CSE 305 / CSE532

Lecture 08 (Chapter 6)
 Relational Normalization Theory

Lecturer: Sael Lee

Slide adapted from the author's and Dr. Ilchul Yoon's slides.

Limitations of E-R Designs

- Provides a set of guidelines, does not result in a unique database schema
- Does not provide a way of evaluating alternative schemas
- Normalization theory provides a mechanism for analyzing and refining the schema produced by an E-R design

Redundancy

- Dependencies between attributes cause redundancy
- e.g., all addresses in the same town have the same zip code

SSN	Name	Town	Zip
1234	Joe	Stony Brook	11790
4321	Mary	Stony Brook	11790
5454	Tom	Stony Brook	11790
	$\ldots \ldots$.		

Redundancy and Other Problems

- Set valued attributes in the E-R diagram result in multiple rows in corresponding table
- Example: Person (SSN, Name, Address, Hobbies)
- A person entity with multiple hobbies yields multiple rows in table Person
- Hence, the association between Name and Address for the same person is stored redundantly
- SSN is key of entity set, but (SSN, Hobby) is key of corresponding relation
- The relation Person can't describe people without hobbies

Example

ER Model

SSN	Name	Address	Hobby
1111	Joe	123 Main	\{biking, hiking\}

Relational Model

Anomalies

- Redundancy leads to anomalies:
- Update anomaly: A change in Address must be made in several places
- Deletion anomaly: Suppose a person gives up all hobbies. Do we:
- Set Hobby attribute to null? No, since Hobby is part of key
- Delete the entire row? No, since we lose other information in the row
- Insertion anomaly: Hobby value must be supplied for any inserted row since Hobby is part of key

Decomposition

- Solution: use two relations to store Person information
- Person1 (SSN, Name, Address)
- Hobbies (SSN, Hobby)
- The decomposition is more general: people with/without hobbies can now be described
- No update anomalies:
- Name and address stored once
- A hobby can be separately supplied or deleted

Normalization Theory

- Result of E-R analysis need further refinement
- Appropriate decomposition can solve problems
- The underlying theory is referred to as normalization theory and is based on functional dependencies (and other kinds, like multivalued dependencies)

Functional Dependencies

- Definition: A functional dependency (FD) on a relation schema R is a constraint $\mathbf{X} \rightarrow \mathbf{Y}$, where \mathbf{X} and \mathbf{Y} are subsets of attributes of R.
- Definition: An FD $\mathbf{X} \rightarrow \mathbf{Y}$ is satisfied in an instance \mathbf{r} of \mathbf{R}, if for every pair of tuples, \mathbf{t} and \mathbf{s} : if \mathbf{t} and \mathbf{s} agree on all attributes in \mathbf{X} then they must agree on all attributes in Y
- Key constraint is a special kind of functional dependency: all attributes of relation occur on the right-hand side of the FD:
- SSN \rightarrow SSN, Name, Address

Functional Dependencies

- Address \rightarrow ZipCode
- Stony Brook's ZIP is 11733
- ArtistName \rightarrow BirthYear
- Picasso was born in 1881
- Autobrand \rightarrow Manufacturer, Engine type
- Pontiac is built by General Motors with gasoline engine
- Author, Title \rightarrow PublDate
- Shakespeare's Hamlet published in 1600

Functional Dependency - Example

- Consider a brokerage firm that allows multiple clients to share an account, but each account is managed from a single office and a client can have no more than one account in an office
- HasAccount (AcctNum, Clientld, Officeld)
- FDs:

Clientld, Officeld \rightarrow AcctNum
AcctNum \rightarrow Officeld

- keys:
(Clientld, Officeld)
(AcctNum, Clientld)
- Thus, attribute values need not depend only on key values

Entailment, Closure, Equivalence

- Definition: If \boldsymbol{F} is a set of FD on schema \mathbf{R} and f is another $\mathbf{F D}$ on \mathbf{R}, then \boldsymbol{F} entails f if every instance \mathbf{r} of \mathbf{R} that satisfies every FD in F also satisfies f
- Ex: $\boldsymbol{F}=\{A \rightarrow B, B \rightarrow C\}$ and f is $A \rightarrow C$
- If Town \rightarrow Zip and Zip \rightarrow AreaCode then Town \rightarrow AreaCode
- Definition: The closure of \boldsymbol{F}, denoted \boldsymbol{F}^{+}, is the set of all FDs entailed by F
 entails F

Entailment (cont'd)

- Satisfaction, entailment, and equivalence are semantic concepts - defined in terms of the actual relations in the "real world."
- They define what these notions are, not how to compute them
- How to check if \boldsymbol{F} entails f or if \boldsymbol{F} and \boldsymbol{G} are equivalent?
- Apply the respective definitions for all possible relations?
- Bad idea: might be infinite number for infinite domains
- Even for finite domains, we have to look at relations of all antities
- Solution: find algorithmic, syntactic ways to compute these notions
- Important: The syntactic solution must be "correct" with respect to the semantic definitions
- Correctness has two aspects: soundness and completeness - see later

Armstrong's Axioms for FDs

- This is the syntactic way of computing/testing the various properties of FDs
- Reflexivity: If $Y \subseteq X$ then $X \rightarrow Y$ (trivial FD)
- Name, Address \rightarrow Name
- Augmentation: If $X \rightarrow Y$ then $X Z \rightarrow Y Z$
- If Town \rightarrow Zip then Town, Name \rightarrow Zip, Name
- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

Soundness

- Axioms are sound: If an FD $f: X \rightarrow Y$ can be derived from a set of FDs \boldsymbol{F} using the axioms, then f holds in every relation that satisfies every FD in F.
- Example: Given $X \rightarrow Y$ and $X \rightarrow Z$ then

$$
\begin{array}{ll}
X \rightarrow X Y & \text { Augmentation by } X \\
Y X \rightarrow Y Z & \text { Augmentation by } Y \\
X \rightarrow Y Z & \text { Transitivity }
\end{array}
$$

- Thus, $X \rightarrow Y Z$ is satisfied in every relation where both $X \rightarrow Y$ and $X \rightarrow Z$ are satisfied
- Therefore, we have derived the union rule for FDs: we can take the union of the RHSs of FDs that have the same LHS

Completeness

- Axioms are complete: If \boldsymbol{F} entails f, then f can be derived from F using the axioms
- A consequence of completeness is the following (naïve) algorithm to determining if F entails f :
- Algorithm: Use the axioms in all possible ways to generate \boldsymbol{F}^{+} (the set of possible FD's is finite so this can be done) and see if f is in \mathbf{F}^{+}

Correctness

- The notions of soundness and completeness link the syntax (Armstrong's axioms) with semantics (the definitions in terms of relational instances)
- This is a precise way of saying that the algorithm for entailment based on the axioms is "correct" with respect to the definitions

