
Ilchul Yoon
Assistant Professor

State University of New York, Korea

CSE 532 – Theory of Database Systems

Adapted from book authors’ slides

Lecture 19 (Chapter 10)
Query Processing: The Basics

CSE 305 / CSE532

Lecturer: Sael Lee

Slide adapted from the
author’s, Peter Bailis’s and Dr. Ilchul Yoon’s slides.

3

Query Processing Example

 Select B,D
 From R,S
 Where R.A = “c” ∧ S.E = 2 ∧ R.C=S.C

Peter Bailis’s slides

4

 R A B C S C D E

 a 1 10 10 x 2

 b 1 20 20 y 2

 c 2 10 30 z 2

 d 2 35 40 x 1

 e 3 45 50 y 3

Peter Bailis’s slides

Example cont.

5

 R A B C S C D E

 a 1 10 10 x 2

 b 1 20 20 y 2

 c 2 10 30 z 2

 d 2 35 40 x 1

 e 3 45 50 y 3

Answer B D
 2 x

Peter Bailis’s slides

Example cont.

CS 245 Notes 6
6

How do we execute query?

 - Do Cartesian product
 - Select tuples
 - Do projection

One idea

Peter Bailis’s slides

7

RXS R.A R.B R.C S.C S.D S.E

 a 1 10 10 x 2

 a 1 10 20 y 2
 .
 .

 C 2 10 10 x 2
 .
 .

Peter Bailis’s slides

8

RXS R.A R.B R.C S.C S.D S.E

 a 1 10 10 x 2

 a 1 10 20 y 2
 .
 .

 C 2 10 10 x 2
 .
 .

Bingo!

Got one...

Peter Bailis’s slides

CS 245 Notes 6
9

Relational Algebra - can be used to
 describe plans...

 ΠB,D

 σR.A=“c”∧ S.E=2 ∧ R.C=S.C

 X
 R S

OR: ΠB,D [σR.A=“c”∧ S.E=2 ∧ R.C = S.C (RXS)]

Peter Bailis’s slides

Plan I

CS 245 Notes 6
10

Another idea:

 ΠB,D

 σR.A = “c” σS.E = 2

 R S

Plan II

 natural join

Peter Bailis’s slides

11

 R S

A B C σ (R) σ(S) C D E

a 1 10 A B C C D E 10 x 2
b 1 20 c 2 10 10 x 2 20 y 2
c 2 10 20 y 2 30 z 2
d 2 35 30 z 2 40 x 1
e 3 45 50 y 3

Peter Bailis’s slides

CS 245 Notes 6
12

Plan III: Utilizing Index

Peter Bailis’s slides

Use R.A and S.C Indexes
 (1) Use R.A index to select R tuples with R.A = “c”
 (2) For each R.C value found, use S.C index to find

matching tuples

 (3) Eliminate S tuples S.E ≠ 2
 (4) Join matching R,S tuples, project B,D attributes

and place in result

CS 245 Notes 6
13

 R S

A B C C D E

a 1 10 10 x 2
b 1 20 20 y 2
c 2 10 30 z 2
d 2 35 40 x 1
e 3 45 50 y 3

A C
I1 I2

Peter Bailis’s slides

14

 R S

A B C C D E

a 1 10 10 x 2
b 1 20 20 y 2
c 2 10 30 z 2
d 2 35 40 x 1
e 3 45 50 y 3

A C
I1 I2

=“c”

<c,2,10>

Peter Bailis’s slides

(1) Use R.A index to select R tuples with R.A = “c”

15

 R S

A B C C D E

a 1 10 10 x 2
b 1 20 20 y 2
c 2 10 30 z 2
d 2 35 40 x 1
e 3 45 50 y 3

A C
I1 I2

=“c”

<c,2,10> <10,x,2>

Peter Bailis’s slides

(2) For each R.C value found, use S.C index to
find matching tuples

16

 R S

A B C C D E

a 1 10 10 x 2
b 1 20 20 y 2
c 2 10 30 z 2
d 2 35 40 x 1
e 3 45 50 y 3

A C
I1 I2

=“c”

<c,2,10> <10,x,2>
check=2?

output: <2,x>

Peter Bailis’s slides

(3) Eliminate S tuples S.E ≠ 2
(4) Join matching R,S tuples, project B,D attributes and place
in result

17

 R S

A B C C D E

a 1 10 10 x 2
b 1 20 20 y 2
c 2 10 30 z 2
d 2 35 40 x 1
e 3 45 50 y 3

A C
I1 I2

=“c”

<c,2,10> <10,x,2>
check=2?

output: <2,x>

next tuple:
<c,7,15>

Peter Bailis’s slides

External Sorting

 Sorting is used in implementing many relational
operations

 Problem:
 Relations are typically large, do not fit in main memory
 So cannot use traditional in-memory sorting algorithms

