W

Stony Brook
University

CSE 305/ CSE532

Lecture 06 (Chapter 5)
Relational Algebra: Under the Hood of SQL

Lecturer: Sael Lee

Slide adapted from the author’s and Dr. lichul Yoon’s slides.

Korea
DAY

Relational Query Languages

e Languages for describing queries on a relational
database

e Structured Query Language (SQL)
e Predominant application-level query language
e Declarative

e Relational Algebra
e Intermediate language used within DBMS

e Procedural

Korea
AN

What is an Algebra?

e A language based on operators and a domain of values

e Operators map values taken from the domain into other
domain values

e Hence, an expression involving operators and arguments
produces a value in the domain

e When the domain is a set of all relations (and the
operators are as described later), we get the relational
algebra

e We refer to the expression as a query and the value
produced as the query result

Korea
AN
3

Relational Algebra

e Domain: set of relations

e Basic operators: select, project, union, set difference,
Cartesian product

e Derived operators: set intersection, division, join

® Procedural

e Relational expression specifies query by describing an
algorithm (the sequence in which operators are applied) for
determining the result of an expression

Korea
AN

The Role of Relational Algebra in a DBMS

| Relational Algebra Expression

_________ I___——-————— Query Optimizer

| Query Execution Plan

_________ I_______--—— Code Generator
| Executable Code
Korea
5 ST

Select Operator

e Produce table containing subset of rows of argument
table satisfying condition

O condition (I’E/GI'IOI’))
e Example:
Person GHobby=’stamps'(Per5°n)

Id Name Address Hobby Id Name Address Hobby
1123 John 123 Main stamps 1123 John 123 Main stamps
1123 John 123 Main coins 9876 Bart 5 Pine St stamps
5556 Mary 7 Lake Dr hiking

9876 Bart 5 Pine St stamps

Korea

L o

Selection Condition

e Operators: <, <, =, >, =, #

e Simple selection condition:
e <qttribute> operator <constant>
e <qttribute> operator <attribute>

e <condition> AND <condition>
e <condition> OR <condition>
e NOT <condition>

Korea
AN
7

Selection Condition - Examples

® O 1453000 OR Hobby="hiking’ (P€rSON)

® O 453000 AND Id <3999 (P€rson)
® O NOT(Hobby="hiking’) (Person)

® 0 Hobby=hiking’ (Person)

Korea
AN
8

Project Operator

e Produces table containing subset of columns of
argument table

Tattribute Iist(relahon)

e Example:
Person T\ ame, Hobby| PEFSON)
Id Name Address Hobby Name Hobby
1123 John 123 Main stamps John stamps
1123 John 123 Main coins John coins
5556 Mary 7 Lake Dr hiking Mary hiking
9876 Bart 5 Pine St stamps Bart stamps

Korea
AN

Project Operator

J-':Name,Address(Person)

Name

Address

e Example:
Person
Id Name Address Hobby
1123 John 123 Main stamps
1123 John 123 Main coins
5556 Mary 7/ Lake Dr hiking
9876 Bart 5 Pine St stamps

John
Mary
Bart

123 Main
7 Lake Dr
5 Pine St

e Result is a table (no duplicates); can have fewer tuples

than the original

10

Pany

Korea

L o

Expressions

¢ Id, Name (OHobby=’stamps’ OR Hobby='coins’ (Person))
Id Name Address Hobby Id Name
1123 John 123 Main stamps 1123 John
1123 John 123 Main coins 9876 Bart
9556 Mary 7 Lake Dr hiking
9876 Bart 5 Pine St stamps
Result
Person

Korea
DAV IR

11

Set Operators

Relation is a set of tuples, so set operations should
apply: N, U, - (set difference)

Result of combining two relations with a set operator is
a relation => all its elements must be tuples having same
structure

Hence, scope of set operations limited to union
compatible relations

Korea
12 ANt

Union Compatible Relations

e Two relations are union compatible if

e Both have same number of columns

e Names of attributes are the same in both

e Attributes with the same name in both relations have the same
domain

e Union compatible relations can be combined using
union, intersection, and set difference

Korea
13 IR B 2 O

Example

Tables:
Person (SSN, Name, Address, Hobby)
Professor (/d, Name, Office, Phone)
are not union compatible.

But
T name (PErSON) and m . (Professor)

are union compatible so
T nvame (PErSON) - . (Professor)
makes sense.