Generating F^{+}

$$
\begin{aligned}
& \text { F } \\
& A B \rightarrow C
\end{aligned}
$$

$$
\begin{aligned}
& D \rightarrow E \text { aug }-\cdots C D \rightarrow B C D E
\end{aligned}
$$

Thus, $A B \rightarrow B D, A B \rightarrow B C D, A B \rightarrow B C D E$, and $A B \rightarrow C D E$ are all elements of F^{+}

Attribute Closure

- Calculating attribute closure leads to a more efficient way of checking entailment
- The attribute closure of a set of attributes, X, with respect to a set of functional dependencies, F, (denoted X^{+}) is the set of all attributes, A, such that $X \rightarrow A$
- $X^{+}{ }_{F 1}$ is not necessarily the same as $X^{+}{ }_{F 2}$ if $\boldsymbol{F} 1 \neq \boldsymbol{F} 2$
- Attribute closure and entailment:
- Algorithm: Given a set of FDs, \boldsymbol{F}, then

$$
X \rightarrow Y \text { if and only if } X_{F}^{+} \supseteq Y
$$

Example - Computing Attribute Closure

$$
\begin{gathered}
F: A B \rightarrow C \\
A \rightarrow D \\
D \rightarrow E \\
A C \rightarrow B
\end{gathered}
$$

X	$X_{F}{ }^{+}$
A	$\{A, D, E\}$
$A B$	$\{A, B, C, D, E\}$
	\quad (Hence $A B$ is a key)
B	$\{B\}$
D	$\{D, E\}$

Is $A B \rightarrow E$ entailed by F ? Yes
Is $D \rightarrow C$ entailed by F ?
No
Result: $X_{E}{ }^{+}$allows us to determine FDs of the form $X \rightarrow Y$ entailed by F

Computation of Attribute Closure $X^{+}{ }_{F}$

closure := $X ; \quad / /$ since $X \subseteq X^{+}{ }_{F}$ repeat
old := closure;
if there is an FD $Z \rightarrow V$ in F such that

$$
Z \subseteq \text { closure and } V \nsubseteq \text { closure }
$$

then closure $:=$ closure $\cup V$
until old = closure

- If $T \subseteq$ closure then $X \rightarrow T$ is entailed by \boldsymbol{F}

Example: Computation of Attribute Closure

- Problem: Compute the attribute closure of $A B$ with respect to the set of FDs :

$$
\begin{array}{ll}
A B \rightarrow C & \text { (a) } \\
A \rightarrow D & \text { (b) } \\
D \rightarrow E & \text { (c) } \\
A C \rightarrow B & \text { (d) } \tag{d}
\end{array}
$$

- Solution:

> Initially closure $=\{A B\}$
> Using (a) closure $=\{A B C\}$
> Using (b) closure $=\{A B C D\}$
> Using (c) closure $=\{A B C D E\}$

Normal Forms

- Each normal form is a set of conditions on a schema that guarantees certain properties (relating to redundancy and update anomalies)
- First normal form (1NF) is the same as the definition of relational model (relations $=$ sets of tuples; each tuple $=$ sequence of atomic values)
- Second normal form (2NF) - no partial depenency
- The two commonly used normal forms are third normal form (3NF) and Boyce-Codd normal form (BCNF)
- Normalization is a database design technique for producing a set of suitable relations that support the data requirements of an enterprise.

How Normalization Supports Database Design

Figure 13.1 How normalization can be used to support database design.

Relationship Between Normal Forms

Process of Normalization

Un-Normalized Form (UNF)

- A table that contains one or more repeating groups.
- To create an unnormalized table:
- Transform data from information source (e.g. form) into table format with columns and rows.

StaffPropertyInspection

propertyNo	pAddress	iDate	iTime	comments	staffNo	sName	carReg
PG4	6 Lawrence St, Glasgow	$\begin{aligned} & 18 \text {-Oct-00 } \\ & 22 \text {-Apr-01 } \\ & 1 \text {-Oct-01 } \end{aligned}$	$\begin{aligned} & 10.00 \\ & 09.00 \\ & 12.00 \end{aligned}$	Need to replace crockery In good order Damp rot in bathroom	$\begin{aligned} & \text { SG37 } \\ & \text { SG14 } \\ & \text { SG14 } \end{aligned}$	Ann Beech David Ford David Ford	M231 JGR M533 HDR N721 HFR
PG16	5 Novar Dr, Glasgow	$\begin{aligned} & 22 \text {-Apr-01 } \\ & 24 \text {-Oct-01 } \end{aligned}$	$\begin{aligned} & 13.00 \\ & 14.00 \end{aligned}$	Replace living room carpet Good condition	$\begin{aligned} & \text { SG14 } \\ & \text { SG37 } \end{aligned}$	David Ford Ann Beech	M533 HDR N721 HFR

First Normal Form (1NF)

- A relation in which intersection of each row and column contains one and only one (atomic) value.

StaffPropertyInspection

propertyNo	iDate	iTime	pAddress	comments	staffNo	sName	carReg
PG4	18-Oct-00	10.00	6 Lawrence St, Glasgow	Need to replace crockery	SG37	Ann Beech	M231 JGR
PG4	22-Apr-01	09.00	6 Lawrence St, Glasgow	In good order	SG14	David Ford	M533 HDR
PG4	1-Oct-01	12.00	6 Lawrence St, Glasgow	Damp rot in bathroom	SG14	David Ford	N721 HFR
PG16	22-Apr-01	13.00	5 Novar Dr, Glasgow	Replace living room carpet	SG14	David Ford	M533 HDR
PG16	24-Oct-01	14.00	5 Novar Dr, Glasgow	Good condition	SG37	Ann Beech	N721 HFR

Second Normal Form (2NF)

- Based on concept of full functional dependency:
- A, X and B are attributes of a relation,
- B is fully dependent on (A, X) if B is functionally dependent on (A, X) but not on any proper subset of (A, X) such as (A) or (X).
- $A, X \rightarrow B$ and there is NO $A \rightarrow B$ or $X \rightarrow B$
- $2^{\text {nd }}$ Normal Form
- A relation that does not have a FD, $X \rightarrow Y$, where X is a strict subset of that schema's key and Y has attributes that do not occur in any of the schema's keys.