 Approach used:
 Combine in-memory sorting with clever techniques aimed at

minimizing I/O
 I/O costs dominate => cost of sorting algorithm is measured in

the number of page transfers

18

Peter Bailis’s slides

External Sorting (cont’d)

 External sorting has two main components:
 Computation involved in sorting records in buffers in main

memory
 I/O necessary to move records between mass store and main

memory

19

Simple Sort Algorithm
 M = number of main memory page buffers
 F = number of pages in file to be sorted
 Typical algorithm has two phases:
 1 Partial sort phase: sort M pages at a time; create

F/M sorted runs on mass store, cost = 2F

20

Example: M = 2, F = 7 run

Original file

Partially sorted file

5 3 2 6 1 10 15 7 20 11 8 4 7 5

2 3 5 6 1 7 10 15 4 8 11 20 5 7

Simple Sort Algorithm

 2 Merge Phase: merge all runs into a single run using
M-1 buffers for input and 1 output buffer
 Merge step: divide runs into groups of size M-1 and merge

each group into a run; cost = 2F
 Each step reduces number of runs by a factor of M-1

21

M pages
Buffer

M-1

Merge: An Example

22

2 3 5 6

1 7 10 15

Input buffers
Output buffer

1 2 3 5 6 7 10 15

2 3

1 7

5 6

10 15

1 2 3 5 6 7 10 15

Output run Input runs

Duplicate Elimination

 A major step in computing projection, union, and
difference relational operators

 Algorithm:
 Sort
 At the last stage of the merge step eliminate duplicates on the

fly
 No additional cost (with respect to sorting) in terms of I/O

24

Duplicate elimination During Merge

25

2 3 5 6

1 3 5 15

Input buffers
Output buffer

1 2 3 5 6 15

2 3

1 3

5 6

5 15

1 2 3 5 6 15

Output run Input runs Last key
used

1 2 15 3 5 6

Key 3 ignored: duplicate

Key 5 ignored: duplicate

26

Sort-Based Projection

 Algorithm:
 Sort rows of relation at cost of 2F Log M-1F
 Eliminate unwanted columns in partial sort phase (no

additional cost)
 Eliminate duplicates on completion of last merge step (no

additional cost)

 Cost: the cost of sorting

27

Hash-Based Projection

 Phase 1:
 Input rows
 Project out columns
 Hash remaining columns using a

hash function with range 1…M-1
creating M-1 buckets on disk

 Cost = 2F
 Phase 2:
 Sort each bucket to eliminate

duplicates
 Cost (assuming a bucket fits in M-1

buffer pages) = 2F

 Total cost = 4F

Comparison

 Assume
 M=10000-page buffer (40MB) use as hash table
 We have F=108-page file to process (400GB = 40M*10000)

 Hash-based projection
 4*108

 Sort-based projection
 2𝐹𝑙𝑙𝑙(𝑀−1)𝐹 = 2 × 108 × 𝑙𝑙𝑙104−1108 ≥ 4 × 108

 However, it requires
 Even distribution from hash function
 In-memory sort of each bucket

28

Computing Selection σ(attr op value)

 No index on attr:
 If rows are not sorted on attr:
 Scan all data pages to find rows satisfying selection

condition
 Cost = F

 If rows are sorted on attr and op is =, >, < then:
 Use binary search (at log2 F) to locate first data page

containing row in which (attr = value)
 Scan further to get all rows satisfying (attr op value)
 Cost = log2 F + (cost of scan)

29

Computing Selection σ(attr op value)

 Clustered B+ tree index on attr (for “=” or range
search):
 Locate first index entry corresponding to a row in

which (attr = value).
 Cost = depth of tree

 Rows satisfying condition packed in sequence in
successive data pages; scan those pages.
 Cost: number of pages occupied by qualifying rows

30

B+ tree
index entries
(containing rows)
that satisfy
condition

Computing Selection σ(attr op value)

 Unclustered B+ tree index on attr (for “=” or range
search):
 Locate first index entry corresponding to a row in

which (attr = value).
 Cost = depth of tree

 Index entries with pointers to rows satisfying
condition are packed in sequence in successive index
pages
 Scan entries and sort record Ids to identify table data pages

with qualifying rows; Any page that has at least one such
row must be fetched once.

