

CSE 305 / CSE532

Lecture 19 (Chapter 10) Query Processing: The Basics

Lecturer: Sael Lee

Slide adapted from the author's, Peter Bailis's and Dr. Ilchul Yoon's slides.

Query Processing Example

Select B,D From R,S Where R.A = "c" \land S.E = 2 \land R.C=S.C

Example cont.

R	Α	B	C	S	С	D	E
	a	1	10		10	X	2
	b	1	20		20	y	2
	c	2	10		30	Z	2
	d	2	35		40	X	1
	e	3	45		50	y	3

14/14/01/01/01/14/17

Example cont.

How do we execute query?

- Do Cartesian product
- Select tuples
- Do projection

KXS

R.A	R.B	R.C	S.C	S.D	S.E
a	1	10	10	X	2
a	1	10	20	У	2
• • •	2	10	10	X	2

7

<u>Relational Algebra</u> - can be used to

$\underline{OR:} \ \Pi_{B,D} \left[\sigma_{R.A="c" \land S.E=2 \land R.C = S.C} (RXS) \right]$

CS 245

Notes 6

Another idea:

Plan III: Utilizing Index

Use R.A and S.C Indexes

(1) Use R.A <u>index</u> to select R tuples with R.A = "c"

(2) For each R.C value found, use S.C <u>index</u> to find matching tuples

(3) Eliminate S tuples S.E ≠ 2
(4) Join matching R,S tuples, project B,D attributes and place in result

CS 245

(1) Use R.A index to select R tuples with R.A = "c"

(2) For each R.C value found, use S.C index to find matching tuples

(3) Eliminate S tuples S.E \neq 2 (4) Join matching R,S tuples, project B,D attributes and place in result

External Sorting

- Sorting is used in implementing many relational operations
- Problem:
 - Relations are typically large, do not fit in main memory
 - So cannot use traditional in-memory sorting algorithms
- Approach used:
 - Combine in-memory sorting with clever techniques aimed at minimizing I/O
 - I/O costs dominate => cost of sorting algorithm is measured in the number of page transfers

External Sorting (cont'd)

- External sorting has two main components:
 - Computation involved in sorting records in buffers in main memory
 - I/O necessary to move records between mass store and main memory

Simple Sort Algorithm

- *M* = number of main memory page buffers
- *F* = number of pages in file to be sorted
- Typical algorithm has **two phases**:
 - **1 Partial sort phase**: sort *M* pages at a time; create *F/M* sorted *runs* on mass store, cost = 2*F*Original file

run

Example: M = 2, F = 7

Simple Sort Algorithm

- 2 Merge Phase: merge all runs into a single run using M-1 buffers for input and 1 output buffer
 - Merge step: divide runs into groups of size *M*-1 and merge each group into a run; cost = 2*F*
 - Each step reduces number of runs by a factor of M-1

FIGURE 10.2 *k*-way merge.

Merge: An Example

Duplicate Elimination

A major step in computing *projection*, *union*, and *difference* relational operators

• Algorithm:

- Sort
- At the last stage of the merge step eliminate duplicates on the fly
- No additional cost (with respect to sorting) in terms of I/O

Duplicate elimination During Merge

Sort-Based Projection

- Algorithm:
 - Sort rows of relation at cost of $2F \log_{M-1} F$
 - Eliminate unwanted columns in partial sort phase (no additional cost)
 - Eliminate duplicates on completion of last merge step (no additional cost)
- Cost: the cost of sorting

Hash-Based Projection

- Phase 1:
 - Input rows
 - Project out columns
 - Hash remaining columns using a hash function with range 1...M-1 creating M-1 buckets on disk
 - **Cost** = 2*F*
- Phase 2:
 - Sort each bucket to eliminate duplicates
 FIGURE 10.5 Hashing
 - FIGURE 10.5 Hashing input relation into buckets.

