
Ilchul	Yoon	
Assistant	Professor	

State	University	of	New	York,	Korea	

CSE	532	–	Theory	of	Database	Systems	

Adapted from book authors’ slides

Lecture	06	(Chapter	5)	
RelaMonal	Algebra:	Under	the	Hood	of	SQL	

CSE 305 / CSE532

Lecturer: Sael Lee

Slide adapted from the author’s and Dr. Ilchul Yoon’s slides.

Rela%onal	Query	Languages	

l  Languages	for	describing	queries	on	a	rela%onal	
database	

l  Structured	Query	Language	(SQL)	
l  Predominant	applica%on-level	query	language	
l  Declara%ve	

l  RelaMonal	Algebra	
l  Intermediate	language	used	within	DBMS	
l  Procedural	

2	

What	is	an	Algebra?	

l  A	language	based	on	operators	and	a	domain	of	values	
l  Operators	map	values	taken	from	the	domain	into	other	
domain	values	

l  Hence,	an	expression	involving	operators	and	arguments	
produces	a	value	in	the	domain	

l  When	the	domain	is	a	set	of	all	rela%ons	(and	the	
operators	are	as	described	later),	we	get	the	relaMonal	
algebra	

l  We	refer	to	the	expression	as	a	query	and	the	value	
produced	as	the	query	result	

3	

Rela%onal	Algebra	

l  Domain:	set	of	rela%ons	
l  Basic	operators:	select,	project,	union,	set	difference,	
Cartesian	product	

l  Derived	operators:	set	intersecMon,	division,	join	

l  Procedural	
l  Rela%onal	expression	specifies	query	by	describing	an	

algorithm	(the	sequence	in	which	operators	are	applied)	for	
determining	the	result	of	an	expression	

4	

The	Role	of	Rela%onal	Algebra	in	a	DBMS	

5	

Select	Operator	

l  Produce	table	containing	subset	of	rows	of	argument	
table	sa%sfying	condi%on	
	 	 	 	σcondi8on	(rela8on)	

l  Example:	

				Person																						 	 														σHobby=‘stamps’(Person)	
		

6	

1123 John 123 Main stamps
1123 John 123 Main coins
5556 Mary 7 Lake Dr hiking
9876 Bart 5 Pine St stamps

1123 John 123 Main stamps
9876 Bart 5 Pine St stamps

 Id Name Address Hobby Id Name Address Hobby

Selec%on	Condi%on	

l  Operators:		<,	≤,	≥,	>,	=,	≠	
l  Simple	selec%on	condi%on:	

l  <a;ribute>	operator	<constant>	
l  <a;ribute>	operator	<a;ribute>	

l  <condi8on>	AND	<condi8on>	
l  <condi8on>	OR	<condi8on>	
l  	NOT	<condi8on>	

7	

Selec%on	Condi%on	-	Examples	

l  σ	Id>3000		OR		Hobby=‘hiking’	(Person)	
l  σ	Id>3000		AND		Id	<3999	(Person)	
l  σ	NOT(Hobby=‘hiking’)	(Person)	
l  σ	Hobby≠‘hiking’	(Person)	

8	

Project	Operator	

l  Produces	table	containing	subset	of	columns	of	
argument	table		

	 	 		πabribute	list(rela%on)	

l  Example:	
									Person																				 	 																			πName,Hobby(Person)	

9	

1123 John 123 Main stamps
1123 John 123 Main coins
5556 Mary 7 Lake Dr hiking
9876 Bart 5 Pine St stamps

John stamps
John coins
Mary hiking
Bart stamps

 Id Name Address Hobby Name Hobby

Project	Operator	

l  	Example:	
	Person																																	 	 					πName,Address(Person)	

l  Result	is	a	table	(no	duplicates);	can	have	fewer	tuples	
than	the	original	

10	

1123 John 123 Main stamps
1123 John 123 Main coins
5556 Mary 7 Lake Dr hiking
9876 Bart 5 Pine St stamps

 Id Name Address Hobby

John 123 Main
Mary 7 Lake Dr
Bart 5 Pine St

 Name Address

Expressions	

l  π	Id,	Name	(σ	Hobby=’stamps’		OR		Hobby=’coins’	(Person))		

11	

1123 John
9876 Bart

Result

1123 John 123 Main stamps
1123 John 123 Main coins
5556 Mary 7 Lake Dr hiking
9876 Bart 5 Pine St stamps

 Id Name Address Hobby

Person

Id Name

Set	Operators	

l  Rela%on	is	a	set	of	tuples,	so	set	opera%ons	should	
apply:		∩,	∪,	-	(set	difference)	

l  Result	of	combining	two	rela%ons	with	a	set	operator	is	
a	rela%on	=>	all	its	elements	must	be	tuples	having	same	
structure	

l  Hence,	scope	of	set	opera%ons	limited	to	union	
compaMble	relaMons	

12	

Union	Compa%ble	Rela%ons	

l  Two	rela%ons	are	union	compaMble	if	
l  Both	have	same	number	of	columns	
l  Names	of	abributes	are	the	same	in	both	
l  Abributes	with	the	same	name	in	both	rela%ons	have	the	same	

domain	

l  Union	compa%ble	rela%ons	can	be	combined	using	
union,	intersecMon,	and	set	difference	

13	

Example	

14	

Tables:
 Person (SSN, Name, Address, Hobby)
 Professor (Id, Name, Office, Phone)
are not union compatible.