1NF to 2NF (Functional Dependencies)

- Fd1: PropertyNo, iDate
- Fd2: PropertyNo
- Fd3: staffNo
- Fd4: iDate, staffNo
- Fd5: iDate, iTime, carReg \rightarrow all other attributes
- Fd6: iDate, iTime, staffNo \rightarrow all other attributes

StaffPropertyInspection

1NF to 2NF

- Transformed into following two tables.
- Property (propertyNo, pAddress)
- PropertyInspection (propertyNo, iDate, iTime, comments, staffNo, sName, carReg)

Boyce-Codd Normal Form (BCNF)

- Definition: A relation schema \mathbf{R} is in BCNF if for every FD $X \rightarrow Y$ associated with \mathbf{R} either
- $Y \subseteq X$ (i.e., the FD is trivial) or
- X is a superkey of \mathbf{R}
- Example: Person1 (SSN, Name, Address)
- The only FD is SSN \rightarrow Name, Address
- Since SSN is a key, Person1 is in BCNF

(non) BCNF Examples

- Person (SSN, Name, Address, Hobby)
- The FD SSN \rightarrow Name, Address does not satisfy requirements of BCNF
- since the key is (SSN, Hobby)
- HasAccount (AcctNum, Clientld, Officeld)
- The FD AcctNum \rightarrow Officeld does not satisfy BCNF requirements
- since keys are (Clientld, Officeld) and (AcctNum, Clientld); not AcctNum.

HasAccount (AcctNum, Clientld, Officeld)

FDs:
Client, Officeld \rightarrow AcctNum AcctNum \rightarrow Officeld keys:
(Clientld, Officeld)
(AcctNum, Clientld)

Redundancy

- Suppose \mathbf{R} has a FD $A \rightarrow B$, and A is not a superkey. If an instance has 2 rows with same value in A, they must also have same value in B (=> redundancy, if the A-value repeats twice)

redundancy	SSN \rightarrow Name, Address			
	SSN	Name	Address	Hobby
	111	Joe	123 Main	stamps
	111	Joe	123 Main	coins

- If A is a superkey, there cannot be two rows with same value of A
- Hence, BCNF eliminates redundancy

Third Normal Form

- A relational schema \mathbf{R} is in 3NF if for every FD $X \rightarrow Y$ associated with R either:
- $Y \subseteq X$ (i.e., the FD is trivial); or
- X is a superkey of \mathbf{R}; or
- Every $A \in Y$ is part of some key of \mathbf{R}
- 3NF is weaker than BCNF (every schema that is in BCNF is also in 3NF)
- "for each nontrivial FD, either the left side is a superkey or the right side consist of prime attributes only."
- Prime : attribute that is a member of some key

3NF Example

- HasAccount (AcctNum, Clientld, Officeld)
- Clientld, Officeld \rightarrow AcctNum
- OK since LHS contains a key
- AcctNum \rightarrow Officeld
- OK since RHS is part of a key

HasAccount (AcctNum, Clientld, Officeld)

FDs:
Client, Officeld \rightarrow AcctNum
AcctNum \rightarrow Officeld keys:
(Clientld, Officeld)
(AcctNum, Clientld)

- HasAccount is in 3NF but it might still contain redundant information due to AcctNum \rightarrow Officeld (which is not allowed by BCNF)

3NF (Non) Example

- Person (SSN, Name, Address, Hobby)
- (SSN, Hobby) is the only key.
- $S S N \rightarrow$ Name violates 3NF conditions since Name is not part of a key and SSN is not a superkey
- If we decompose Person into
- Person1 (SSN, Name, Addr)
- Hobby(SSN, Hobby)
- Then, these are 3NF and BCNF

Decompositions

- Goal: Eliminate redundancy by decomposing a relation into several relations in a higher normal form
- Decomposition must be lossless: it must be possible to reconstruct the original relation from the relations in the decomposition

Decomposition

- Schema $\mathbf{R}=(R, F)$
- R is a set of attributes
- F is a set of functional dependencies over R
- Each key is described by a FD
- The decomposition of schema \mathbf{R} is a collection of schemas $\mathbf{R}_{\mathrm{i}}=\left(R_{j} \boldsymbol{F}_{i}\right)$ where
- $R=\cup_{i} R_{i}$ for all i (no new attributes)
- \boldsymbol{F}_{i} is a set of functional dependences involving only attributes of R_{i}
- \boldsymbol{F} entails \boldsymbol{F}_{i} for all i (no new $F D$)
- The decomposition of an instance, \mathbf{r}, of \mathbf{R} is a set of relations $\mathbf{r}_{i}=\pi_{R i}(\mathbf{r})$ for all i

Example Decomposition

Schema (R, F) where

$$
\begin{aligned}
& R=\{S S N, \text { Name, Address, Hobby }\} \\
& F=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
$$

can be decomposed into:

$$
\begin{aligned}
& R_{1}=\{S S N, \text { Name, Address }\} \\
& F_{1}=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{2}=\{S S N, \text { Hobby }\} \\
& F_{2}=\{ \}
\end{aligned}
$$

Lossless Schema Decomposition

- A decomposition should not lose information
- A decomposition $\left(\mathbf{R}_{1}, \ldots, \mathbf{R}_{n}\right)$ of a schema, \mathbf{R}, is lossless if every valid instance, \mathbf{r}, of \mathbf{R} can be reconstructed from its components:

$$
\mathbf{r}=\mathbf{r}_{1} \bowtie \mathbf{r}_{2} \bowtie \bowtie \quad \ldots \ldots . \quad \bowtie \begin{aligned}
& \mathbf{r}_{n}
\end{aligned}
$$

where each $\mathbf{r}_{\mathrm{i}}=\pi_{\mathrm{R} i}(\mathbf{r})$

Lossy Decomposition

- The following is always the case (Think why?):

$$
\mathbf{r} \subseteq \mathbf{r}_{1} \quad \bowtie \quad \mathbf{r}_{2} \bowtie<\ldots \quad \ldots \quad \mathbf{r}_{n}
$$

- But the following is not always true:

$$
\mathbf{r} \supseteq \mathbf{r}_{1} \bowtie \mathbf{r}_{2} \bowtie<\ldots \quad \ldots \quad \mathbf{r}_{n}
$$

- Example

SSN	Name	Address
1111 Joe	1 Pine	
2222 Alice	2 Oak	
3333 Alice	3 Pine	

$\nsupseteq \quad \mathrm{r}_{1}$	\bowtie	r_{2}
SSN Name	Name	Address
1111 Joe	Joe	1 Pine
2222 Alice	Alice	2 Oak
3333 Alice	Alice	3 Pine

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join, but not in the original

Lossy Decompositions: What is Actually Lost?

