constraints – Problems

 Problem 2: Inter-relational constraints should be
symmetric

 Why should constraint be in Employee and not Manager?
 What if Employee is empty?

12

CREATE TABLE Employee (
 Id INTEGER,
 Name CHAR(20),
 Salary INTEGER,
 MngrSalary INTEGER,
 CHECK ((SELECT COUNT (*) FROM Manager) <
 (SELECT COUNT (*) FROM Employee)))

Assertion

 Element of schema (like table)
 Symmetrically specifies an inter-relational constraint
 Applies to entire database (not just the individual rows

of a single table)
 Does it work even if Employee is empty?

13

CREATE ASSERTION DontFireEveryone
 CHECK (0 < SELECT COUNT (*) FROM Employee)

Assertion

14

CREATE ASSERTION KeepEmployeeSalariesDown
 CHECK (NOT EXISTS(
 SELECT * FROM Employee E
 WHERE E.Salary > E.MngrSalary))

Assertions and Inclusion Dependency

15

CREATE ASSERTION NoEmptyCourses
 CHECK (NOT EXISTS (
 SELECT * FROM Teaching T
 WHERE -- for each row T check
 -- the following condition
 NOT EXISTS (
 SELECT * FROM Transcript R
 WHERE T.CrsCode = R.CrsCode
 AND T.Semester = R.Semester)
))

Courses with
no students

Students in a
particular
course

Domains

 Possible attribute values can be specified
 Using a CHECK constraint or
 Creating a new domain

 Domain can be used in several declarations
 Domain is a schema element

16

CREATE DOMAIN Grades CHAR (1)
 CHECK (VALUE IN (‘A’, ‘B’, ‘C’, ‘D’, ‘F’))
CREATE TABLE Transcript (
 ….,
 Grade: Grades,
 …)

Foreign Key Constraint

17

CREATE TABLE Teaching (
 ProfId INTEGER,
 CrsCode CHAR (6),
 Semester CHAR (6),
 PRIMARY KEY (CrsCode, Semester),
 FOREIGN KEY (CrsCode) REFERENCES Course,
 FOREIGN KEY (ProfId) REFERENCES Professor (Id))

Foreign Key Constraint

18

x

CrsCode

y

x y

CrsCode ProfId

Id
Teaching

Course

Professor

Circularity in Foreign Key Constraint

19

y x

A1 A2 A3 B1 B2 B3

x y A B

candidate key: A1
foreign key: A3 references B(B1)

candidate key: B1
foreign key: B3 references A(A1)

Problem 1: Creation of A requires existence of B and vice versa
Solution: CREATE TABLE A (……) -- no foreign key
 CREATE TABLE B (……) -- include foreign key
 ALTER TABLE A
 ADD CONSTRAINT cons
 FOREIGN KEY (A3) REFERENCES B (B1)

Circularity in Foreign Key Constraint (cont’d)

 Problem 2: Insertion of row in A requires prior existence
of row in B and vice versa

 Solution: use appropriate constraint checking mode:
 IMMEDIATE checking
 DEFERRED checking

20

Reactive Constraints

 Constraints enable DBMS to recognize a bad state and
reject the statement or transaction that creates it

 More generally, it would be nice to have a mechanism
that allows a user to specify how to react to a violation
of a constraint

 SQL-92 provides a limited form of such a reactive
mechanism for foreign key violations

21

Handling Foreign Key Violations

 Insertion into A: Reject if no row exists in B containing
foreign key of inserted row

 Deletion from B:
 NO ACTION: Reject if row(s) in A references row to be deleted

(default response)

22

x
x

A B

?
Request to
delete row
rejected

Handling Foreign Key Violations (cont’d)

 Deletion from B (cont’d):
 SET NULL: Set value of foreign key in referencing row(s) in A to

null

23

null A
B

x

Row deleted

Handling Foreign Key Violations (cont’d)

 Deletion from B (cont’d):
 SET DEFAULT: Set value of foreign key in referencing row(s) in

A to default value (y) which must exist in B

24

y A B
y

x

Row
deleted

Handling Foreign Key Violations (cont’d)

 Deletion from B (cont’d):
 CASCADE: Delete referencing row(s) in A as well

25

A B

x x

Handling Foreign Key Violations (cont’d)

 Update (change) foreign key in A: Reject if no row exists
in B containing new foreign key

 Update candidate key in B (to z) – same actions as with
deletion:
 NO ACTION: Reject if row(s) in A references row to be updated

(default response)
 SET NULL: Set value of foreign key to null
 SET DEFAULT: Set value of foreign key to default
 CASCADE: Propagate z to foreign key

26

z
z

A B

Cascading
when key in B
changed from
x to z

Handling Foreign Key Violations (cont’d)

 The action taken to repair the violation of a foreign key
constraint in A may cause a violation of a foreign key
constraint in C
 The action specified in C controls how that violation is handled;
 If the entire chain of violations cannot be resolved, the initial

deletion from B is rejected.