 Cost = number of rows that satisfy selection condition

 31

Unclustered B+ Tree Index

32

index entries (containing row Ids)
that satisfy condition

data page

Data file

B+ Tree

Computing Selection σ(attr = value)
 Hash index on attr (for “=” search only):
 Hash on value. Cost (of finding the right bucket) ≈ 1.2

 1.2 – typical average cost of hashing (> 1 due to possible overflow
chains)

 Finds first the (unique) bucket containing all index entries satisfying
selection condition. Then,

 Clustered index – all qualifying rows packed in the bucket (a few pages)
 Cost: number of pages occupies by the bucket
 Unclustered index – sort row Ids in the index entries to identify data

pages with qualifying rows
 Each page containing at least one such row must be fetched once
 Cost: min(number of qualifying rows in bucket, number of pages in file)

33

Computing Selection σ(attr = value)

 Unclustered hash index on attr (for equality search)

34

Buffer=buckets

data pages

Access Path

 Access path is the notion that denotes algorithm + data
structure used to locate rows satisfying some condition

 Examples:
 File scan: can be used for any condition
 Hash: equality search; all search key attributes of hash index

are specified in condition
 B+ tree: equality or range search; a prefix of the search key

attributes are specified in condition
 B+ tree supports a variety of access paths

 Binary search: relation sorted on a sequence of attributes and
some prefix of that sequence is specified in condition

35

Access Paths Supported by B+ tree

 Example: Given a B+ tree whose search key is the
sequence of attributes a2, a1, a3, a4
 Access path for search σa1>5 AND a2=3 AND a3=‘x’ (R):
 find first entry having a2=3 AND a1>5 AND a3=‘x’ and scan

leaves from there until entry having a2>3 or a3 ≠ ‘x’. Select
satisfying entries

 Access path for search σ a2=3 AND a3 >‘x’ (R):
 locate first entry having a2=3 and scan leaves until entry

having a2>3. Select satisfying entries

 Access path for search σ a1>5 AND a3 =‘x’ (R):
 Scan of R

36

Choosing an Access Path

 Selectivity of an access path = number of pages retrieved
using that path
 If several access paths support a query, DBMS chooses the one

with lowest selectivity
 Size of domain of attribute is an indicator of the selectivity of

search conditions that involve that attribute

 Example: σ CrsCode=‘CS305’ AND Grade=‘B’ (Transcript)
 Assume that we have two B+ trees; one with search key

CrsCode, and the other with Grade
 a B+ tree with search key CrsCode has lower selectivity than a

B+ tree with search key Grade

 37

Selections with Complex Conditions

 Selection with conjunctive conditions
 Use the most selective access path to retrieve the

corresponding tuples
 e.g., one condition is for an indexed attribute

 Use several access paths that cover the expression
 e.g., use the most selective first, and use the other ones.

 Selection with disjunctive conditions
 If the condition contain disjunctions, convert to disjunctive

normal form. (disjunction of conjunctive conditions)
 Check available access paths for the individual disjuncts and

choose the appropriate strategy
 e.g., what if a disjunct need file scan?
 e.g., what if each disjunct has better access path than file scan?

38

Computing Joins

 The cost of joining two relations makes the choice of a
join algorithm crucial

 Simple block-nested loops join algorithm for computing
r A=B s

 If we do this in tuple level, Page(R) + Tuple(R) * Page(S)
 Consider that Page(R) = 1000, Page(S) = 100, tuple(R) = 10,000,

 If outer loop is for R, 1000 + 10000*100 = 1,001,000 page transfer. --- too many…
 If outer loop is for S,
 100 + 1000*1000 = 1,000,100 page transfer. --- fewer, too many…

39

foreach page pr in r do
 foreach page ps in s do
 output pr A=B ps

Block-Nested Loops Join

 If βr and βs are the number of pages in r and s, the cost
of algorithm is

 βr + βr ∗ βs + cost of outputting final result

 If r and s have 103 pages each,
 cost is 103 + 103 * 103
 Choose smaller relation for the outer loop:

 If βr < βs then βr + βr∗ βs < βs + βr∗ βs

40

Number of scans of
relation s

Block-Nested Loops Join

 Cost can be reduced to
 βr + (βr/(M-2)) ∗ βs + cost of outputting final result

 by using M buffer pages instead of 1.

41

Number of scans
of relation s

Block-Nested Loop Illustrated

42

Output
buffer

s

r

Input buffer for s

Input buffer for r

… and so on

r s

Index-Nested Loop Join r A=B s

 Use an index on s with search key B (instead of scanning
s) to find rows of s that match tr
 Cost = βr + τr ∗ ω + cost of outputting final result

 Effective if number of rows of s that match tuples in r is small

(i.e., ω is small) and index is clustered

43

Number of
rows in r

avg cost of retrieving all
rows in s that match tr

foreach tuple tr in r do {
 use index to find all tuples ts in s satisfying tr.A=ts.B;
 output (tr, ts)
}

Sort-Merge Join r A=B s

44

sort r on A;
sort s on B;
while !eof(r) and !eof(s) do {
 Scan r and s concurrently until tr.A = ts.B = c;
 Output σA=c(r) × σB=c (s)
}

r

s

×

σB=c (s)

σA=c(r)