- In the previous example, the tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) were gained, not lost!
- Why do we say that the decomposition was lossy?
- What was lost is information:
- That 2222 lives at 2 Oak: In the decomposition, 2222 can live at either 2 Oak or 3 Pine
- That 3333 lives at 3 Pine: In the decomposition, 3333 can live at either 2 Oak or 3 Pine

Testing for Losslessness

- A (binary) decomposition of $\mathbf{R}=(R, \boldsymbol{F})$ into $\mathbf{R}_{1}=\left(R_{1}, \boldsymbol{F}_{1}\right)$ and $\mathbf{R}_{2}=\left(R_{2}, F_{2}\right)$ is lossless if and only if :
- either the FD
- $\left(R_{1} \cap R_{2}\right) \rightarrow R_{1}$ is in F^{+}
- or the FD
- $\left(R_{1} \cap R_{2}\right) \rightarrow R_{2}$ is in \boldsymbol{F}^{+}

Example

Schema (R, F) where

$$
\begin{aligned}
& R=\{S S N, \text { Name, Address, Hobby }\} \\
& F=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
$$

can be decomposed into:

$$
\begin{aligned}
& R_{1}=\{S S N, \text { Name, Address }\} \\
& F_{1}=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{2}=\{S S N, \text { Hobby }\} \\
& F_{2}=\{ \}
\end{aligned}
$$

Since $R_{1} \cap R_{2}=S S N$ and SSN $\rightarrow R_{1}$ the decomposition is lossless

Intuition Behind the Test for Losslessness

- Suppose $R_{1} \cap R_{2} \rightarrow R_{2}$. Then a row of \mathbf{r}_{1} can combine with exactly one row of \mathbf{r}_{2} in the natural join (since in \mathbf{r}_{2} a particular set of values for the attributes in $R_{1} \cap R_{2}$ defines a unique row)

Tuple Structure in a Lossless Binary Decomposition

FIGURE 6.6 Tuple structure in a lossless binary decomposition: a row of \mathbf{r}_{1} combines with exactly one row of \mathbf{r}_{2}.

Proof of Lossless Condition

$-\mathbf{r} \subseteq \mathbf{r}_{1} \bowtie \mathbf{r}_{2} \quad-$ this is true for any decomposition
$-\mathbf{r} \supseteq \mathrm{r}_{1} \bowtie \mathrm{r}_{2}$
If $R_{1} \cap R_{2} \rightarrow R_{2}$ then $\operatorname{card}\left(\mathbf{r}_{1} \bowtie \mathbf{r}_{2}\right)=\operatorname{card}\left(\mathbf{r}_{1}\right)$
(since each row of r_{1} joins with exactly one row of r_{2})
But card $(\mathbf{r}) \geq \operatorname{card}\left(\mathbf{r}_{\mathbf{1}}\right)$ (since \mathbf{r}_{1} is a projection of \mathbf{r}) and therefore $\operatorname{card}(\mathbf{r}) \geq \operatorname{card}\left(\mathbf{r}_{1} \bowtie \mathbf{r}_{2}\right)$

Hence $\mathbf{r}=\mathbf{r}_{1} \bowtie \mathbf{r}_{2}$

Dependency Preservation

- Consider a decomposition of $\mathbf{R}=(\boldsymbol{R}, \boldsymbol{F})$ into $\mathbf{R}_{1}=\left(R_{1}, \boldsymbol{F}_{1}\right)$ and $\mathbf{R}_{2}=\left(R_{2}, \boldsymbol{F}_{2}\right)$
- An FD $X \rightarrow Y$ of F^{+}is in F_{i} iff $X \cup Y \subseteq R_{i}$
- An FD, $f \in \boldsymbol{F}^{+}$may be in neither \boldsymbol{F}_{1}, nor \boldsymbol{F}_{2}, nor even $\left(\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}\right)^{+}$
- Checking that f is true in \mathbf{r}_{1} or \mathbf{r}_{2} is (relatively) easy
- Checking f in $\mathbf{r}_{1} \bowtie \mathbf{r}_{2}$ is harder - requires a join
- Ideally: want to check FDs locally, in \mathbf{r}_{1} and \mathbf{r}_{2}, and have a guarantee that every $f \in F$ holds in $\mathbf{r}_{1} \bowtie \boldsymbol{r}_{2}$
- The decomposition is dependency preserving iff the sets \boldsymbol{F} and $\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}$ are equivalent: $\boldsymbol{F}^{+}=\left(\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}\right)^{+}$
- Then checking all FDs in \boldsymbol{F}, as \mathbf{r}_{1} and \mathbf{r}_{2} are updated, can be done by checking \boldsymbol{F}_{1} in \mathbf{r}_{1} and \boldsymbol{F}_{2} in \mathbf{r}_{2}

Dependency Preservation

- If f is an FD in \boldsymbol{F}, but f is not in $\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}$, there are two possibilities:
- $f \in\left(\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}\right)^{+}$
- If the constraints in \boldsymbol{F}_{1} and \boldsymbol{F}_{2} are maintained, f will be maintained automatically.
- $f \notin\left(F_{1} \cup F_{2}\right)^{+}$
- f can be checked only by first taking the join of \mathbf{r}_{1} and \mathbf{r}_{2}. This is costly.
- Incur additional runtime overhead of constraint maintenance

Example

Schema (R, F) where

$$
\begin{aligned}
& R=\{S S N, \text { Name, Address, Hobby }\} \\
& F=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
$$

can be decomposed into:

$$
\begin{aligned}
& R_{1}=\{S S N, \text { Name, Address }\} \\
& F_{1}=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{2}=\{S S N, \text { Hobby }\} \\
& F_{2}=\{ \}
\end{aligned}
$$

Since $F=F_{1} \cup F_{2}$ the decomposition is dependency preserving

Example

- Schema: $(A B C ; \boldsymbol{F}), \boldsymbol{F}=\{A \rightarrow B, B \rightarrow C, C \rightarrow B\}$
- Decomposition:
- $\left(A C, F_{1}\right), F_{1}=\{A \rightarrow C\}$
- Note: $A \rightarrow C \notin \boldsymbol{F}$, but in \boldsymbol{F}^{+}
- $\left(B C, F_{2}\right), F_{2}=\{B \rightarrow C, C \rightarrow B\}$
- $A \rightarrow B \notin\left(F_{1} \cup F_{2}\right)$, but $A \rightarrow B \in\left(F_{1} \cup F_{2}\right)^{+}$.
- So $F^{+}=\left(F_{1} \cup F_{2}\right)^{+}$and thus the decompositions is still dependency preserving

Example

- HasAccount (AcctNum, Clientld, Officeld)
f_{1} : AcctNum \rightarrow Officeld
f_{2} : Clientld, Officeld \rightarrow AcctNum
- Decomposition:

$$
\begin{aligned}
& R_{1}=(\text { AcctNum }, \text { Officeld; }\{\text { AcctNum } \rightarrow \text { Officeld }\}) \\
& R_{2}=(\text { AcctNum, Clientld; }\{ \})
\end{aligned}
$$

- Decomposition is lossless: $R_{1} \cap R_{2}=\{$ AcctNum $\}$ and AcctNum \rightarrow Officeld (i.e. R_{1})
- In BCNF
- Not dependency preserving: $f_{2} \notin\left(\boldsymbol{F}_{1} \cup \boldsymbol{F}_{2}\right)^{+}$
- HasAccount does not have BCNF decompositions that are both lossless and dependency preserving! (check by enumeration)
- Hence: "BCNF + lossless + dependency preserving" decompositions are not always achievable!

