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Query Processing Example 

 Select B,D 
 From R,S 
 Where R.A = “c”  ∧  S.E = 2  ∧  R.C=S.C 

Peter Bailis’s slides 
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   R A B C     S  C D E 

 a 1 10  10 x 2 

 b 1 20  20 y 2 

 c 2 10  30 z 2 

 d 2 35  40 x 1 

 e 3 45  50 y 3 

Peter Bailis’s slides 

Example cont. 
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   R A B C     S  C D E 

 a 1 10  10 x 2 

 b 1 20  20 y 2 

 c 2 10  30 z 2 

 d 2 35  40 x 1 

 e 3 45  50 y 3 

Answer B     D 
  2      x 

Peter Bailis’s slides 

Example cont. 
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How do we execute query? 

      
    - Do Cartesian product 
    - Select tuples 
    - Do projection 

One idea 

Peter Bailis’s slides 
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RXS  R.A R.B R.C S.C S.D S.E 

    a   1  10  10   x   2 

    a   1  10  20   y   2 
    . 
    . 

    C   2  10  10   x   2 
    . 
    . 

Peter Bailis’s slides 
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RXS  R.A R.B R.C S.C S.D S.E 

    a   1  10  10   x   2 

    a   1  10  20   y   2 
    . 
    . 

    C   2  10  10   x   2 
    . 
    . 

Bingo! 

Got one... 

Peter Bailis’s slides 
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Relational Algebra - can be used to 
       describe plans... 

    ΠB,D 
     

     σR.A=“c”∧ S.E=2 ∧ R.C=S.C 

 
     X 
   R  S 
 
OR:  ΠB,D [ σR.A=“c”∧ S.E=2 ∧ R.C = S.C (RXS)] 

Peter Bailis’s slides 

Plan I 
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Another idea: 

 
    ΠB,D  
 

    σR.A = “c”  σS.E = 2 
 
   R    S 

Plan II 

            natural join 

Peter Bailis’s slides 
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   R             S 

A  B  C σ (R)  σ(S)     C  D  E 

a  1  10        A   B  C       C  D  E     10  x  2 
b  1  20 c   2  10     10  x  2     20  y  2 
c  2  10         20  y  2     30  z  2 
d  2  35         30  z  2     40  x  1 
e  3  45                                         50  y  3 
  

Peter Bailis’s slides 
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Plan III: Utilizing Index 
 

Peter Bailis’s slides 

Use R.A and S.C Indexes 
 (1) Use R.A index to select R tuples with R.A = “c” 
 (2) For each R.C value found, use S.C index to find 

matching tuples 
 

 (3) Eliminate S tuples S.E ≠ 2 
 (4) Join matching R,S tuples, project B,D attributes 

and place in result 
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   R             S 

A  B  C        C  D  E 

a  1  10                    10  x  2 
b  1  20        20  y  2 
c  2  10               30  z  2 
d  2  35               40  x  1 
e  3  45                                         50  y  3 
  

A C 
I1 I2 

Peter Bailis’s slides 
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   R             S 

A  B  C        C  D  E 

a  1  10                    10  x  2 
b  1  20        20  y  2 
c  2  10               30  z  2 
d  2  35               40  x  1 
e  3  45                                         50  y  3 
  

A C 
I1 I2 

=“c” 

<c,2,10> 

Peter Bailis’s slides 

(1) Use R.A index to select R tuples with R.A = “c” 
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   R             S 

A  B  C        C  D  E 

a  1  10                    10  x  2 
b  1  20        20  y  2 
c  2  10               30  z  2 
d  2  35               40  x  1 
e  3  45                                         50  y  3 
  

A C 
I1 I2 

=“c” 

<c,2,10> <10,x,2> 

Peter Bailis’s slides 

(2) For each R.C value found, use S.C index to 
find matching tuples 
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   R             S 

A  B  C        C  D  E 

a  1  10                    10  x  2 
b  1  20        20  y  2 
c  2  10               30  z  2 
d  2  35               40  x  1 
e  3  45                                         50  y  3 
  

A C 
I1 I2 

=“c” 

<c,2,10> <10,x,2> 
check=2? 

output: <2,x> 

Peter Bailis’s slides 

(3) Eliminate S tuples S.E ≠ 2 
(4) Join matching R,S tuples, project B,D attributes and place 
in result 
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   R             S 

A  B  C        C  D  E 

a  1  10                    10  x  2 
b  1  20        20  y  2 
c  2  10               30  z  2 
d  2  35               40  x  1 
e  3  45                                           50  y  3 
  

A C 
I1 I2 

=“c” 

<c,2,10> <10,x,2> 
check=2? 