Korea
14 IR B 2 O

Cartesian Product

|
e |If Rand S are two relations, R x S is the set of all
concatenated tuples <x,y>, where x is a tuple in Rand y
isatuplein$
e R and S need not be union compatible

e RxS is expensive to compute:
e Factor of two in the size of each row

e Quadratic in the number of rows

A B C D A B C D
X1 X2 y1l y2 x1 x2 y1 y2
x3 x4 y3 v4 x1 x2 y3 y4
X3 x4 y1 y2

R S x3 x4 y3 vy4

Rx S ?<_°re.?

15

Renaming

e Result of expression evaluation is a relation

e Attributes of relation must have distinct names. This is
not guaranteed with Cartesian product

e e.g., suppose in previous example a and ¢ have the same name

e Renaming operator tidies this up. To assign the names

A, A,..A, tothe attributes of the n-column relation
produced by expression expr use:

expr[A, A, .., Al

Korea
16 IR B 2 O

Example

Transcript (Studld, CrsCode, Semester, Grade)
Teaching (Profld, CrsCode, Semester)

T studld, CrsCode (1 1ANSCIIPY)[Studld, CrsCodeT]
X T profid, crscodel 1€ACNING) [Profld, CrsCodeZ]

This is a relation with 4 attributes:
Studld, CrsCode1, Profld, CrsCodeZ?

Korea
AN
17

Derived Operation: Join (theta-join)

e A (general or theta) join of Rand S is the expression
R S
where join-condition is a conjunction of terms:

join-condition

A; oper B,
in which A;is an attribute of R; B;is an attribute of S; and
oper isone of =, <, >, = %, =<,

e The meaning is:
Gjoin-condiﬁon’ (R X S)
where join-condition and join-condition” are the same,

except for possible renaming of attributes

Korea
18 IR B 2 O

Join and Renaming

]
e Problem:

e Rand S might have attributes with the same name —in which
case the Cartesian product is not defined

e Solutions:

e Rename attributes prior to forming the product and use new
names in join-condition’.
e Qualify common attribute names with relation names (thereby

disambiguating the names).
e e.g., Transcript.CrsCode or Teaching.CrsCode

e This solution is nice, but doesn’t always work: consider
e R [><Jjoin_conditionR

e InR.A, how do we know which R is meant?
Korea

19

Theta Join — Example

Employee(Name, Id, Salary, Mngrld)
Manager(Name, Id, Salary)

e Output the names of all employees that earn more than
their managers.

TEmployee. Name (EMPlOY€€ DI £ 110110 = w10 AND E.Salary > M.Salary Manager)

e The join yields a table with attributes:

e Employee.Name, Employee.ld, Employee.Salary, Mngrld,
Manager.Name, Manager./d, Manager.Salary

Korea
20 IR B 2 O

Equijoin Join - Example

e Equijoin: Join condition is a conjunction of equalities.

TCName, CrsCode(StUdent P 1g=studid Ograde=-a (Transcript))

Student Transcript
Id Name Addr Status Studld CrsCode Sem Grade
111 John 111 CSE305 SO0 B
222 Mary 222 CSE306 S99 A
333 Bill 333 CSE304 F99 A
444 Joe

The equijoin is used very

frequently since it combines
Mary CSE306 related data in different relations.
Bill CSE304

Korea
21 IR B 2 O

Natural Join

|
e Special case of equijoin:

e join condition equates all and only those attributes with the
same name (condition doesn’t have to be explicitly stated)

e duplicate columns eliminated from the result

Transcript (Studld, CrsCode, Sem, Grade)
Teaching (Profld, CrsCode, Sem)

Transcript P><{ Teaching =

EStudld, Transcript.CrsCode, Transcript.Sem, Grade, Profld

(Transcript M CrsCode=CrsCode AND Sem=Sem Teaching)
| Studld, CrsCode, Sem, Grade, Profld]

Korea
22 IR B 2 O

Natural Join (cont’d)

e More generally:

R > S=ux attr-list (jom -cond (R X S))
where
(1) attr-list = attributes (R) U attributes (S)
(duplicates are eliminated) and

(2) join-cond has the form:
A, =A,AND ... ANDA =A,
where
{A,... A } = attributes(R) N attributes(S)

Korea
23 IR B 2 O

Natural Join Example

e List all Ids of students who took at least two different
courses:

J-l:StudId (GCrsCode = CrsCode2 (
Transcript <

Transcript [Studld, CrsCode2, Sem2, GradeZ2]))

We don’t want to join on CrsCode, Sem, and Grade attributes,
hence renaming!