BCNF Decomposition Algorithm

Input: $\mathrm{R}=(\mathrm{R} ; F)$
Decomp := R
while there is $\mathbf{S}=\left(S ; \boldsymbol{F}^{\prime}\right) \in$ Decomp and \mathbf{S} not in BCNF do
Find $X \rightarrow Y \in F^{\prime}$ that violates BCNF // i.e., X isn't a superkey in S
Replace S in Decomp with $S_{1}=\left(X Y ; F_{1}\right), S_{2}=\left(S-(Y-X) ; F_{2}\right)$
$/ / F_{1}=$ all FDs of F^{\prime} involving only attributes of $X Y$
$/ / F_{2}=$ all FDs of F^{\prime} involving only attributes of $S-(Y-X)$
end
return Decomp

Simple Example

- HasAccount:
(Clientld, Officeld, AcctNum) Clientld,Officeld \rightarrow AcctNum
AcctNum \rightarrow Officeld
- Decompose using AcctNum \rightarrow Officeld:
(Officeld, AcctNum)
BCNF: AcctNum is key
FD: AcctNum \rightarrow Officeld
(Clientld, AcctNum)
BCNF (only trivial FDs)

A Larger Example

Given: $\mathrm{R}=(R ; F)$ where $R=A B C D E G H K$ and

$$
F=\{A B H \rightarrow C, A \rightarrow D E, B G H \rightarrow K, K \rightarrow A D H, B H \rightarrow G E\}
$$

Step 1: Find a FD that violates BCNF
Not $A B H \rightarrow C$ since $(A B H)^{+}$includes all attributes (BH is a key)
$A \rightarrow D E$ violates BCNF since A is not a superkey $\left(A^{+}=A D E\right)$
Step 2: Split R into:
$\mathrm{R}_{1}=\left(A D E, F_{1}=\{A \rightarrow D E\}\right)$
$\mathrm{R}_{2}=\left(A B C G H K ; F_{2}=\{A B H \rightarrow C, B G H \rightarrow K, K \rightarrow A H, B H \rightarrow G\}\right)$
Note 1: R_{1} is in BCNF
Note 2: Decomposition is lossless since A is a key of R_{1}.
Note 3: FDs $K \rightarrow D$ and $B H \rightarrow E$ are not in F_{1} or F_{2}. But both can be derived from $F_{1} \cup F_{2}$ (E.g., $K \rightarrow A$ and $A \rightarrow D$ implies $K \rightarrow D$)

Hence, decomposition is dependency preserving.

Example (con't)

Given: $\mathrm{R}_{2}=(A B C G H K ;\{A B H \rightarrow C, B G H \rightarrow K, K \rightarrow A H, B H \rightarrow G\})$
step 1: Find a FD that violates BCNF.
Not $A B H \rightarrow C$ or $B G H \rightarrow K$, since $B H$ is a key of R_{2} $K \rightarrow A H$ violates BCNF since K is not a superkey ($K^{+}=A H K$)
step 2: Split R_{2} into:

$$
\begin{aligned}
& \mathrm{R}_{21}=\left(K A H, F_{21}=\{K \rightarrow A H\}\right) \\
& \mathrm{R}_{22}=\left(B C G K ; F_{22}=\{ \}\right)
\end{aligned}
$$

Note 1: Both R_{21} and R_{22} are in BCNF. Note 2: The decomposition is lossless (since K is a key of R_{21}) Note 3: FDs $A B H \rightarrow C, B G H \rightarrow K, B H \rightarrow G$ are not in F_{21} or F_{22}, and they can't be derived from $F_{1} \cup F_{21} \cup F_{22}$. Hence the decomposition is not dependency-preserving

Properties of BCNF Decomposition Algorithm

Let $X \rightarrow Y$ violate BCNF in $\mathbf{R}=(R, F)$ and $\mathbf{R}_{\mathbf{1}}=\left(R_{1}, \boldsymbol{F}_{1}\right)$,
$\mathbf{R}_{\mathbf{2}}=\left(R_{2}, F_{2}\right)$ is the resulting decomposition. Then:

- There are fewer violations of BCNF in $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ than there were in \mathbf{R}
- $X \rightarrow Y$ implies X is a key of \mathbf{R}_{1}
- Hence $X \rightarrow Y \in \boldsymbol{F}_{1}$ does not violate BCNF in R_{1} and, since $X \rightarrow Y \notin \boldsymbol{F}_{2}$, does not violate BCNF in $\mathbf{R}_{\mathbf{2}}$ either
- Suppose $f: X^{\prime} \rightarrow Y^{\prime} \in \boldsymbol{F}$ doesn't violate BCNF in \boldsymbol{R}. If $f \in \boldsymbol{F}_{1}$ or \boldsymbol{F}_{2} it does not violate BCNF in \mathbf{R}_{1} or $\mathbf{R}_{\mathbf{2}}$ either since X^{\prime} is a superkey of \mathbf{R} and hence also of $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$.

Properties of BCNF Decomposition Algorithm

- A BCNF decomposition is not necessarily dependency preserving
- But always lossless:

$$
\text { since } R_{1} \cap R_{2}=X, \quad X \rightarrow Y, \text { and } R_{1}=X Y
$$

- BCNF+lossless+dependency preserving is sometimes unachievable (recall HasAccount)

Third Normal Form

- A relational schema \mathbf{R} is in 3NF if for every FD $X \rightarrow Y$ associated with R either:
- $Y \subseteq X$ (i.e., the FD is trivial); or
- X is a superkey of \mathbf{R}; or
- Every $A \in Y$ is part of some key of \mathbf{R}

- $3 N F$ is weaker than BCNF (every schema that is in BCNF is also in 3NF)
- Compromise - Not all redundancy removed, but dependency preserving decompositions are always possible (and, of course, lossless)
- 3NF decomposition is based on a minimal cover

Minimal Cover

- A minimal cover of a set of dependencies, \boldsymbol{F}, is a set of dependencies, \boldsymbol{U}, such that:
- U is equivalent to $F \quad\left(F^{+}=U^{+}\right)$
- All FDs in \boldsymbol{U} have the form $X \rightarrow A$ where A is a single attribute
- It is not possible to make \boldsymbol{U} smaller (while preserving equivalence) by
- Deleting an FD
- Deleting an attribute from an FD (either from LHS or RHS)
- FDs and attributes that can be deleted in this way are called redundant FD
- Redundant attributes can be defined similarly.