output: <2,x> 

next tuple: 
<c,7,15> 

Peter Bailis’s slides 



External Sorting 

 Sorting is used in implementing many relational 
operations 
 

 Problem:  
 Relations are typically large, do not fit in main memory 
 So cannot use traditional in-memory sorting algorithms 

 Approach used: 
 Combine in-memory sorting with clever techniques aimed at 

minimizing I/O 
 I/O costs dominate => cost of sorting algorithm is measured in 

the number of page transfers 
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Peter Bailis’s slides 



External Sorting (cont’d) 

 External sorting has two main components: 
 Computation involved in sorting records in buffers in main 

memory 
 I/O necessary to move records between mass store and main 

memory 
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Simple Sort Algorithm 
 M = number of main memory page buffers 
 F = number of pages in file to be sorted 
 Typical algorithm has two phases: 
 1 Partial sort phase: sort M pages at a time; create 

F/M sorted runs on mass store, cost = 2F 
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Example:  M = 2, F = 7 run 

Original file 

Partially sorted file 

5      3 2      6 1    10   15    7 20  11   8    4   7    5 

2      3 5      6 1      7   10  15 4     8  11 20   5    7 



Simple Sort Algorithm 

 2 Merge Phase: merge all runs into a single run using   
M-1 buffers for input and 1 output buffer  
 Merge step: divide runs into groups of size M-1 and merge 

each group into a run; cost = 2F 
 Each step reduces number of runs by a factor of  M-1 
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M  pages 
Buffer  

M-1 



Merge: An Example 
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2      3 5      6 

1      7   10  15 

Input buffers 
Output buffer 

1      2   3      5 6      7 10  15 

2 3 

1 7 

5 6 

10 15 

1 2 3 5 6 7 10 15 

Output run Input runs 



Duplicate Elimination 

 A major step in computing projection, union, and 
difference relational operators 
 

 Algorithm: 
 Sort 
 At the last stage of the merge step eliminate duplicates on the 

fly 
 No additional cost (with respect to sorting) in terms of I/O 
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Duplicate elimination During Merge 
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2      3 5      6 

1      3   5   15 

Input buffers 
Output buffer 

1      2   3      5 6     15 

2 3 

1 3 

5 6 

5 15 

1 2 3 5 6 15 

Output run Input runs Last key 
used 

1 2 15 3 5 6 

Key 3 ignored: duplicate 

Key 5 ignored: duplicate 
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Sort-Based Projection 

 Algorithm: 
 Sort rows of relation at cost of  2F Log M-1F 
 Eliminate unwanted columns in partial sort phase (no 

additional cost) 
 Eliminate duplicates on completion of last merge step (no 

additional cost) 

 Cost: the cost of sorting 
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Hash-Based Projection 

 Phase 1:   
 Input rows 
 Project out columns 
 Hash remaining columns using a 

hash function with range 1…M-1 
creating  M-1  buckets on disk 

 Cost = 2F 
 Phase 2:  
 Sort each bucket to eliminate 

duplicates 
 Cost (assuming a bucket fits in  M-1  

buffer pages)  =  2F 

 Total cost = 4F 

 



Comparison 

 Assume  
 M=10000-page buffer (40MB)  use as hash table 
 We have F=108-page file to process (400GB = 40M*10000) 

 

 Hash-based projection  
 4*108 

 Sort-based projection 
 2𝐹𝑙𝑙𝑙(𝑀−1)𝐹 = 2 × 108 × 𝑙𝑙𝑙104−1108 ≥ 4 × 108 

 

 However, it requires  
 Even distribution from hash function 
 In-memory sort of each bucket 
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Computing Selection σ(attr  op  value) 

 No index on attr: 
 If rows are not sorted on attr: 
 Scan all data pages to find rows satisfying  selection 

condition 
 Cost = F 

 If rows are sorted on attr and  op is  =, >, <  then:  
 Use binary search  (at log2 F )  to locate first data page 

containing row in which (attr = value) 
 Scan further to get all rows satisfying  (attr op value) 
 Cost = log2 F + (cost of scan) 
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Computing Selection σ(attr  op  value) 

 Clustered  B+ tree index on attr  (for “=” or range 
search): 
 Locate first  index entry corresponding to a row in 

which  (attr = value).   
 Cost = depth of tree 

 Rows satisfying condition packed in sequence in 
successive data pages; scan those pages. 
 Cost:  number of pages occupied by qualifying rows 
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B+ tree 
index entries 
(containing rows) 
that satisfy 
condition 



Computing Selection σ(attr  op  value) 

 Unclustered B+ tree index on attr  (for “=” or range 
search): 
 Locate first index entry corresponding to a row in 

which (attr = value).  
 Cost = depth of tree 

 Index entries with pointers to rows satisfying 
condition are packed in sequence in successive index 
pages 
 Scan entries and sort record Ids to identify table data pages 

with qualifying rows; Any page that has at least one such 
row must be fetched once. 