Korea
24 IR B 2 O

Outer Join

e Three types
e Left outer join / Right outer join / Full outer join

e Given two relations rand s, the tuples in rN‘gg:ﬁ;s
consist of three categories

1. The tuples that appear in the regular join of r and s,

r < S
cond

2. The tuples of r that do not join with any tuple in's
3. The tuples of s that do not join with any tuple inr

e For left outer join, 1 U 2
e For right outer join, 1 U 3
For full outer join, 1U2 U 3, (G0

W

Stony Brook
University

CSE 305/ CSE532

Lecture 07 (Chapter 5)
Relational Algebra: Under the Hood of SQL

Lecturer: Sael Lee

Slide adapted from the author’s and Dr. lichul Yoon’s slides.

Korea
DAY

Division
|
e Goal: Produce the tuples in one relation, r, that match

all tuples in another relation, s

e r(A,..A, B, ..B)

e s(B,..B,)

e r/s, with attributes A,, ...A,, is the set of all tuples <a> such that
for every tuple ins, <a,b>isinr

e Can be expressed in terms of projection, set difference,
and cross-product

Korea
27 IR B 2 O

Division (cont’d)

| A B

5 B
= a |
______ > 1 { |
///’ \.!._ b
// E a
/ Ll
’ :
/ !
// E
/ /";— a b
/ - W T [
/ Inr/s) L b
| Nk e \ !
[NV T i © C
| \ :
[AN ;
\ S — a
\ S~ . s
\ B T N .
\ i3 —L b b Relation s
\\ - . \\
\ S ©
\ !
N 0
Not inr/s
N e — b
~o 4 /
~o \

Relation r Korea

28

Division
|
e Goal: Produce the tuples in one relation, r, that match

all tuples in another relation, s

e r(A,..A, B, ..B)

e s(B,..B,)

e r/s, with attributes A,, ...A,, is the set of all tuples <a> such that
for every tuple ins, <a,b>isinr

e Can be expressed in terms of projection, set difference,
and cross-product
T,=m, (R) xS
T,=m, (T,—R)

T,=m, (R) =T, (e

29

Division - Example
|
e List the Ids of students who have passed all courses that

were taught in spring 2006

e Numerator:

e Studld and CrsCode for every course passed by every student:
ﬂStudld, CrsCode (GGrade,—f ‘F (Transcript))

e Denominator:
e CrsCode of all courses taught in spring 2006

J-':CrSCode (GSemester=’52006’ (TeaChing))

e Resultis numerator/denominator

Korea
AN

30

Example

e Suppose we want to know, from the Movies relation,
“What are the titles and years of movies made by Fox

that are at least 100 minutes long?”

Movies(title, year, length, genre, studioName,
producerC#)

MoviewStar(name, address gender, DOB)
StarIn(movieTitle, movieYear, starName)
MovieExec(name, address, cert#f, netWorth)

Studio(name, address, PresC#)

Korea
AN

31

Administrivia

e No class on 3/31 (Tuesday) and 4/2 (Thursday)
e Makeup class: TBA

e Term Project requirements

e General requirements and Journal/conference
attributes are posted in Bb.

Korea
ISR LT

Schema for Student Registration System

Student (Id, Name, Addr, Status)

Professor (Id, Name, Deptld)

Course (Deptld, CrsCode, CrsName, Descr)
Transcript (Studld, CrsCode, Semester, Grade)
Teaching (Profld, CrsCode, Semester)
Department (Deptld, Name)

Korea
33 IR B 2 O

Query Sublanguage of SQL

SELECT C.CrsName
FROM Course C
WHERE C.Depftld = ‘CS’

e Tuple variable C ranges over rows of Course.

e An evaluation strategy:

e FROM clause produces Cartesian product of listed tables

e WHERE clause assigns rows to C in sequence and produces
table containing only rows satisfying condition

e SELECT clause retains listed columns

e Equivalent to: T nameOpeptia-cs(Course)

Korea
AN

34

Join Queries

SELECT C.CrsName
FROM Course C, Teaching T
WHERE C.CrsCode=T.CrsCode AND T.Semester='S2000’

e List courses taught in S2000
e Tuple variables clarify meaning.