Join During Merge Illustrated

45

1 3
p p

r

s

D
A

B
E

p p
4 0

0 9
q q

r
9

8 7 3
s s s

s
7

t t
2 5

u u u
2 5 0

5 7
u u

1 1
v v

x
0

1 3 1 3
p p p p
p p p p
4 0 0 4

8 7 3
s s s
s s s
7 7 7

5 7 5 7 5 7
u u u u u u
u u u u u u
2 2 5 5 0 0

r A=B s

Cost of Sort-Merge Join

 Cost of sorting assuming M buffers:
 2 βr log M-1 βr + 2 βs log M-1 βs

 Cost of merging:
 Scanning σA=c(r) and σB=c (s) can be combined with the last step of

sorting of r and s --- costs nothing
 Cost of σA=c(r)×σB=c (s) depends on whether σA=c(r) can fit in the

buffer
 If yes, this step costs 0
 In not, each σA=c(r)×σB=c (s) is computed using block-nested join, so the

cost is the cost of the join. (Think why indexed methods or sort-merge
are inapplicable to Cartesian product.)

 Cost of outputting the final result depends on the size
of the result
 46

Hash-Join r A=B s

 Step 1: Hash r on A and s on B into the same set of
buckets

 Step 2: Since matching tuples must be in same bucket,
read each bucket in turn and output the result of the
join

 Cost: 3 (βr + βs) + cost of output of final result
 assuming each bucket fits in memory

47

Hash Join

48

Star Joins

 r cond1 r1 cond2 … condn rn
 Each cond i involves only the attributes of ri and r

49

r

r1
r2

r3

r4

r5

cond1 cond2

cond3

cond4

cond5

Star
relation Satellite

relations

Star Join

50

Computing Star Joins

 Use join index
 Scan r and the join index {<r,r1,…,rn>} (which is a set of tuples

of rids) in one scan
 Retrieve matching tuples in r1,…,rn

 Output result

51

Computing Star Joins

 Use bitmap indices
 Use one bitmapped join index, Ji , per each partial join
 r condi ri
 Recall: Ji is a set of <v, bitmap>, where v is an rid of a tuple

in ri and bitmap has 1 in k-th position iff k-th tuple of r
joins with the tuple pointed to by v

1. Scan Ji and logically OR all bitmaps. We get all rids in r that
join with ri

2. Now logically AND the resulting bitmaps for J1, …, Jn.
3. Result: a subset of r, which contains all tuples that can

possibly be in the star join
 Rationale: only a few such tuples survive, so can use indexed loops

52

Computing Aggregated Functions

 Require full scan
 In case that tuples are grouped by attributes,
 Need to partition relation with the attribute values

 Sorting
 Hashing
 Indexing

53

54

Choosing Indices

 DBMSs may allow user to specify
 Type (hash, B+ tree) and search key of index
 Whether or not it should be clustered

 Using information about the frequency and type of

queries and size of tables, designer can use cost
estimates to choose appropriate indices

 Several commercial systems have tools that suggest

indices
 Simplifies job, but index suggestions must be verified

Choosing Indices – Example

 If a frequently executed query that involves selection or
a join and has a large result set,
 Use a clustered B+ tree index
 e.g., Retrieve all rows of Transcript for StudId

 If a frequently executed query is an equality search and
has a small result set,
 An unclustered hash index is best, since only one clustered

index on a table is possible, choosing unclustered allows a
different index to be clustered

 e.g., Retrieve all rows of Transcript for (StudId, CrsCode)

55

	Lecture 19 (Chapter 10)�Query Processing: The Basics
	Query Processing Example
	Slide Number 4
	Slide Number 5
	How do we execute query?
	Slide Number 7
	Slide Number 8
	Relational Algebra - can be used to�				 describe plans...
	Another idea:
	Slide Number 11
	Plan III: Utilizing Index�
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	External Sorting
	External Sorting (cont’d)
	Simple Sort Algorithm
	Simple Sort Algorithm
	Merge: An Example
	Duplicate Elimination
	Duplicate elimination During Merge
	Sort-Based Projection
	Hash-Based Projection
	Comparison
	Computing Selection (attr op value)
	Computing Selection (attr op value)
	Computing Selection (attr op value)
	Unclustered B+ Tree Index
	Computing Selection (attr = value)
	Computing Selection (attr = value)
	Access Path
	Access Paths Supported by B+ tree
	Choosing an Access Path
	Selections with Complex Conditions
	Computing Joins
	Block-Nested Loops Join
	Block-Nested Loops Join
	Block-Nested Loop Illustrated
	Index-Nested Loop Join r A=B s
	Sort-Merge Join r A=B s
	Join During Merge Illustrated
	Cost of Sort-Merge Join
	Hash-Join r A=B s
	Hash Join
	Star Joins
	Star Join
	Computing Star Joins
	Computing Star Joins
	Computing Aggregated Functions
	Choosing Indices
	Choosing Indices – Example