 Cost = number of rows that satisfy selection condition 

 31 



Unclustered B+ Tree Index 

32 

index entries (containing row Ids) 
that satisfy condition 

data page 

Data file 

B+ Tree 



Computing Selection σ(attr  =  value) 
 Hash index on attr (for “=” search only): 
 Hash on value. Cost (of finding the right bucket) ≈ 1.2 

 1.2 – typical average cost of hashing  (> 1 due to possible overflow 
chains)  
 

 Finds first the (unique) bucket containing all index entries satisfying 
selection condition. Then,  

 Clustered index – all qualifying rows packed in the bucket (a few pages) 
 Cost: number of pages occupies by the bucket 
 Unclustered index – sort row Ids in the index entries to identify data 

pages with qualifying rows 
 Each page containing at least one such row must be fetched once 
 Cost: min(number of qualifying rows in bucket, number of pages in file) 
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Computing Selection σ(attr  =  value) 

 Unclustered hash index on attr  (for equality search) 
 

34 

Buffer=buckets 

data pages 



Access Path 

 Access path is the notion that denotes algorithm + data 
structure used to locate rows satisfying some condition 
 

 Examples: 
 File scan: can be used for any condition 
 Hash: equality search;  all search key attributes of hash index 

are specified in condition 
 B+ tree:  equality or range search; a prefix of the search key 

attributes are specified in condition 
 B+ tree supports a variety of access paths 

 Binary search: relation sorted on a sequence of attributes and 
some prefix of that sequence is specified in condition 

35 



Access Paths Supported by B+ tree 

 Example: Given a B+ tree whose search key is the 
sequence of attributes a2, a1, a3, a4  
 Access path for search σa1>5 AND a2=3 AND a3=‘x’ (R):  
 find first entry having a2=3 AND a1>5 AND a3=‘x’ and scan 

leaves from there until entry having a2>3 or a3 ≠ ‘x’.  Select 
satisfying entries 

 Access path for search σ a2=3 AND a3 >‘x’ (R):   
 locate first entry having a2=3 and scan leaves until entry 

having a2>3.  Select satisfying entries 

 Access path for search σ a1>5 AND a3 =‘x’ (R):   
 Scan of R 
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Choosing an Access Path 

 Selectivity of an access path = number of pages retrieved 
using that path 
 If several access paths support a query, DBMS chooses the one 

with lowest selectivity 
 Size of domain of attribute is an indicator of the selectivity of 

search conditions that involve that attribute 
 

 Example:  σ CrsCode=‘CS305’ AND Grade=‘B’ (Transcript) 
 Assume that we have two B+ trees; one with search key 

CrsCode, and the other with Grade 
 a B+ tree with search key CrsCode has lower selectivity than a 

B+ tree with search key Grade 
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Selections with Complex Conditions  

 Selection with conjunctive conditions 
 Use the most selective access path to retrieve the 

corresponding tuples  
 e.g., one condition is for an indexed attribute 

 Use several access paths that cover the expression 
 e.g., use the most selective first, and use the other ones.  

 Selection with disjunctive conditions 
 If the condition contain disjunctions, convert to disjunctive 

normal form. (disjunction of conjunctive conditions) 
 Check available access paths for the individual disjuncts and 

choose the appropriate strategy 
 e.g., what if a disjunct need file scan?  
 e.g., what if each disjunct has better access path than file scan?  

38 



Computing Joins 

 The cost of joining two relations makes the choice of a 
join algorithm crucial 

 Simple block-nested loops join algorithm for computing  
r        A=B s 
 
 
 
 

 If we do this in tuple level,  Page(R) + Tuple(R) * Page(S) 
 Consider that Page(R) = 1000, Page(S) = 100, tuple(R) = 10,000,  

 If outer loop is for R, 1000 + 10000*100 = 1,001,000 page transfer. --- too many… 
 If outer loop is for S, 
 100 + 1000*1000 = 1,000,100 page transfer. --- fewer, too many… 
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foreach page pr in r do 
     foreach page ps in s do 
         output pr           A=B  ps 



Block-Nested Loops Join 

 If βr and βs are the number of pages in r and s, the cost 
of algorithm is  

                   

          βr  +  βr ∗  βs  +  cost of outputting final result 
 

 If  r  and  s  have 103 pages each, 
 cost is 103 + 103 * 103 
 Choose smaller relation for the outer loop: 

 If βr < βs  then βr + βr∗ βs  <  βs + βr∗ βs 
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Number of scans of 
relation s 



Block-Nested Loops Join 

 Cost can be reduced to 
          βr  +  (βr/(M-2)) ∗ βs    +  cost of outputting final result 

    by using M buffer pages instead of 1. 
 