27

x
x y

y

C A B

Specifying Actions

28

CREATE TABLE Teaching (
 ProfId INTEGER,
 CrsCode CHAR (6),
 Semester CHAR (6),
 PRIMARY KEY (CrsCode, Semester),

 FOREIGN KEY (ProfId) REFERENCES Professor (Id)
 ON DELETE NO ACTION
 ON UPDATE CASCADE,

 FOREIGN KEY (CrsCode) REFERENCES Course (CrsCode)
 ON DELETE SET NULL
 ON UPDATE CASCADE)

Triggers

 A more general mechanism for handling events
 Not in SQL-92, but is in SQL:1999

 Trigger is a schema element (like table, assertion, …)

29

CREATE TRIGGER CrsChange
 AFTER UPDATE OF CrsCode, Semester ON Transcript
 WHEN (Grade IS NOT NULL)
 ROLLBACK

Guard

Views

 Schema element
 Part of external schema
 A virtual table constructed from actual tables on the fly
 Can be accessed in queries like any other table
 Not materialized, constructed when accessed

30

Views - Examples

 Part of external schema suitable for use in Bursar’s
office:

 Part of external schema suitable for student with Id
123456789:

31

CREATE VIEW CoursesTaken (StudId, CrsCode, Semester) AS
 SELECT T.StudId, T.CrsCode, T.Semester
 FROM Transcript T

CREATE VIEW CoursesITook (CrsCode, Semester, Grade) AS
 SELECT T.CrsCode, T.Semester, T.Grade
 FROM Transcript T
 WHERE T.StudId = ‘123456789’

Modifying the Schema

32

ALTER TABLE Student
 ADD COLUMN Gpa INTEGER DEFAULT 0

ALTER TABLE Student
 ADD CONSTRAINT GpaRange
 CHECK (Gpa >= 0 AND Gpa <= 4)

ALTER TABLE Transcript
 DROP CONSTRAINT Cons
 -- constraint names are useful

DROP TABLE Employee

DROP ASSERTION DontFireEveryone

Constraint Name Example

33

CREATE TABLE TRANSCRIPT (
 StudID INTEGER,
 CrsCode CHAR(6),
 Semester CHAR(6),
 Grade GRADES,
 CONSTRAINT TRKEY PK (Sid, C, Sem)
 CONSTRAINT STUDFK FK (Sid) REFERENCES STUDENT,
 CONSTRAINT CRSFK FK (C) REFERENCES COURSE,
 CONSTRAINT IDRANGE CHECK (Sid > 0 AND Sid < 100000))

ALTER TABLE TRANSCRIPT DROP CONSTRAINT STUDFK

Access Control

 Databases might contain sensitive information
 Access has to be limited:
 Users have to be identified – authentication

 Generally done with passwords

 Each user must be limited to modes of access appropriate to
that user - authorization

 SQL:92 provides tools for specifying an authorization
policy but does not support authentication (vendor
specific)

34

Controlling Authorization in SQL

35

GRANT access_list
 ON table
 TO user_list [WITH GRANT OPTION]

Access modes: SELECT, INSERT, DELETE, UPDATE, REFERENCES

GRANT UPDATE (Grade) ON Transcript TO prof_smith
 – Only the Grade column can be updated by prof_smith

GRANT SELECT ON Transcript TO joe
 – Individual columns cannot be specified for SELECT
 access (in the SQL standard) – all columns of Transcript
 can be read
 – But SELECT access control to individual columns can be
 simulated through views (next)

Controlling Authorization in SQL Using Views

 GRANT SELECT ON CoursesTaken TO joe

 Thus views can be used to simulate access control to
individual columns of a table

36

GRANT access
 ON view
 TO user_list

Authorization Mode REFERENCES

 Foreign key constraint enforces relationship between
tables that can be exploited to
 Control access: can enable perpetrator prevent deletion of

rows

 Reveal information: successful insertion into DontDissmissMe
means a row with foreign key value exists in Student

37

CREATE TABLE DontDismissMe (
 Id INTEGER,
 FOREIGN KEY (Id) REFERENCES Student
 ON DELETE NO ACTION)

 INSERT INTO DontDismissMe (‘111111111’)

GRANT REFERENCES
 ON Student
 TO Joe

	Lecture 03 (Chapter 03)�SQL
	SQL
	Tables
	Table Declaration
	Primary/Candidate Keys
	Null
	Default Value
	Semantic Constraints in SQL
	Semantic Constraints (cont’d)
	Semantic Constraints (cont’d)
	Constraints – Problems
	Constraints – Problems
	Assertion
	Assertion
	Assertions and Inclusion Dependency
	Domains
	Foreign Key Constraint
	Foreign Key Constraint
	Circularity in Foreign Key Constraint
	Circularity in Foreign Key Constraint (cont’d)
	Reactive Constraints
	Handling Foreign Key Violations
	Handling Foreign Key Violations (cont’d)
	Handling Foreign Key Violations (cont’d)
	Handling Foreign Key Violations (cont’d)
	Handling Foreign Key Violations (cont’d)
	Handling Foreign Key Violations (cont’d)
	Specifying Actions
	Triggers
	Views
	Views - Examples
	Modifying the Schema
	Constraint Name Example
	Access Control
	Controlling Authorization in SQL
	Controlling Authorization in SQL Using Views
	Authorization Mode REFERENCES