e Join condition “C.CrsCode=T.CrsCode”
e relates facts to each other

e Selection condition “ T.Semester='S2000" ”
e eliminates irrelevant rows

e Equivalent (using natural join) to:

77:CrsName(COl'”.Se > GSemester=‘82000’ (TeaChing))

ﬂCrsName (OSem=‘SZOOO’ (COUFSG > TeaChing)) Korea

35

Correspondence Between SQL and
Relational Algebra

SELECT C.CrsName
FROM Course C, Teaching T
WHERE C.CrsCode = T.CrsCode anp T.Semester = ‘S2000’

e Also equivalent to:

T CrsName GC_CrsCode=T_CrsCode AND Semester=S2000’
(Course [C_CrsCode, Deptld, CrsName, Desc]

x Teaching [Profld, T_CrsCode, Semester])
e This is the simplest evaluation algorithm for SELECT.
e Relational algebra expressions are procedural.

e Which of the two equivalent expressions is more easily

evaluated? K
! orea
36 .@ S

Self-join Queries

e Find Ids of all professors who taught at least two courses
in the same semester:

SELECT T1.Profld
FROM Teaching T1, Teaching T2
WHERE T1.Profld = T2.Profld
AND T1.Semester = T2.Semester
AND T1.CrsCode <> T2.CrsCode

e Tuple variables are essential in this query!
e Equivalent to:

Torofid (OT1 crscode<T2.Crscodel 1€ACNING[Profld, T1.CrsCode, Semester]
> Teaching[Profld, T2.CrsCode, Semester]))

Korea
37 IR B 2 O

Duplicates

|
e Duplicate rows are not allowed in a relation

e However, duplicate elimination from query result is
costly and not done by default; must be explicitly
requested:

SELECT DISTINCT
FROM

Korea
AN

38

Use of Expressions

e Equality and comparison operators apply to strings
(based on lexical ordering)

WHERE S.Name < ‘P’

e Concatenate operator applies to strings
WHERE S.Name || *--' | | S.Address =

e Expressions can also be used in SELECT clause:

SELECT S.Name || --" || S.Address AS NmAdd

FROM Student S
!f..‘:r:;f

39

Set Operators

e SQL provides UNION, EXCEPT (set difference), and
INTERSECT for union compatible tables

e Example

e Find all professors in the CS Department and all professors that
have taught CS courses

(SELECT P.Name

FROM Professor P, Teaching T

WHERE P.Id=T.Profld AND T.CrsCode LIKE ‘CS%’)
UNION

(SELECT P.Name

FROM Professor P

WHERE P.Deptld = ‘CS’)

Korea
40 IR B 2 O

Nested Queries

e List all courses that were not taught in S2000

SELECT C.CrsName
FROM Course C
WHERE C.CrsCode NOT IN
(SELECT T.CrsCode
FROM Teaching T
WHERE T.Sem = ‘S2000’)

e Evaluation strategy

e Subquery evaluated once to produces set of courses taught in
S2000. Each row (as C) tested against this set.

Korea
AN

41

Correlated Nested Queries

e Output a row <prof, dept> if prof has taught a course in
dept.

SELECT P.Name, D.Name --outer query
FROM Professor P, Department D
WHERE P.Id IN
== set of all Profld’s who have taught a course in D.Deptld
(SELECT T.Profld --subquery

FROM Teaching T, Course C
WHERE T.CrsCode = C.CrsCode AND
C.Deptld = D.Deptld --correlation

Korea
42 IR B 2 O

Correlated Nested Queries (con’t)

e Tuple variables T and C are local to subquery
e Tuple variables P and D are global to subquery

e Correlation: subquery uses a global variable, D

e The value of D.Deptld parameterizes an evaluation of the
subquery

e Subquery must (at least) be re-evaluated for each distinct value
of D.Deptld

e Correlated queries can be expensive to evaluate

Korea
43 IR B 2 O

EXISTS Operator

e Simply, used to check if a nested subquery returns no
answers

e Example
e Find all students who never took a computer science course

SELECT S./d
FROM Student S

WHERE NOT EXISTS (
-- All CS courses taken by S.Id

SELECT T.CrsCode

FROM Transcript T

WHERE T.CrsCode LIKE ‘CS%’ AND
T.StudID = S.1d)

Korea
AN

44

Division in SQL

Query type: Find the subset of items in one set that are
related to all items in another set

Example
e Find professor Ids who taught courses in all departments
e Why does this involve division?