Input Run

- Cost (assuming a bucket fits in M-1 buffer pages) = 2F
- Total cost = 4F

Comparison

- Assume
 - M=10000-page buffer (40MB) ← use as hash table
 - We have F=10⁸-page file to process (400GB = 40M*10000)
- Hash-based projection
 - 4*10⁸
- Sort-based projection
 - $2Flog_{(M-1)}F = 2 \times 10^8 \times log_{10^4-1}10^8 \ge 4 \times 10^8$
- However, it requires
 - Even distribution from hash function
 - In-memory sort of each bucket

Computing Selection $\sigma_{(attr op value)}$

- No index on *attr*:
 - If rows <u>are not</u> sorted on *attr:*
 - Scan all data pages to find rows satisfying selection condition
 - Cost = *F*

• If rows <u>are</u> sorted on *attr* <u>and</u> op is =, >, < then:

- Use binary search (at log₂ F) to locate first data page containing row in which (attr = value)
- Scan further to get all rows satisfying (attr op value)
- Cost = log₂ F + (cost of scan)

Computing Selection $\sigma_{(attr op value)}$

- <u>Clustered</u> B⁺ tree index on attr (for "=" or range search):
 - Locate first index entry corresponding to a row in which (attr = value).
 - Cost = depth of tree
 - <u>Rows</u> satisfying condition packed in sequence in successive data pages; *scan those pages*.
 - Cost: number of pages occupied by qualifying rows

Computing Selection $\sigma(\text{attr op value})$

- <u>Unclustered</u> B⁺ tree index on attr (for "=" or range search):
 - Locate first index entry corresponding to a row in which (*attr = value*).
 - Cost = depth of tree
 - <u>Index entries</u> with pointers to rows satisfying condition are packed in sequence in successive index pages
 - Scan entries and sort record Ids to identify table data pages with qualifying rows; Any page that has at least one such row must be fetched once.
 - **Cost** = number of rows that satisfy selection condition

Unclustered B⁺ Tree Index

Computing Selection $\sigma_{(attr = value)}$

- Hash index on attr (for "=" search only):
 - Hash on *value*. Cost (of finding the right bucket) \approx 1.2
 - 1.2 typical average cost of hashing (> 1 due to possible overflow chains)
 - Finds first the (unique) bucket containing all index entries satisfying selection condition. Then,
 - <u>Clustered</u> index all qualifying <u>rows</u> packed in the bucket (a few pages)
 <u>Cost</u>: number of pages occupies by the bucket
 - <u>Unclustered</u> index sort row Ids in the index entries to identify data pages with qualifying rows

Each page containing at least one such row must be fetched once Cost: min(*number of qualifying rows in bucket, number of pages in file*)

Computing Selection $\sigma_{(attr = value)}$

• Unclustered hash index on *attr* (for equality search)

Access Path

- Access path is the notion that denotes <u>algorithm + data</u> <u>structure</u> used to locate rows satisfying some condition
- Examples:
 - *File scan*: can be used for any condition
 - *Hash*: equality search; *all* search key attributes of hash index are specified in condition
 - *B⁺ tree*: equality *or* range search; a *prefix* of the search key attributes are specified in condition
 - B⁺ tree supports a variety of access paths
 - *Binary search*: relation sorted on a sequence of attributes and some *prefix* of that sequence is specified in condition

Access Paths Supported by B⁺ tree

- Example: Given a B⁺ tree whose search key is the sequence of attributes a2, a1, a3, a4
 - Access path for search $\sigma_{a1>5 \text{ AND } a2=3 \text{ AND } a3='x'}(R)$:
 - find first entry having a2=3 AND a1>5 AND a3='x' and scan leaves from there until entry having a2>3 or a3 ≠ 'x'. Select satisfying entries
 - Access path for search $\sigma_{a2=3 \text{ AND } a3 > x'}(R)$:
 - locate first entry having a2=3 and scan leaves until entry having a2>3. Select satisfying entries
 - Access path for search $\sigma_{a1>5 \text{ AND } a3='x'}(R)$:
 - Scan of *R*

Choosing an Access Path

- Selectivity of an access path = number of pages retrieved using that path
 - If several access paths support a query, DBMS chooses the one with *lowest* selectivity
 - Size of domain of attribute is an indicator of the selectivity of search conditions that involve that attribute
- Example: σ_{CrsCode='CS305' AND Grade='B'} (Transcript)
 - Assume that we have <u>two</u> B⁺ trees; one with search key CrsCode, and the other with Grade
 - a B⁺ tree with search key CrsCode has lower selectivity than a B⁺ tree with search key Grade

Selections with Complex Conditions

- Selection with conjunctive conditions
 - Use the most selective access path to retrieve the corresponding tuples
 - e.g., one condition is for an indexed attribute
 - Use several access paths that cover the expression
 - e.g., use the most selective first, and use the other ones.
- Selection with disjunctive conditions
 - If the condition contain disjunctions, convert to <u>disjunctive</u> <u>normal form</u>. (disjunction of conjunctive conditions)
 - Check available access paths for the individual disjuncts and choose the appropriate strategy
 - e.g., what if a disjunct need file scan?
 - e.g., what if each disjunct has better access path than file scan?