But
 π Name (Person) and π Name (Professor)
are union compatible so
 π Name (Person) - π Name (Professor)
makes sense.

Cartesian	Product	

l  If	R	and	S	are	two	rela%ons,	R	×	S	is	the	set	of	all	
concatenated	tuples	<x,y>,	where	x	is	a	tuple	in	R	and	y	
is	a	tuple	in	S	
l  R	and	S	need	not	be	union	compa%ble	

l  R	×	S		is	expensive	to	compute:	
l  Factor	of	two	in	the	size	of	each	row	
l  Quadra%c	in	the	number	of	rows	

15	

 A B C D A B C D
 x1 x2 y1 y2 x1 x2 y1 y2
 x3 x4 y3 y4 x1 x2 y3 y4
 x3 x4 y1 y2
 R S x3 x4 y3 y4
 R× S

Renaming	

l  Result	of	expression	evalua%on	is	a	rela%on	

l  Abributes	of	rela%on	must	have	dis%nct	names.		This	is	
not	guaranteed	with	Cartesian	product	
l  e.g.,	suppose	in	previous	example	a	and	c	have	the	same	name	

l  Renaming	operator	%dies	this	up.		To	assign	the	names	
A1,	A2,…	An	to	the	abributes	of	the	n-column	rela%on	
produced	by	expression	expr	use:	

	 	 	expr	[A1,	A2,	…	,An]	

16	

Example	

17	

This is a relation with 4 attributes:
 StudId, CrsCode1, ProfId, CrsCode2

Transcript (StudId, CrsCode, Semester, Grade)
Teaching (ProfId, CrsCode, Semester)

π StudId, CrsCode (Transcript)[StudId, CrsCode1]
 × π ProfId, CrsCode(Teaching) [ProfId, CrsCode2]

	Derived	Opera%on:	Join	(theta-join)	
l  A	(general	or	theta)		join		of	R	and	S	is	the	expression		

	 	R								join-condi8on	S	
	where	join-condi8on	is	a	conjunc8on	of	terms:	
	 	Ai		oper	Bi	

				 	in	which	Ai	is	an	abribute	of	R;		Bi	is	an	abribute	of	S;	and		
	oper	is	one	of	=,	<,	>,	≥	≠,	≤.		

	
l  The	meaning		is:	

	 	σ	join-condi8on’	(R	×	S)		
	where	join-condi8on	and	join-condi8on’	are	the	same,		
	except	for	possible	renaming	of	abributes	

18	

Join	and	Renaming	

l  Problem:		
l  R	and	S	might	have	abributes	with	the	same	name	–	in	which	

case	the	Cartesian	product	is	not	defined	

l  SoluMons:		
l  Rename	abributes	prior	to	forming	the	product	and	use	new	

names	in	join-condi%on´.	
l  Qualify	common	abribute	names	with	rela%on	names	(thereby	

disambigua%ng	the	names).		
l  e.g.,	Transcript.CrsCode	or	Teaching.CrsCode	

l  This	solu%on	is	nice,	but	doesn’t	always	work:	consider	
l  R							join_condi%on	R	
l  In	R.A,	how	do	we	know	which	R	is	meant?	

19	

Theta	Join	–	Example	

l  Output		the	names	of	all	employees	that	earn	more	than	
their	managers.	

l  The	join	yields	a	table	with	abributes:	
l  Employee.Name,	Employee.Id,	Employee.Salary,	MngrId,	

Manager.Name,	Manager.Id,	Manager.Salary	

20	

 Employee(Name, Id, Salary, MngrId)
 Manager(Name, Id, Salary)

πEmployee.Name (Employee E.MngrId = M.Id AND E.Salary > M.Salary Manager)

Equijoin	Join	-	Example	

l  Equijoin:	Join	condi%on	is	a	conjunc%on	of	equali8es.	

21	

 πName,CrsCode(Student Id=StudId σGrade=‘A’ (Transcript))

Id Name Addr Status
111 John ….. …..
222 Mary ….. …..
333 Bill ….. …..
444 Joe ….. …..

StudId CrsCode Sem Grade
 111 CSE305 S00 B
 222 CSE306 S99 A
 333 CSE304 F99 A

Student Transcript

Mary CSE306
Bill CSE304

The equijoin is used very
frequently since it combines
related data in different relations.