41 

Number of scans 
of relation s 



Block-Nested Loop Illustrated 
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Output 
buffer 

s 

r 

Input buffer for  s 

Input buffer for  r 

… and so on 

r         s 



Index-Nested Loop Join  r       A=B s 

 Use an index on s with search key B (instead of scanning 
s) to find rows of s that match tr 
 Cost  =  βr + τr ∗ ω + cost of outputting final result 
 

 
 Effective if number of rows of s that match tuples in r is small 

(i.e., ω  is small) and index is clustered 
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Number of 
rows in  r 

avg cost of retrieving all 
rows in  s  that match  tr 

foreach   tuple tr  in  r   do  { 
      use index to find all tuples ts in s satisfying tr.A=ts.B; 
      output (tr, ts)  
} 
 



Sort-Merge Join  r       A=B s 

44 

sort  r  on  A; 
sort  s  on  B; 
while !eof(r) and !eof(s) do { 
    Scan  r and s concurrently until tr.A = ts.B = c; 
    Output σA=c(r) × σB=c (s)  
} 

r 

s 

× 

σB=c (s)  

σA=c(r) 



Join During Merge Illustrated 
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r       A=B s 



Cost of Sort-Merge Join 

 Cost of sorting assuming M buffers:  
 2 βr log M-1 βr  +  2 βs log M-1 βs  
 

 Cost of merging: 
 Scanning σA=c(r) and σB=c (s) can be combined with the last step of 

sorting of r and s --- costs nothing 
 Cost of σA=c(r)×σB=c (s) depends on whether σA=c(r) can fit in the 

buffer 
 If yes, this step costs 0  
 In not, each σA=c(r)×σB=c (s) is computed using block-nested  join, so the 

cost is the cost of the join.  (Think why indexed methods or sort-merge 
are inapplicable to Cartesian product.) 

 Cost of  outputting the final result depends on the size 
of the result 
 46 



Hash-Join  r       A=B s 

 Step 1: Hash r on A and s on B into the same set of 
buckets 

 Step 2: Since matching tuples must be in same bucket, 
read each bucket in turn and output the result of the 
join 

 Cost:  3 (βr + βs ) + cost of output of final result 
 assuming each bucket fits in memory 
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Hash Join 

48 



Star Joins 

 r        cond1 r1        cond2 …        condn rn 
 Each  cond i  involves only the attributes of  ri  and  r 
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r 

r1 
r2 

r3 

r4 

r5 

cond1 cond2 

cond3 

cond4 

cond5 

Star 
relation Satellite 

relations 



Star Join 

50 



Computing Star Joins 

 Use join index 
 Scan r and the join index {<r,r1,…,rn>} (which is a set of tuples 

of rids) in one scan 
 Retrieve matching tuples in  r1,…,rn 

 Output result 
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Computing Star Joins 

 Use bitmap indices 
 Use one bitmapped join index,  Ji ,  per each partial join 
  r            condi ri  
 Recall:  Ji  is a set of  <v, bitmap>,  where v is an rid of a tuple 

in ri  and  bitmap has 1 in k-th position iff  k-th tuple of  r  
joins with the tuple pointed to by v 
 

1. Scan Ji  and logically OR all bitmaps.  We get all rids in r that 
join with ri 

2. Now logically AND the resulting bitmaps for J1, …, Jn. 
3. Result: a subset of  r, which contains all tuples that can 

possibly be in the star join  
 Rationale: only a few such tuples survive, so can use indexed loops 
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Computing Aggregated Functions 

 Require full scan 
 In case that tuples are grouped by attributes, 
 Need to partition relation with the attribute values 

 Sorting 
 Hashing 
 Indexing 

53 
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Choosing Indices 

 DBMSs may allow user to specify  
 Type (hash, B+ tree) and search key of index 
 Whether or not it should be clustered 

 
 Using information about the frequency and type of 

queries and size of tables, designer can use cost 
estimates to choose appropriate indices 

 
 Several commercial systems have tools that suggest 

indices 
 Simplifies job, but index suggestions must be verified 



Choosing Indices – Example 

 If a frequently executed query that involves selection or 
a join and has a large result set,  
 Use a clustered B+ tree index 
 e.g., Retrieve all rows of Transcript for StudId 

 If a frequently executed query is an equality search and 
has a small result set,  
 An unclustered hash index is best, since only one clustered 

index on a table is possible, choosing unclustered allows a 
different index to be clustered 

 e.g., Retrieve all rows of Transcript for (StudId, CrsCode) 
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