Computing Minimal Cover

- Example: $\boldsymbol{F}=\{A B H \rightarrow C K, A \rightarrow D, C \rightarrow E$,

$$
B G H \rightarrow L, L \rightarrow A D, E \rightarrow L, B H \rightarrow E\}
$$

- Step 1: Make RHS of each FD into a single attribute
- Algorithm: Use the decomposition inference rule for FD
- Example: $L \rightarrow A D$ replaced by $L \rightarrow A, L \rightarrow D ; A B H \rightarrow C K$ by $A B H$ $\rightarrow C, A B H \rightarrow K$
- Step 2: Eliminate redundant attributes from LHS.
- Algorithm: If $\mathrm{FD} X B \rightarrow A \in F$ (where B is a single attribute) and $X \rightarrow A$ is entailed by F, then B was unnecessary
- Example: Can an attribute be deleted from $A B H \rightarrow C$?
- Compute $\mathrm{AB}^{+}{ }_{r} \mathrm{AH}^{+}{ }_{r,} \mathrm{BH}^{+}$.
- Since $C \in(B H)^{+}{ }_{F}, B H \rightarrow C$ is entailed by F and A is redundant in $A B H \rightarrow$ C.

Computing Minimal Cover (con’t)

- Example (con'd):
- $\boldsymbol{F}=\{B H \rightarrow C, B H \rightarrow K, A \rightarrow D, C \rightarrow E, B G H \rightarrow L$,

$$
L \rightarrow A, L \rightarrow D, E \rightarrow L, B H \rightarrow E\}
$$

- Step 3: Delete redundant FDs from F
- Algorithm: If \boldsymbol{F} - $\{f\}$ entails f, then f is redundant
- If f is $X \rightarrow A$ then check if $\mathrm{A} \in X^{+}{ }_{\text {- }-f f}$
- Example: $B G H \rightarrow L$ is entailed by $B H \rightarrow E$ and $E \rightarrow L$, so it is redundant
- Note: The order of steps 2 and 3 cannot be interchanged!!

Synthesizing a 3NF Schema

- Starting with a schema $\mathbf{R}=(R, F)$
- Step 1: Compute a minimal cover, \boldsymbol{U}, of \boldsymbol{F}.
- The decomposition is based on \boldsymbol{U}, but since $\boldsymbol{U}^{+}=\boldsymbol{F}^{+}$the same functional dependencies will hold
- A minimal cover for

$$
F=\{A B H \rightarrow C K, A \rightarrow D, C \rightarrow E, B G H \rightarrow L, L \rightarrow A D, E \rightarrow L, B H \rightarrow E\}
$$ is

$U=\{B H \rightarrow C, B H \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\}$

Synthesizing a 3NF schema (con't)

- Step 2: Partition \boldsymbol{U} into sets $\boldsymbol{U}_{1}, \boldsymbol{U}_{2}, \ldots \boldsymbol{U}_{n}$ such that the LHS of all elements of \boldsymbol{U}_{i} are the same
- $U_{1}=\{B H \rightarrow C, B H \rightarrow K\}, U_{2}=\{A \rightarrow D\}$,

$$
U_{3}=\{C \rightarrow E\}, U_{4}=\{L \rightarrow A\}, U_{5}=\{E \rightarrow L\}
$$

- Step 3: For each \boldsymbol{U}_{i}, form schema $\mathbf{R}_{\mathbf{i}}=\left(R_{i j} \boldsymbol{U}_{i}\right)$, where R_{i} is the set of all attributes mentioned in \boldsymbol{U}_{i}
- Each FD of \boldsymbol{U} will be in some $\mathbf{R}_{\mathbf{i}}$. Hence the decomposition is dependency preserving
- $\mathbf{R}_{\mathbf{1}}=(B H C K ; B H \rightarrow C, B H \rightarrow K), \mathbf{R}_{\mathbf{2}}=(A D ; A \rightarrow D)$,
$\mathbf{R}_{\mathbf{3}}=(C E ; C \rightarrow E), \mathbf{R}_{\mathbf{4}}=(A L ; L \rightarrow A), \mathbf{R}_{\mathbf{5}}=(E L ; E \rightarrow L)$

Synthesizing a 3NF schema (con't)

- Step 4: If no R_{i} is a superkey of \mathbf{R}, add schema $\mathbf{R}_{0}=\left(R_{0},\{ \}\right)$ where R_{0} is a key of \mathbf{R}.
- $\mathbf{R}_{0}=(B G H,\{ \})$
- R_{0} might be needed when not all attributes are necessarily contained in $R_{1} \cup R_{2} \ldots \cup R_{n}$
- a missing attribute, A, must be part of all keys (since it's not in any FD of U, deriving a key constraint from U involves the augmentation axiom)
- $\mathbf{R}_{\mathbf{0}}$ might be needed even if all attributes are accounted for in $R_{1} \cup R_{2}$
... $\cup R n$
- Example: (ABCD; $\{A \rightarrow B, C \rightarrow D\}$).
- Step 3 decomposition: $\mathrm{R} 1=(A B ;\{A \rightarrow B\}), R 2=(C D ;\{C \rightarrow D\})$. Lossy! Need to add (AC; \{ \}), for losslessness
- Step 4 guarantees lossless decomposition.

BCNF Design Strategy

- The resulting decomposition, $\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{\mathbf{1}}, \ldots \mathbf{R}_{\mathrm{n}}$, is
- Dependency preserving (since every FD in U is a FD of some schema)
- Lossless (although this is not obvious)
- In 3NF (although this is not obvious)
- Strategy for decomposing a relation
- Use 3NF decomposition first to get lossless, dependency preserving decomposition
- If any resulting schema is not in BCNF, split it using the BCNF algorithm (but this may yield a non-dependency preserving result)

Normalization Drawbacks

- By limiting redundancy, normalization helps maintain consistency and saves space
- But performance of querying can suffer because related information that was stored in a single relation is now distributed among several
- Example: A join is required to get the names and grades of all students taking CS305 in S2002.

SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id = T.StudId AND
T.CrsCode = ‘CS305’ AND T.Semester = ‘S2002’

Denormalization

- Tradeoff: Judiciously introduce redundancy to improve performance of certain queries
- Example: Add attribute Name to Transcript

```
SELECT T.Name, T.Grade
FROM Transcript' T
WHERE T.CrsCode = `CS305` AND T.Semester = `S2002'
```

- Join is avoided
- If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance
- But, Transcript' is no longer in BCNF since key is (Studld, CrsCode, Semester) and Studld \rightarrow Name

Additional note on BCNF and 3NF Synthesis

- Pitfalls: Relations $\mathbf{R}_{\mathbf{i}}$ with $\mathrm{FDs} \mathrm{G}_{\mathrm{i}}$ from 3NF synthesis are also in BCNF
- Tempted because FDs used for creating each relation are based on super keys
- However, $\mathbf{R}_{\mathbf{i}}$ can only guarantee the $\mathrm{FDs}^{\text {in }} \mathrm{G}_{\mathrm{i}}$, and cannot entail all FDs in G^{+}
- Example
- $\mathbf{R}=\{$ AcctNum, Clientld, Officeld, DateOpened $\}$
- $\mathrm{F}=\{$ Clientld, Officeld \rightarrow AcctNum, AcctNum \rightarrow Officeld, DateOpened $\}$
- Through 3NF synthesis, we get

Not in BCNF

- $R_{1}=(\{C l i e n t l d$, Officeld, AcctNum\}, \{Clientld, Officeld \rightarrow AcctNum\})
- $\mathrm{R}_{2}=(\{$ AcctNum, Officeld, DateOpened $\},\{$ AcctNum \rightarrow Officeld, DateOpened $\})$
- Need to compute $\pi_{R_{i}}(G)$ and look for the violators there!!!