Natural	Join	

l  Special	case	of	equijoin:		
l  join	condi%on	equates	all	and	only	those	abributes	with	the	

same	name	(condi%on	doesn’t	have	to	be	explicitly	stated)	
l  duplicate	columns	eliminated	from	the	result	

22	

Transcript (StudId, CrsCode, Sem, Grade)
Teaching (ProfId, CrsCode, Sem)

Transcript Teaching =
πStudId, Transcript.CrsCode, Transcript.Sem, Grade, ProfId
 (Transcript CrsCode=CrsCode AND Sem=Sem Teaching)

 [StudId, CrsCode, Sem, Grade, ProfId]

Natural	Join	(cont’d)	

l  More	generally:	

				where	
	(1)	a;r-list	=	a;ributes	(R)	∪	a;ributes	(S)	
	(duplicates	are	eliminated)	and			
	(2)	join-cond	has	the	form:	
	 	A1	=	A1	AND	…	AND	An	=	An	
	 	where		
	 	{A1	…	An}	=	a;ributes(R)	∩	a;ributes(S)	

23	

R S = πattr-list (σjoin-cond (R × S))

Natural	Join	Example	

l  List	all	Ids	of	students	who	took	at	least	two	different	
courses:	

24	

πStudId (σCrsCode ≠ CrsCode2 (
 Transcript
 Transcript [StudId, CrsCode2, Sem2, Grade2]))

We don’t want to join on CrsCode, Sem, and Grade attributes,
hence renaming!

Outer	Join	

l  Three	types	
l  Les	outer	join	/	Right	outer	join	/	Full	outer	join	

l  Given	two	rela%ons	r	and	s,	the	tuples	in	r				outer	s			
consist	of	three	categories		
1.  The	tuples	that	appear	in	the	regular	join	of	r	and	s,		 					

r														s	
2.  The	tuples	of	r	that	do	not	join	with	any	tuple	in	s	
3.  The	tuples	of	s	that	do	not	join	with	any	tuple	in	r	

l  For	les	outer	join,	1	∪	2	
l  For	right	outer	join,	1	∪	3	
l  For	full	outer	join,	1	∪	2	∪	3	

25	

cond		

cond		

Ilchul	Yoon	
Assistant	Professor	

State	University	of	New	York,	Korea	

CSE	532	–	Theory	of	Database	Systems	

Adapted from book authors’ slides

Lecture	07	(Chapter	5)	
RelaMonal	Algebra:	Under	the	Hood	of	SQL	

CSE 305 / CSE532

Lecturer: Sael Lee

Slide adapted from the author’s and Dr. Ilchul Yoon’s slides.

Division	

l  Goal:	Produce	the	tuples	in	one	rela%on,	r,	that	match	
all	tuples	in	another	rela%on,	s	
l  r	(A1,	…An,	B1,	…Bm)	
l  s	(B1	…Bm)	
l  r/s,	with	abributes	A1,	…An,	is	the	set	of	all	tuples	<a>	such	that	

for	every	tuple		in	s,	<a,b>	is	in	r	

l  Can	be	expressed	in	terms	of	projec%on,	set	difference,	
and	cross-product 	 	 	 		

27	

Division	(cont’d)	

28	

Division	

l  Goal:	Produce	the	tuples	in	one	rela%on,	r,	that	match	
all	tuples	in	another	rela%on,	s	
l  r	(A1,	…An,	B1,	…Bm)	
l  s	(B1	…Bm)	
l  r/s,	with	abributes	A1,	…An,	is	the	set	of	all	tuples	<a>	such	that	

for	every	tuple		in	s,	<a,b>	is	in	r	

l  Can	be	expressed	in	terms	of	projec%on,	set	difference,	
and	cross-product	

	 	 	 	T1	=	πA	(R)	x	S	
	 	 	 	T2	=	πA	(T1	–	R)	
	 	 	 	T3	=	πA	(R)	–	T2	

29	

Division	-	Example	

l  List	the	Ids	of	students	who	have	passed	all	courses	that	
were	taught	in	spring	2006	

l  Numerator:			
l  StudId	and	CrsCode	for	every	course	passed	by	every	student:	
	 	 	πStudId,	CrsCode	(σGrade≠	‘F’		(Transcript))	

	
l  Denominator:	

l  CrsCode	of	all	courses	taught	in	spring	2006	
	 	 	πCrsCode	(σSemester=‘S2006’	(Teaching))	

	
l  Result	is	numerator/denominator	

30	

Example	

l  Suppose	we	want	to	know,	from	the	Movies	rela%on,	
“What	are	the	%tles	and	years	of	movies	made	by	Fox	
that	are	at	least	100	minutes	long?”	

Movies(%tle,	year,	length,	genre,	studioName,	 		
	producerC#)	

MoviewStar(name,	address	gender,	DOB)	
StarIn(movieTitle,	movieYear,	starName)	
MovieExec(name,	address,	cert#,	netWorth)	
Studio(name,	address,	PresC#)	

31	

Administrivia	

l  No	class	on	3/31	(Tuesday)	and	4/2	(Thursday)	
l  Makeup	class:	TBA	

l  Term	Project	requirements	
l  General	requirements	and	Journal/conference	

abributes	are	posted	in	Bb.	