Profld Deptld Deptld
Contains row All department Ids
<p,d> if professor D
p taught a
course in
department d

Tprofid,Deprid(T€AChING DI Course) / 7y, qq(Department)

Korea
AN

45

Division in SQL

e Strategy for implementing division in SQL:

e Find a set, A, of all departments in which a particular professor,
p, has taught a course

e Find set, B, of all departments
e Output p if AC B, or, equivalently, if B— A is empty

Korea
46 IR B 2 O

Division — SQL Solution

SELECT P.Id
FROM Professor P
WHERE NOT EXISTS
(SELECT D.Deptld -- set B of all dept Ids
FROM Department D

EXCEPT

SELECT C.Deptld -- set A of dept Ids of depts in
-- which P taught a course
FROM Teaching T, Course C
WHERE T.Profld =P.Id -- global variable
AND T.CrsCode = C.CrsCode)

Korea
AN
47

Set Comparison Operator

e /s there a student in the university whose GPA is higher
than that of all junior students?

SELECT S.Id
FROM Student S
WHERE S.GPA > ALL (
SELECT S.GPA
FROM Student S
WHERE S.Status = ‘junior’)

e What happens if we replace > ALL with >= ANY ?

Korea
AN
48

Nested Query in the FROM clause

e Use nested query in the FROM clause and rename it

e Forexample SELECT S./d
e Find the students FROM Student S

who took a course EXCEPT
from ever SELECT S.Id
y FROM Student S,
professor in the (SELECT P.Id
CS department FROM Professor P

WHERE P.Dept = ‘CS’) AS C
WHERE C.Profld NOT IN
(SELECT T.Profld
FROM Teaching T, Transcript R
WHERE T.CrsCode = R.CrsCode AND
T.Semester = R.Semester AND
S.Id = R.Studld)

Korea
49 IR B 2 O

Aggregates

e Functions that operate on sets:
e COUNT, SUM, AVG, MAX, MIN

e Produce numbers (not tables)

e Not part of relational algebra (but not hard to add)

SELECT COUNT(*) SELECT MAX (Salary)
FROM Professor P FROM Employee E

e Do not mix aggregate and an attribute in the SELECT

SELECT COUNT(*), S.Id
FROM Student S
WHERE S.Name = ‘JohnDoe’

e Aggregate functions can’t bgo used in the WHERE clagggg

Aggregates (cont’d)

e Count the number of courses taught in S2000

SELECT COUNT (T.CrsCode)
FROM Teaching T

WHERE T.Semester = ‘S2000’

e But if multiple sections of same course are taught, use:

SELECT COUNT (DISTINCT T.CrsCode)
FROM Teaching T

WHERE T.Semester = ‘S2000’

Korea
51 IR B 2 O

Grouping

e But how do we compute the number of courses taught
in S2000 per professor?

e Strategy 1: Fire off a separate query for each professor:
SELECT COUNT(T.CrsCode)
FROM Teaching T

WHERE T.Semester = ‘'S2000° AND T.Profld = 123456789
e Cumbersome

e What if the number of professors changes? Add another query?

e Strategy 2: define a special grouping operator:

SELECT T.Profld, COUNT(T.CrsCode)
FROM Teaching T
WHERE T.Semester = ‘S2000’

GROUP BY T.Profid
) ff.‘fii"f

GROUP BY

Groups

>

~€

— —
—— —
——

Each row
describes

a group

P > >

Attributes in
the GROUP
BY list

Aggregates
over rows in
GROUP BY
list

Attributes in the
GROUP BY list

All rows in a
group agree on

all attributes in the
GROUP BY list

53

Korea

GROUP BY - Example

Transcript
\ Attributes:
T — student’s Id
1234 123433 4 _ A
ol VG grade
1234 — number of courses
1234

/|
SELECT T.Studld, AVG(T.Grade), COUNT (¥)

FROM Transcript T
GROUP BY T.Studld

Korea
54 T O

AVING Clause

e Eliminates unwanted groups (analogous to WHERE
clause, but works on groups instead of individual tuples)

e HAVING condition is constructed from attributes of
GROUP BY list and aggregates on attributes not in that

list

SELECT T.Studld,
AVG(T.Grade) AS CumGpa,
COUNT (*) AS NumCrs
FROM Transcript T
WHERE T.CrsCode LIKE ‘CS%’