BCNF Decomposition from 3NF Synthesis

- Attributes
- St (student), C (course), Sem (semester), P (professor), T (time), R (room)
- FDs
- St C Sem $\rightarrow P$
- P Sem $\rightarrow C$
- C Sem $T \rightarrow P$
- $P \operatorname{Sem} T \rightarrow C R$
- PSem CT $\rightarrow R$
- $P \operatorname{Sem} T \rightarrow C$

BCNF Decomposition from 3NF Synthesis

- Minimal Cover Step 1.
- St C Sem \rightarrow P
- P Sem $\rightarrow C$
- CSem $T \rightarrow P$
- $-P \operatorname{Sem} T \rightarrow C R$
- $P \operatorname{Sem} T \rightarrow C$ (decomposition)
- PSem $T \rightarrow R$ (decomposition)
- PSem CT \rightarrow R
- $-P$ Sem $T \rightarrow C$ (duplicate)
- Let F denote this set.

BCNF Decomposition from 3NF Synthesis

- Minimal Cover Step 2.
- FD1. St C Sem \rightarrow P
- FD2. P Sem $\rightarrow C$
- FD3. CSem $T \rightarrow P$
- PSemT \rightarrow CR
- FD4.PSem $T \rightarrow C$ (decomposition)
- FD5. P Sem $T \rightarrow R$ (decomposition)
- PSemCI \rightarrow R
- PSem T \rightarrow R (reduced and this is duplicate. So, discard)
- $-P$ Sem $T \rightarrow C$ (duplicate)
- e.g., check for the first FD, (St C) ${ }^{+}$, (St Sem) $)^{+}$, (C Sem) ${ }^{+}$
- no redundant attribute in the first FD
- (P Sem T) ${ }^{+}=$P Sem C T R

BCNF Decomposition from 3NF Synthesis

- Minimal Cover Step 3.
- FD1. St C Sem $\rightarrow P$
- FD2. P Sem $\rightarrow \boldsymbol{C}$
- FD3. C Sem $T \rightarrow P$
- FD4. P Sem $I \rightarrow C$ (decomposition)
- FD5. P Sem $T \rightarrow R$ (decomposition)
- Search for Removable redundant FDs
- $(\text { St C Sem })_{\{F-F D 1\}}^{+}=($St C Sem $)$
- So, FD1 cannot be removed.
- Nor for FD 2,3,5
- FD4 is redundant (because of FD2)

BCNF Decomposition from 3NF Synthesis

- 3NF decomposition from the minimal Cover
- (St C Sem P; St C Sem \rightarrow P) ;include P Sem C
- (P Sem C; P Sem $\rightarrow C$)
- ($(C \operatorname{Sem} T P ; C \operatorname{Sem} T \rightarrow P) \quad$ include $P \operatorname{Sem} C$
- (PSem TR; PSem $T \rightarrow R$)
- Super key in any of above? No
- Add $R_{0}=(S t ~ T$ Sem P; \{\}) \leftarrow this is one possibility
- Are these all in BCNF?
- First and third are not because of the FD "P Sem $\rightarrow C$ " in the second.
- Remember that we have to check all the dependencies over the attributes of R_{i} that are implied by the original set of dependencies G. i.e., $\pi_{R_{i}}(G)$
- First is decomposed into: $(P$ Sem $C ; P \operatorname{Sem} \rightarrow C),(P$ Sem St; $\{ \}):$ St C Sem $\rightarrow P$ is not preserved
- Third is decomposed into: $(P \operatorname{Sem} C ; P \operatorname{Sem} \rightarrow C),(P \operatorname{Sem} T ;\{ \}): C \operatorname{Sem} T \rightarrow P$ is not preserved.

Fourth Normal Form

Person

- Relation has redundant data
- In BCNF (since there are no non-trivial FDs)
- Redundancy is due to set valued attributes (in the E-R sense), not because of the FDs

Multi-Valued Dependency

- Problem: multi-valued (or binary join) dependency
- Definition: If every instance of schema R can be (losslessly) decomposed using attribute sets (X, Y) such that:

$$
\mathbf{r}=\pi_{X}(\mathbf{r}) \bowtie \quad \pi_{Y}(\mathbf{r})
$$

- then a multi-valued dependency

$$
\mathbf{R}=\pi_{X}(\mathbf{R}) \bowtie \pi_{Y}(\mathbf{R}) \text { holds in } \mathbf{r}
$$

- Ex: Person $=\pi_{S S N, P h o n e N}($ Person $) \bowtie \pi_{S S N, C h i l d S S N}($ Person $)$

Fourth Normal Form (4NF)

- A schema is in fourth normal form (4NF), if for every MVD $R=X \bowtie Y$
in that schema is either:
- $X \subseteq Y$ or $Y \subseteq X$ (trivial case); or
- $X \cap Y$ is a superkey of R (i.e., $X \cap Y \rightarrow R$)

Fourth Normal Form (Cont'd)

- Intuition: if $X \cap Y \rightarrow R$, there is a unique row in relation r for each value of $X \cap Y$ (hence no redundancy)
- Ex: SSN does not uniquely determine PhoneN or ChildSSN, thus Person is not in 4NF.
- Solution: Decompose R into X and Y
- Decomposition is lossless - but not necessarily dependency preserving (since 4NF implies BCNF - next)

4NF Implies BCNF

- Suppose R is in 4NF and $X \rightarrow Y$ is a FD.
- Assume X and Y are disjoint
- $R_{1}=X Y, R_{2}=R-Y$ is a lossless decomposition of R
- Thus R has the MVD: $R=R_{1} \bowtie R_{2}$
- Since R is in 4NF, one of the following must hold :
- $X Y \subseteq R-Y$
- (an impossibility)
- $R-Y \subseteq X Y$
- (i.e., $R=X Y$ and X is a superkey)
- $X Y \cap R-Y(=X)$ is a superkey
- Hence, $X \rightarrow Y$ satisfies BCNF condition

4NF Decomposition Algorithm

For simplicity, assume A and B are disjoint for $F D s A \rightarrow B$ in R
Input: $\mathrm{R}=(\bar{R} ; \mathcal{D}) \quad / \star \mathcal{D}$ is a set of FDs and MVDs; FDs are treated as MVDs */ Output: A lossless decomposition of \mathbf{R} where each schema is in 4 NF .