32

Schema	for	Student	Registra%on	System	

33	

Student (Id, Name, Addr, Status)
Professor (Id, Name, DeptId)
Course (DeptId, CrsCode, CrsName, Descr)
Transcript (StudId, CrsCode, Semester, Grade)
Teaching (ProfId, CrsCode, Semester)
Department (DeptId, Name)

Query	Sublanguage	of	SQL	

l  Tuple	variable	C	ranges	over	rows	of	Course.	
l  An	evalua%on	strategy:	

l  FROM	clause	produces	Cartesian	product	of	listed	tables	
l  WHERE	clause	assigns	rows	to	C	in	sequence	and	produces	

table	containing	only	rows	sa%sfying	condi%on	
l  SELECT	clause	retains	listed	columns	

l  Equivalent	to:		πCrsNameσDeptId=‘CS’(Course)	
34	

SELECT C.CrsName
FROM Course C
WHERE C.DeptId = ‘CS’

Join	Queries	

l  List	courses	taught	in	S2000	
l  Tuple	variables	clarify	meaning.	
l  Join	condi%on	“C.CrsCode=T.CrsCode”	

l  relates	facts	to	each	other	
l  Selec%on	condi%on	“	T.Semester=‘S2000’	”		

l  	eliminates	irrelevant	rows	
l  Equivalent	(using	natural	join)	to:	

35	

SELECT C.CrsName
FROM Course C, Teaching T
WHERE C.CrsCode=T.CrsCode AND T.Semester=‘S2000’

πCrsName(Course σSemester=‘S2000’ (Teaching))

πCrsName (σSem=‘S2000’ (Course Teaching))

Correspondence	Between	SQL	and		
Rela%onal	Algebra	

l  Also	equivalent	to:	

l  This	is	the	simplest	evalua%on	algorithm	for	SELECT.	
l  Rela%onal	algebra	expressions	are	procedural.	

l  Which	of	the	two	equivalent	expressions	is	more	easily	
evaluated?	

36	

SELECT C.CrsName
FROM Course C, Teaching T
WHERE C.CrsCode = T.CrsCode AND T.Semester = ‘S2000’

πCrsName σC_CrsCode=T_CrsCode AND Semester=‘S2000’
 (Course [C_CrsCode, DeptId, CrsName, Desc]
 × Teaching [ProfId, T_CrsCode, Semester])

Self-join	Queries	

l  Find	Ids	of	all	professors	who	taught	at	least	two	courses	
in	the	same	semester:	

l  Tuple	variables	are	essen8al	in	this	query!	
l  Equivalent	to:	

37	

SELECT T1.ProfId
FROM Teaching T1, Teaching T2
WHERE T1.ProfId = T2.ProfId
 AND T1.Semester = T2.Semester
 AND T1.CrsCode <> T2.CrsCode

πProfId (σT1.CrsCode≠T2.CrsCode(Teaching[ProfId, T1.CrsCode, Semester]
 Teaching[ProfId, T2.CrsCode, Semester]))

38

Duplicates	

l  Duplicate	rows	are	not	allowed	in	a	rela%on	
l  However,	duplicate	elimina%on	from	query	result	is	
costly	and	not	done	by	default;	must	be	explicitly	
requested:	

SELECT DISTINCT …..
FROM …..

Use	of	Expressions	

l  Equality	and	comparison	operators	apply	to	strings	
(based	on	lexical	ordering)	

 WHERE S.Name	<	‘P’	

l  Concatenate	operator	applies	to	strings	
 WHERE	S.Name	||	‘--’	||	S.Address	=	….	

l  Expressions	can	also	be	used	in	SELECT	clause:	

39	

SELECT S.Name || ‘--’ || S.Address AS NmAdd
FROM Student S

Set	Operators	

l  SQL	provides	UNION, EXCEPT	(set	difference),	and	
INTERSECT 	for	union	compa%ble	tables	

l  Example	
l  Find	all	professors	in	the	CS	Department	and	all	professors	that	

have	taught	CS	courses	

40	

(SELECT P.Name
 FROM Professor P, Teaching T
 WHERE P.Id=T.ProfId AND T.CrsCode LIKE ‘CS%’)
UNION
(SELECT P.Name
 FROM Professor P
 WHERE P.DeptId = ‘CS’)

Nested	Queries	

l  List	all	courses	that	were	not	taught	in	S2000	

l  Evalua%on	strategy	
l  Subquery	evaluated	once	to	produces	set	of	courses	taught	in	

S2000.		Each	row	(as	C)	tested	against	this	set.	

41	

SELECT C.CrsName
FROM Course C
WHERE C.CrsCode NOT IN
 (SELECT T.CrsCode -- subquery
 FROM Teaching T
 WHERE T.Sem = ‘S2000’)

Correlated	Nested	Queries		

l  Output	a	row	<prof,	dept>	if	prof		has	taught	a	course	in	
dept.	