GROUP BY T.Studld
HAVING AVG (T.Grade) > 3.5

Korea
AN

55

Query Evaluation with Aggregate Functions

DB

D WIan

SELECT
FROM
WHERE

SELECT
FROM
WHERE
GROUP BY

SELECT
FROM
WHERE
GROUP BY
HAVING

SELECT
FROM
WHERE
GROUP BY
HAVING

Attrs
Relations
Condition

:‘l>

Attrs

Relations
Condition
Group Attr List

Altrs
Relations

Condition @
Group Attr List

Group Condition

=
=
=1
=
 J—

Attrs, Aggregates

=
=

Relations

uer
Condition g }/t
Group Attr List esu

Group Condition

Korea
DA IR

56

Example

e Output the id and name of all seniors on the Dean’s List
(average grade over 3.5, and more than 90 credits.)

SELECT S.I/d, S.Name
FROM Student S, Transcript T
WHERE S.Id = T.Studld AND S.Status = ‘senior’

S i d - WIrong ..--------" Every attribute that occurs in \E
GROUP BY < & ... SELECT clause must also '
S[d, S.Name - I"lghf . occur in GROUP BY or it |
must be an aggregate. S.Name
\._does not.

HAVING AVG (T.Grade) > 3.5 AND SUM (T.Credit) > 90

Korea
57 IR B 2 O

Aggregates: Proper and Improper Usage

SELECT COUNT (T.CrsCode), T. Profld

— makes no sense (in the absence of
GROUP BY clause)

SELECT COUNT (*), AVG (T.Grade)
— but this is OK

WHERE T.Grade > COUNT (SELECT)

— aggregate cannot be applied to result
of SELECT statement

Korea
58 IR B 2 O

ORDER BY Clause

e Causes rows to be output in a specified order

SELECT T.Studld, COUNT (*) AS NumCers,
AVG(T.Grade) AS CumGpa

FROM Transcript T

WHERE T.CrsCode LIKE ‘CS%’

GROUP BY T.Studld

HAVING AVG (T.Grade) > 3.5

ORDER BY DESC CumGpa, ASC Studldc

i Descending !

Korea
59 IR B 2 O

Query Evaluation with GROUP BY,

HAVING, ORDER BY

1. Evaluate FROM: produces Cartesian product, A, of
tables in FROM list

2. Evaluate WHERE: produces table, B, consisting of rows
of A that satisfy WHERE condition

3. Evaluate GROUP BY: partitions B into groups that
agree on attribute values in GROUP BY list

4. Evaluate HAVING: eliminates groups in B that do not
satisfy HAVING condition

5. Evaluate SELECT: produces table C containing a row
for each group. Attributes in SELECT list limited to
those in GROUP BY list and aggregates over group

6. Evaluate ORDER BY: orders rows of C ‘

60

JOIN Expressions in the FROM Clause

e Called ‘table expressions’

e Format

e Tablel [NATURAL] [INNER|FULL|LEFT|OUTER] JOIN table 2
[ON condition]

e List average grade for every student in the database

SELECT S.Name, AVG(S.Grade)

FROM Student LEFT JOIN Transcript
ON Student./d = Transcript.Studld AS S
GROUP BY S./d

VS.

SELECT S.Name, AVG(T.Grade)
FROM Student S, Transcript T
WHERE S./d = T.Studld

GROUP BY S./d
61 !fsr:?.

Views

|
e Used as a relation, but rows are not physically stored.

e The contents of a view is computed when it is used within an
SQL statement

e View is the result of a SELECT statement over other
views and base relations

e When used in an SQL statement, the view definition is
substituted for the view name in the statement
e As SELECT statement nested in FROM clause

Korea
AN

62

View — Usage Example

CREATE VIEW CumGpa (Studld, Cum) AS
SELECT T.Studld, AVG (T.Grade)
FROM Transcript T
GROUP BY T.Studld

SELECT S.Name, C.Cum
FROM CumGpa C, Student S
WHERE C.Studld = S.Studld AND C.Cum > 3.5

Korea
63 IR B 2 O

View Benefits

|
e Access Control: Users are not granted access to base
tables. Instead they are granted access to the view of
the database appropriate to their needs.
e External schema is composed of views.

e View allows owner to provide SELECT access to a subset of
columns (analogous to providing UPDATE and INSERT access
to a subset of columns)