Decomposition := $\{\mathbf{R}\} \quad / *$ Initially decomposition consists of only one schema */ while there is a schema $S=\left(\bar{S} ; \mathcal{D}^{\prime}\right)$ in Decomposition that is not in 4 NF do
$/^{*}$ Let $\bar{X} \bowtie \bar{Y}$ be an MVD in \mathcal{D}^{+}such that $\bar{X} \bar{Y} \subseteq \bar{S}$ and it violates 4NF in S. Decompose using this MVD */
Replace \mathbf{S} in Decomposition with schemas $\mathbf{S}_{1}=\left(\bar{X} \bar{Y} ; \mathcal{D}_{1}^{\prime}\right)$ and
end

$$
\mathbf{S}_{2}=\left((\bar{S}-\bar{Y}) \cup \bar{X} ; \mathcal{D}_{2}^{\prime}\right) \text {, where } \mathcal{D}_{1}^{\prime}=\pi_{\bar{X}} \bar{Y}^{\left(\mathcal{D}^{\prime}\right)} \text { and } \mathcal{D}_{2}^{\prime}=\pi_{(\bar{S}-\bar{Y})} \cup \bar{X}^{\left(\mathcal{D}^{\prime}\right)}
$$

return Decomposition
The algorithm is not correct. S1 and S2 should be
S1 = (X; D1')
S2 = (Y; D2);
Otherwise, X join Y should be replaced to $X-\gg Y$. (See slide 88) If $X-\gg Y, R=X Y$ join $X(R-Y)$

Projection of MVD on a Set of Attributes

- Projection of MVD R $=V \bowtie W$ on a set of attributes X
- $X=(X \cap V) \bowtie(X \cap W)$, if $V \cap W \subseteq X$
- Undefined, otherwise.
- Example
- Projection of MVD: $A B C D=A B \bowtie B C D$ on $A B C$
- $A B \cap B C D=B \subseteq A B C$. So, the projection is $A B \bowtie B C$
- Projection of MVD: $A B C D=A C D \bowtie B D$ on $A B C$
- $A C D \cap B D=D \not \ddagger A B C$. So, the projection is undefined.

4NF Decomposition Example

- Example
- Attributes $=\{A B C D\}$
- MVDs
- MVD1. $A B C D=A B \bowtie B C D$
- MVD2. $A B C D=A C D \bowtie B D$
- MVD3. $A B C D=A B C \bowtie B C D$
- From MVD1, decomposed to $A B, B C D$
- Projection of remaining MVDs on $A B$ is not defined
- Projection of remaining MVDs on $B C D$ is:
- For MVD2, BCD = CD円BD
- For MVD3, $B C D=B C \bowtie B C D$ (trivial)
- Finally, $A B, B D, C D$

3NF Synthesis, BNCF, and 4NF Decomposition

- Example
- Attributes $=\{A B C D E F G\}$
- $\mathrm{FDs}=\{A B \rightarrow C, C \rightarrow B, B C \rightarrow D E, E \rightarrow F G\}$
- MVDs: $\mathrm{R}=\mathrm{BC} \bowtie A B D E F G, R=E F \bowtie F G A B C D$
- 3NF Synthesis result
- $R_{1}=(A B C ;\{A B \rightarrow C, \underline{C \rightarrow B}\})$
- $R_{2}=(C B D E ;\{C \rightarrow B D E\})$
- $R_{3}=(E F G ;\{E \rightarrow F G\})$
- R_{1} is not in BCNF due to $C \rightarrow B$
- $R_{11}=(B C ;\{C \rightarrow B\}), R_{12}=(A C ;\{ \})$

3NF Synthesis \& 4NF Decomposition (cont')

- Example
- BCNF Synthesis result
- $R_{11}=(A C ;\{ \}), R_{12}=(B C ;\{C \rightarrow B\})$
- $R_{2}=(C B D E ;\{C \rightarrow B D E\}), R_{3}=(E F G ;\{E \rightarrow F G\})$
- MVDs: $\mathrm{R}=\mathrm{BC} \bowtie \mathrm{ABDEFG}, \mathrm{R}=\mathrm{EF} \bowtie F \mathrm{FABCD}$
- The first MVD can be projected to R_{2} (here, $\mathrm{B}=\mathrm{V} \cap \mathrm{W} \subseteq \mathrm{CBDE}$)
- then, "projected R_{2} " $=B C \bowtie B D E$. Is R_{2} in $4 N F$?
- No! because $B C \cap B D E=B$ and B is not the key
- $R_{21}=(B C ;\{C \rightarrow B\}), R_{22}=(B D E ;\{ \})$
- Similarly, the second MVD can be projected to R_{3}
(here, $\mathrm{F}=\mathrm{V} \cap \mathrm{W} \subseteq \mathrm{EFG}$)
- then, "projected R_{3} " $=E F \bowtie F G$. Is R_{3} in 4NF?
- No! because $E F \cap F G=F$ and F is not the key
- $R_{31}=(E F ;\{E \rightarrow F\}), R_{22}=(G F ;\{ \})$

Customary Representation of MVDs

- Customary representation of MVDs
- MVD R = V \bowtie W over $R=(R ; D)$, where
- $X=V \cap W$
- $X \cup Y=V$ or $X \cup Y=W$
are represented as $X \rightarrow Y$
- i.e., $R=X Y \bowtie X(R-Y)$
- Another way of defining MVD in a relation
- $X \rightarrow Y$ then,
- \forall tuple $t, u \in R: t[X]=u[X]$. then \exists tuple $v \in R$ where
- $v[X]=t[X]$ and
- $v[Y]=t[Y]$ and
- $v[r e s t]=u[r e s t]$

Examples

- Apply (SSN, college, hobby)
- SSN \rightarrow college
- Apply (SSN, college, date, major)
- Requirements
- Apply once to each college
- May apply to multiple majors
- We can derive...
- SSN, college \rightarrow date, major / date \rightarrow college
- SSN \rightarrow college, date
- What is the real world constraint encoded by the MVD above?
- A student must apply to the same set of majors at all colleges.

4NF Decomposition Algorithm (Rewritten)

Input: relation R + FDs for R + MVDs for R
Output: decomposition of R into 4NF relations with "lossless join"

Compute keys for R Repeat until all relations are in 4NF: Pick any R^{\prime} with nontrivial $A \rightarrow B$ that violates 4NF Decompose R^{\prime} into $R_{1}(A, B)$ and $R_{2}(A$, rest)
Compute FDs and MVDs for R_{1} and R_{2}
Compute keys for R_{1} and R_{2}