42	

(SELECT T.ProfId --subquery
 FROM Teaching T, Course C
 WHERE T.CrsCode = C.CrsCode AND
 C.DeptId = D.DeptId --correlation
)

 SELECT P.Name, D.Name --outer query
 FROM Professor P, Department D
 WHERE P.Id IN
 -- set of all ProfId’s who have taught a course in D.DeptId

Correlated	Nested	Queries	(con’t)	

l  Tuple	variables	T	and	C	are	local	to	subquery	
l  Tuple	variables	P	and	D	are	global	to	subquery	

l  Correla8on:	subquery	uses	a	global	variable,	D	
l  The	value	of	D.DeptId		parameterizes	an	evalua%on	of	the	

subquery	
l  Subquery	must	(at	least)	be	re-evaluated	for	each	dis8nct	value	

of	D.DeptId	
	
l  Correlated	queries	can	be	expensive	to	evaluate	

43	

EXISTS	Operator	

l  Simply,	used	to	check	if	a	nested	subquery	returns	no	
answers	

l  Example	
l  Find	all	students	who	never	took	a	computer	science	course	

44	

SELECT S.Id
FROM Student S
WHERE NOT EXISTS (
 -- All CS courses taken by S.Id
 SELECT T.CrsCode
 FROM Transcript T
 WHERE T.CrsCode LIKE ‘CS%’ AND
 T.StudID = S.Id)

Division	in	SQL	

l  Query	type:	Find	the	subset	of	items	in	one	set	that	are	
related	to	all	items	in	another	set	

l  Example	
l  Find	professor	Ids	who	taught	courses	in	all	departments	
l  Why	does	this	involve	division?	

45	

ProfId DeptId DeptId
All department Ids Contains row

<p,d> if professor
p taught a
course in
department d

 πProfId,DeptId(Teaching Course) / πDeptId(Department)

Division	in	SQL	

l  Strategy	for	implemen8ng	division	in	SQL:		
l  Find	a	set,	A,	of	all	departments	in	which	a	par%cular	professor,	

p,	has	taught	a	course	
l  Find	set,	B,	of	all	departments		
l  Output	p	if	A	⊆	B,	or,	equivalently,	if	B	–	A	is	empty	

46	

Division	–	SQL	Solu%on	

47	

SELECT P.Id
FROM Professor P
WHERE NOT EXISTS
 (SELECT D.DeptId -- set B of all dept Ids
 FROM Department D

 EXCEPT

 SELECT C.DeptId -- set A of dept Ids of depts in
 -- which P taught a course
 FROM Teaching T, Course C
 WHERE T.ProfId = P.Id -- global variable
 AND T.CrsCode = C.CrsCode)

Set	Comparison	Operator	

l  Is	there	a	student	in	the	university	whose	GPA	is	higher	
than	that	of	all	junior	students?	

l  What	happens	if	we	replace	>	ALL	with	>=	ANY	?		

48	

SELECT S.Id
FROM Student S
WHERE S.GPA > ALL (
 SELECT S.GPA
 FROM Student S
 WHERE S.Status = ‘junior’)

Nested	Query	in	the	FROM	clause	

l  Use	nested	query	in	the	FROM	clause	and	rename	it		

49	

SELECT S.Id
FROM Student S
EXCEPT
SELECT S.Id
FROM Student S,
 (SELECT P.Id

 FROM Professor P
 WHERE P.Dept = ‘CS’) AS C

WHERE C.ProfId NOT IN
 (SELECT T.ProfId
 FROM Teaching T, Transcript R
 WHERE T.CrsCode = R.CrsCode AND
 T.Semester = R.Semester AND
 S.Id = R.StudId)

l  For	example	
l  Find	the	students	

who	took	a	course	
from	every	
professor	in	the	
CS	department	

Aggregates	

l  Func%ons	that	operate	on	sets:	
l  COUNT, SUM, AVG, MAX, MIN	

l  Produce	numbers	(not	tables)	
l  Not	part	of	rela%onal	algebra	(but	not	hard	to	add)	

l  Do	not	mix	aggregate	and	an	abribute	in	the	SELECT 	

l  Aggregate	func%ons	can’t	be	used	in	the	WHERE	clause	
50	

SELECT COUNT(*)
FROM Professor P

SELECT MAX (Salary)
FROM Employee E

SELECT COUNT(*), S.Id
FROM Student S
WHERE S.Name = ‘JohnDoe’

Aggregates	(cont’d)	

l  Count	the	number	of	courses	taught	in	S2000	

l  But	if	mul%ple	sec%ons	of	same	course	are	taught,	use:	

51	

SELECT COUNT (T.CrsCode)
FROM Teaching T
WHERE T.Semester = ‘S2000’

SELECT COUNT (DISTINCT T.CrsCode)
FROM Teaching T
WHERE T.Semester = ‘S2000’

Grouping	

l  But	how	do	we	compute	the	number	of	courses	taught	
in	S2000	per	professor?	

l  Strategy	1:		Fire	off	a	separate	query	for	each	professor:	
 SELECT COUNT(T.CrsCode)
 FROM Teaching	T	
 WHERE T.Semester	=	‘S2000’	AND T.ProfId	=	123456789	

l  Cumbersome	
l  What	if	the	number	of	professors	changes?		Add	another	query?	