Korea
64 IR B 2 O

Views — Limiting Visibility
I —
e CREATE VIEW PartOfTranscript (Studld, CrsCode, Semester) AS

SELECT T. Studld, T.CrsCode, T.Semester -- limit columns

FROM Transcript T

WHERE T.Semester = ‘S2000’ -- limit rows

. Grade projected out |

e Give permissions to access data through view:
GRANT SELECT ON PartOfTranscript TO joe

e This would have been analogous to:
GRANT SELECT (Studld,CrsCode,Semester) ON Transcript TO joe

on regular tables, if SQL allowed attribute lists in GRANT SELECT

Korea
65 IR B 2 O

View Benefits (cont’d)

|

e Customization: Users need not see full complexity of
database. View creates the illusion of a simpler
database customized to the needs of a particular
category of users

e Ease of use and learning
e Security
e Logical data independence

e Aview is similar in many ways to a subroutine in
standard programming

e Can be reused in multiple queries

Korea
66 IR B 2 O

Materialized Views

e Cached view — caching if popular with many queries

e Dramatic reduction of query response time

e Expensive update operation

e Adding/removing tuples in base relations may (or may not)

affect view

Justlflcatlon

«

PROFSTUD Prof Stud
009406321 = 666666666
121232343 = 666666666
900120450 = 666666666
555666777 = 987654321
009406321 | 987654321
101202303 | 123454321

| 900120450 | 123454321

| 121232343 t 023456789

| 101202303 | 023456789
900120450 | 111111111
783432188 | 111111111 |

MGT123,F1994
EE101,51991
MAT123,F1997
CS305,F1995
MGT123,F1994
CS315,51997; CS305,51996
MAT123,51996
EE101,F1995
CS305,51996
MAT123,F1997
MGT123,F1997

FIGURE 3.9 Contents of the view defined by SQL statement (3.5).

Materialized Views (Con’d)

e View cache maintenance are expensive.
e Incremental re-compute considering changes

e View cache is very important in data warehousing

e Data warehouse is an (infrequently updated) database that
typically consist of complex materialized views of the data
stored in a separate production database.

e Optimized for querying, not transaction processing

CREATE MATERIALIZED VIEW PROFSTUD(Prof, Stud)
BUILD IMMEDIATE
REFRESH FAST ON COMMIT

s ENABLE QUERY REWRITE Oracle Example

SELECT T.Profld, R.Studld)

FROM Transcript R, Teaching T K
WHERE - ——

W

Stony Brook
University

CSE 305/ CSE532

Lecture 08 (Chapter 5)
Relational Algebra: Under the Hood of SQL

Lecturer: Sael Lee

Slide adapted from the author’s and Dr. lichul Yoon’s slides.

Korea
DAY

Nulls and 3-valued logic

|
e Conditions: xop y (where op is <, >, <>, =, etc.) has value
unknown (U) when either x or y is null

e WHERE T.cost > T.price

e Arithmetic expression: x op y (where op is +, —, *, etc.)
has value NULL if x or y is NULL
e WHERE (T. price/T.cost) > 2

e Aggregates: COUNT counts NULLs like any other value;
other aggregates ignore NULLs

SELECT COUNT (T.CrsCode), AVG (T.Grade)
FROM Transcript T
WHERE T.Studld = ‘1234’

Korea
AN

70

Nulls (cont’d)

e WHERE clause uses a three-valued logic — T, F,
U(ndefined) — to filter rows. Portion of truth table:

Cl C2 CIANDC2 CIORC2
T U U T
F U F U
U U U U

e Rows are discarded if WHERE condition is F(alse) or
U(nknown)
e e.g., WHERE T.CrsCode = ‘CS305’ AND T.Grade > 2.5

e If a CHECK clause evaluates to unknown, the integrity
constraints are considered to be observed.