l  Strategy	2:		define	a	special	grouping	operator:	
 SELECT T.ProfId, COUNT(T.CrsCode)
 FROM Teaching		T	
 WHERE T.Semester	=	‘S2000’	
	 	 	GROUP BY T.ProfId	

52	

GROUP BY	

53	

GROUP BY	-	Example	

54	

Transcript

Attributes:
 – student’s Id
 – AVG grade
 – number of courses

1234 3.3 4 1234
1234
1234
1234

SELECT T.StudId, AVG(T.Grade), COUNT (*)
FROM Transcript T
GROUP BY T.StudId

HAVING	Clause	

l  Eliminates	unwanted	groups	(analogous	to	WHERE	
clause,	but	works	on	groups	instead	of	individual	tuples)	

l  HAVING	condi%on	is	constructed	from	abributes	of	
GROUP	BY	list	and	aggregates	on	abributes	not	in	that	
list	

55	

SELECT T.StudId,
 AVG(T.Grade) AS CumGpa,
 COUNT (*) AS NumCrs
FROM Transcript T
WHERE T.CrsCode LIKE ‘CS%’
GROUP BY T.StudId
HAVING AVG (T.Grade) > 3.5

Query	Evalua%on	with	Aggregate	Func%ons	

56	

Example	

l  Output	the	id	and	name	of	all	seniors	on	the	Dean’s	List	
(average	grade	over	3.5,	and	more	than	90	credits.)	

57	

SELECT S.Id, S.Name
FROM Student S, Transcript T
WHERE S.Id = T.StudId AND S.Status = ‘senior’

GROUP BY

HAVING AVG (T.Grade) > 3.5 AND SUM (T.Credit) > 90

S.Id -- wrong
S.Id, S.Name -- right

Every attribute that occurs in
SELECT clause must also
occur in GROUP BY or it
must be an aggregate. S.Name
does not.

Aggregates:	Proper	and	Improper	Usage	

58	

SELECT COUNT (T.CrsCode), T. ProfId
 – makes no sense (in the absence of
 GROUP BY clause)

SELECT COUNT (*), AVG (T.Grade)
 – but this is OK

WHERE T.Grade > COUNT (SELECT ….)
 – aggregate cannot be applied to result
 of SELECT statement

ORDER BY	Clause	

l  Causes	rows	to	be	output	in	a	specified	order	

59	

SELECT T.StudId, COUNT (*) AS NumCrs,
 AVG(T.Grade) AS CumGpa
FROM Transcript T
WHERE T.CrsCode LIKE ‘CS%’
GROUP BY T.StudId
HAVING AVG (T.Grade) > 3.5
ORDER BY DESC CumGpa, ASC StudIdc

Descending Ascending

Query	Evalua%on	with	GROUP BY,	
HAVING,	ORDER	BY	
1.  Evaluate	FROM:	produces	Cartesian	product,	A,	of	

tables	in	FROM	list	
2.  Evaluate	WHERE:	produces	table,	B,	consis%ng	of	rows	

of	A	that	sa%sfy	WHERE	condi%on	
3.  Evaluate	GROUP	BY:	par%%ons	B	into	groups	that	

agree	on	abribute	values	in	GROUP	BY	list	
4.  Evaluate	HAVING:	eliminates	groups	in	B	that	do	not	

sa%sfy	HAVING	condi%on	
5.  Evaluate	SELECT:	produces	table	C	containing	a	row	

for	each	group.	Abributes	in	SELECT	list	limited	to	
those	in	GROUP	BY	list	and	aggregates	over	group	

6.  Evaluate	ORDER	BY:	orders	rows	of	C	
60	

JOIN	Expressions	in	the	FROM Clause	

l  Called	‘table	expressions’	
l  Format	

l  Table1	[NATURAL]	[INNER|FULL|LEFT|OUTER]	JOIN	table	2	
[ON	condi%on]	

l  List	average	grade	for	every	student	in	the	database	

	vs.	

61	

SELECT S.Name, AVG(S.Grade)
FROM Student LEFT JOIN Transcript
ON Student.Id = Transcript.StudId AS S
GROUP BY S.Id

SELECT S.Name, AVG(T.Grade)
FROM Student S, Transcript T
WHERE S.Id = T.StudId
GROUP BY S.Id

Views	

l  Used	as	a	rela%on,	but	rows	are	not	physically	stored.			
l  The	contents	of	a	view	is	computed	when	it	is	used	within	an	

SQL	statement	

l  View	is	the	result	of	a	SELECT statement	over	other	
views	and	base	rela%ons	

l  When	used	in	an	SQL	statement,	the	view	defini%on	is	
subs%tuted	for	the	view	name	in	the	statement	
l  As	SELECT	statement	nested	in	FROM	clause	

62	

View	–	Usage	Example	

63	

CREATE VIEW CumGpa (StudId, Cum) AS
 SELECT T.StudId, AVG (T.Grade)
 FROM Transcript T
 GROUP BY T.StudId

SELECT S.Name, C.Cum
FROM CumGpa C, Student S
WHERE C.StudId = S.StudId AND C.Cum > 3.5

View	Benefits	

l  Access	Control:		Users	are	not	granted	access	to	base	
tables.	Instead	they	are	granted	access	to	the	view	of	
the	database	appropriate	to	their	needs.	
l  External	schema	is	composed	of	views.	
l  View	allows	owner	to	provide	SELECT access	to	a	subset	of	

columns	(analogous	to	providing	UPDATE	and	INSERT	access	
to	a	subset	of	columns)		

64	

Views	–	Limi%ng	Visibility	

65	

l  CREATE VIEW	PartOfTranscript	(StudId,	CrsCode,	Semester)		AS
 SELECT		T.	StudId,	T.CrsCode,	T.Semester						--	limit	columns	
 FROM		Transcript	T	
 WHERE		T.Semester	=	‘S2000’																									--	limit	rows	

l  Give	permissions	to	access	data	through	view:	
 GRANT SELECT ON		PartOfTranscript		TO		joe	

l  This	would	have	been	analogous	to:	
 GRANT SELECT 	(StudId,CrsCode,Semester)	ON 	Transcript		TO 	joe	
 	

					on	regular	tables,	if	SQL	allowed	abribute	lists	in	GRANT SELECT

Grade projected out

66

View	Benefits	(cont’d)	

l  Customiza8on:	Users	need	not	see	full	complexity	of	
database.		View	creates	the	illusion	of	a	simpler	
database	customized	to	the	needs	of	a	par%cular	
category	of	users	
l  Ease	of	use	and	learning	
l  Security	
l  Logical	data	independence	

l  A	view	is	similar	in	many	ways	to	a	subrou8ne	in	
standard	programming	
l  Can	be	reused	in	mul%ple	queries	

Materialized	Views	

l  Cached	view	–	caching	if	popular	with	many	queries	
l  Drama%c	reduc%on	of	query	response	%me	
l  Expensive	update	opera%on	
l  Adding/removing	tuples	in	base	rela%ons	may	(or	may	not)	

affect	view	

67	

Materialized	Views	(Con’d)	

l  View	cache	maintenance	are	expensive.	
l  Incremental	re-compute	considering	changes		

l  View	cache	is	very	important	in	data	warehousing	
l  Data	warehouse	is	an	(infrequently	updated)	database	that	

typically	consist	of	complex	materialized	views	of	the	data	
stored	in	a	separate	produc8on	database.	

l  Op%mized	for	querying,	not	transac%on	processing	

68	

CREATE MATERIALIZED VIEW PROFSTUD(Prof, Stud)
 BUILD IMMEDIATE
 REFRESH FAST ON COMMIT
 ENABLE QUERY REWRITE

AS
 SELECT T.ProfId, R.StudId)
 FROM Transcript R, Teaching T
 WHERE …..

Oracle Example

Ilchul	Yoon	
Assistant	Professor	

State	University	of	New	York,	Korea	

CSE	532	–	Theory	of	Database	Systems	

Adapted from book authors’ slides

Lecture	08	(Chapter	5)	
RelaMonal	Algebra:	Under	the	Hood	of	SQL	

CSE 305 / CSE532

Lecturer: Sael Lee

Slide adapted from the author’s and Dr. Ilchul Yoon’s slides.

Nulls	and	3-valued	logic	

l  Condi8ons:	x	op	y		(where	op	is	<,	>,	<>,	=,	etc.)	has	value	
unknown	(U)	when	either	x	or	y	is	null	
l  WHERE		T.cost	>	T.price	

l  Arithme8c	expression:	x	op	y	(where	op	is	+,	–,	*,	etc.)	
has	value	NULL	if	x	or	y	is	NULL	
l  WHERE 	(T.	price/T.cost)	>	2		

l  Aggregates:		COUNT	counts	NULLs	like	any	other	value;	
other	aggregates	ignore	NULLs		

70	

SELECT COUNT (T.CrsCode), AVG (T.Grade)
FROM Transcript T
WHERE T.StudId = ‘1234’

Nulls	(cont’d)	

l  WHERE	clause	uses	a	three-valued	logic	–	T,	F,	
U(ndefined)	–	to	filter	rows.		Por%on	of	truth	table:	

	
	

	
l  Rows	are	discarded	if	WHERE	condi%on	is	F(alse)	or	
U(nknown)	
l  e.g.,		WHERE 	T.CrsCode	=	‘CS305’		AND		T.Grade	>	2.5	

l  If	a	CHECK	clause	evaluates	to	unknown,	the	integrity	
constraints	are	considered	to	be	observed.	