71

Modifying Tables — Insert

e Inserting a single row into a table

e Attribute list can be omitted if it is the same as in CREATE
TABLE (but do not omit it)

e NULL and DEFAULT values can be specified

INSERT INTO Transcript(Studld, CrsCode, Semester, Grade)
VALUES (12345, ‘CSE305’, ‘'S2000°, NULL)

Korea
72 IR B 2 O

Bulk Insertion

e Insert the rows output by a SELECT

CREATE TABLE DeansList (
Studld INTEGER,
Credits INTEGER,
CumGpa FLOAT,
PRIMARY KEY Studid)

INSERT INTO DeansList (Studld, Credits, CumGpa)
SELECT T.Studld, 3 * COUNT (*), AVG(T.Grade)
FROM Transcript T
GROUP BY T.Studld
HAVING AVG (T.Grade) > 3.5 AND COUNT(*) > 30

Korea
73 IR B 2 O

Modifying Tables — Delete and Update

e DELETE is similar to SELECT except:
e No project list in DELETE clause
e No Cartesian product in FROM clause (only 1 table name)

e Rows satisfying WHERE clause (general form, including
subgueries, allowed) are deleted instead of output

DELETE FROM Transcript T
WHERE T.Grade IS NULL AND T.Semester <> ‘S2000’

e Updates rows in a single table

e All rows satisfying WHERE clause (general form, including
subqueries, allowed) are updated
UPDATE Employee E

SET E.Salary = E.Salary * 1.05
WHERE E.Department = ‘R&D’

Korea
AN

74

Updating Views

e Question: Since views look like tables to users, can they
be updated?

e Answer: Yes —a view update changes the underlying
base table to produce the requested change to the view

CREATE VIEW CsReg (Studld, CrsCode, Semester) AS
SELECT T.Studld, T. CrsCode, T.Semester

FROM Transcript T
WHERE T.CrsCode LIKE ‘CS%’ AND T.Semester="S2000’

Korea
AN

75

Updating Views - Problem 1

INSERT INTO CsReg (Studld, CrsCode, Semester)
VALUES (1111, ‘CSE305’, ‘S2000’)

e Question: What value should be placed in attributes of
underlying table that have been projected out (e.g.,
Grade)?

e Answer: Simple. NULL (assuming null allowed in the
missing attribute) or DEFAULT

Korea
AN

76

Updating Views - Problem 2

INSERT INTO CsReg (Studld, CrsCode, Semester)
VALUES (1111, ‘ECO10%’, ‘'S2000’)

This is not CS coursel!!]

e Problem: New tuple not in view

e Solution: Allow insertion (assuming the WITH CHECK
OPTION clause has not been appended to the
CREATE VIEW statement)

Korea
AN

77

Updating Views - Problem 3

e Update to a view might not unigquely specify the change
to the base table(s) that results in the desired
modification of the view (ambiguity)

CREATE VIEW ProfDept (PrName, DeName) AS
SELECT P.Name, D.Name

FROM Professor P, Department D

WHERE P.Deptld = D.Depftld

e Tuple <Smith, CS> can be deleted from ProfDept by:

e Deleting row for Smith from Professor (but this is inappropriate
if he is still at the University)

e Deleting row for CS from Department (not what is intended)

e Updating row for Smith in Professor by setting Deptid to null
(seems like a good idea, but how would the computer knova

Korea
AN

78

Updating Views - Problem 3 (Cont’d)

e What to do at deleting <101202303, 123454321>>

e Delete two rows from Teaching?

e Delete two rows from Transcript?

e Delete one with CS315 from Teaching and one with CS305
Transcript from Transcript? Or, CS305 from Teaching and
CS315 from Transcript?

PROESTUD | Prof Stud rEi _Ju:;.fi‘cat;;on ! _7“‘3
| 009406321 | 666666666 | MGT123,F1994
| 121232343 = 666666666 EE101,51991
| 900120450 666666666 | MAT123,F1997
555666777 = 987654321 CS305,F1995
000406321 | 987654321 MCT123,F1994
—> | 101202303 | 123454321 CS315,51997; CS305,51996
900120450 | 123454321 MAT123,81996
121232343 | 023456789 EE101,F1995
| 101202303 | 023456789 | CS305,51996
900120450 | 111111111 | MAT123,F1997
| 783432188 | 111111111 | MGT123,F1997 D
b » SUNY) Korea
FIGURE 3.9 Contents of the view defined by SQL statement (3.5). S—

Updatable Views - Restrictions

Updatable views are restricted to those in which

No Cartesian product in FROM clause
No aggregates, GROUP BY, HAVING, set operation
No expressions, DISTINCT keyword in the SELECT clause

For example, if we allowed:

CREATE VIEW AvgSalary (Deptld, Avg Sal) AS
SELECT E.Deptld, AVG(E.Salary)
FROM Employee E
GROUP BY E.Deptld

then how do we handle:

UPDATE AvgSalary
SET Avg Sal=1.1"* Avg Sal

80

Korea
AN