71	

C1 C2 C1 AND C2 C1 OR C2
T U U T
F U F U
U U U U

Modifying	Tables	–	Insert	

l  Inser%ng	a	single	row	into	a	table	
l  Abribute	list	can	be	omibed	if	it	is	the	same	as	in	CREATE

TABLE	(but	do	not	omit	it)	
l  NULL	and	DEFAULT	values	can	be	specified	

72	

INSERT INTO Transcript(StudId, CrsCode, Semester, Grade)
VALUES (12345, ‘CSE305’, ‘S2000’, NULL)

Bulk	Inser%on	

l  Insert	the	rows	output	by	a	SELECT	

73	

INSERT INTO DeansList (StudId, Credits, CumGpa)
 SELECT T.StudId, 3 * COUNT (*), AVG(T.Grade)
 FROM Transcript T
 GROUP BY T.StudId
 HAVING AVG (T.Grade) > 3.5 AND COUNT(*) > 30

CREATE TABLE DeansList (
 StudId INTEGER,
 Credits INTEGER,
 CumGpa FLOAT,
 PRIMARY KEY StudId)

Modifying	Tables	–	Delete	and	Update	

l  DELETE is	similar	to	SELECT	except:	
l  No	project	list	in	DELETE	clause	
l  No	Cartesian	product	in	FROM	clause	(only	1	table	name)	
l  Rows	sa%sfying	WHERE	clause	(general		form,	including	

subqueries,	allowed)	are	deleted	instead	of	output		

l  Updates	rows	in	a	single	table	
l  All	rows	sa%sfying	WHERE	clause	(general	form,	including	

subqueries,	allowed)	are	updated		

74	

DELETE FROM Transcript T
WHERE T.Grade IS NULL AND T.Semester <> ‘S2000’

UPDATE Employee E
SET E.Salary = E.Salary * 1.05
WHERE E.Department = ‘R&D’

Upda%ng	Views	

l  Ques%on:		Since	views	look	like	tables	to	users,	can	they	
be	updated?	

l  Answer:		Yes	–	a	view	update	changes	the	underlying	
base	table	to	produce	the	requested	change	to	the	view	

75	

CREATE VIEW CsReg (StudId, CrsCode, Semester) AS
SELECT T.StudId, T. CrsCode, T.Semester
FROM Transcript T
WHERE T.CrsCode LIKE ‘CS%’ AND T.Semester=‘S2000’

Upda%ng	Views	-	Problem	1	

l  QuesMon:	What	value	should	be	placed	in	abributes	of	
underlying	table	that	have	been	projected	out	(e.g.,	
Grade)?	

l  Answer:	Simple.	NULL	(assuming	null	allowed	in	the	
missing	abribute)	or	DEFAULT	

76	

INSERT INTO CsReg (StudId, CrsCode, Semester)
VALUES (1111, ‘CSE305’, ‘S2000’)

Upda%ng	Views	-	Problem	2	

l  Problem:	New	tuple	not	in	view	
l  SoluMon:	Allow	inser%on	(assuming	the	WITH CHECK

OPTION		clause	has	not	been	appended	to	the	
CREATE VIEW	statement)	

77	

INSERT INTO CsReg (StudId, CrsCode, Semester)
VALUES (1111, ‘ECO105’, ‘S2000’)

This is not CS course!!!

Upda%ng	Views	-	Problem	3	

l  Update	to	a	view	might	not	uniquely	specify	the	change	
to	the	base	table(s)	that	results	in	the	desired	
modifica%on	of	the	view	(ambiguity)	

l  Tuple	<Smith,	CS>	can	be	deleted	from	ProfDept	by:	
l  Dele%ng	row	for	Smith	from	Professor	(but	this	is	inappropriate	

if	he	is	s%ll	at	the	University)	
l  Dele%ng	row	for	CS	from	Department	(not	what	is	intended)	
l  Upda%ng	row	for	Smith	in	Professor	by	se�ng	DeptId	to	null	

(seems	like	a	good	idea,	but	how	would	the	computer	know?)	

78	

CREATE VIEW ProfDept (PrName, DeName) AS
SELECT P.Name, D.Name
FROM Professor P, Department D
WHERE P.DeptId = D.DeptId

Upda%ng	Views	-	Problem	3	(Cont’d)	

l  What	to	do	at	dele%ng	<101202303,	123454321>>	
l  Delete	two	rows	from	Teaching?	
l  Delete	two	rows	from	Transcript?	
l  Delete	one	with	CS315	from	Teaching	and	one	with	CS305	

Transcript	from	Transcript?	Or,	CS305	from	Teaching	and	
CS315	from	Transcript?	

79	

Updatable	Views	-	Restric%ons	

l  Updatable	views	are	restricted	to	those	in	which	
l  No	Cartesian	product	in	FROM	clause	
l  No	aggregates,	GROUP BY, HAVING, set	opera%on	
l  No	expressions,	DISTINCT keyword	in	the	SELECT clause	
l  …	

80	

For example, if we allowed:
 CREATE VIEW AvgSalary (DeptId, Avg_Sal) AS
 SELECT E.DeptId, AVG(E.Salary)
 FROM Employee E
 GROUP BY E.DeptId

then how do we handle:
 UPDATE AvgSalary
 SET Avg_Sal = 1.1 * Avg_Sal