Computing Joins

- The cost of joining two relations makes the choice of a join algorithm crucial
- Simple block-nested loops join algorithm for computing
 r \vee A=B S

foreach page p_r in r do foreach page p_s in s do output $p_r \bowtie_{A=B} p_s$

- If we do this in tuple level, Page(R) + Tuple(R) * Page(S)
- Consider that Page(R) = 1000, Page(S) = 100, tuple(R) = 10,000,
 - If outer loop is for R, 1000 + 10000*100 = 1,001,000 page transfer. --- too many...
 - If outer loop is for S,
 - 100 + 1000*1000 = 1,000,100 page transfer. --- fewer, too many...

Block-Nested Loops Join

• If β_r and β_s are the number of pages in **r** and **s**, the cost of algorithm is Number of scans of relation **s**

 $\beta_r + \beta_r * \beta_s + cost of outputting final result$

- If r and s have 10³ pages each, cost is 10³ + 10³ * 10³
- Choose smaller relation for the outer loop:
 - If $\beta_r < \beta_s$ then $\beta_r + \beta_r * \beta_s < \beta_s + \beta_r * \beta_s$

Block-Nested Loops Join

• Cost can be reduced to $\beta_r + (\beta_r/(M-2)) * \beta_s + cost of outputting final result$

by using M buffer pages instead of 1.

FIGURE 10.6 Block-nested loops join.

Block-Nested Loop Illustrated

Index-Nested Loop Join **r** $\bowtie_{A=B}$ **s**

- Use an index on s with search key B (instead of scanning s) to find rows of s that match t_r
 - **Cost** = $\beta_r + \tau_r * \omega + cost of outputting final result$

Number of rows in **r** that match t_r

 Effective if number of rows of s that match tuples in r is small (i.e., ω is small) and index is <u>clustered</u>

```
foreach tuple t<sub>r</sub> in r do {
    use index to find all tuples t<sub>s</sub> in s satisfying t<sub>r</sub>.A=t<sub>s</sub>.B;
    output (t<sub>r</sub>, t<sub>s</sub>)
}
```


Sort-Merge Join $\mathbf{r} \bowtie_{A=B} \mathbf{s}$

Join During Merge Illustrated

Cost of Sort-Merge Join

- Cost of *sorting* assuming *M* buffers:
 - 2 $\beta_r \log_{M-1} \beta_r$ + 2 $\beta_s \log_{M-1} \beta_s$
- Cost of *merging*:
 - Scanning $\sigma_{A=c}(r)$ and $\sigma_{B=c}(s)$ can be combined with the last step of sorting of r and s --- costs nothing
 - Cost of $\sigma_{A=c}(\textbf{r})\times\sigma_{B=c}(\textbf{s})$ depends on whether $\sigma_{A=c}(\textbf{r})$ can fit in the buffer
 - If yes, this step costs 0
 - In not, each $\sigma_{A=c}(\mathbf{r}) \times \sigma_{B=c}(\mathbf{s})$ is computed using *block-nested* join, so the cost is the cost of the join. (Think why indexed methods or sort-merge are inapplicable to Cartesian product.)
- Cost of outputting the *final result* depends on the size of the result

Hash-Join $\mathbf{r} \bowtie_{A=B} \mathbf{s}$

- Step 1: Hash **r** on A and **s** on B into the same set of buckets
- Step 2: Since matching tuples must be in same bucket, read each bucket in turn and output the result of the join
- Cost: 3 ($\beta_r + \beta_s$) + cost of output of final result
 - assuming each bucket fits in memory

Hash Join

Star Joins

- $\mathbf{r} \Join_{cond_1} \mathbf{r}_1 \Join_{cond_2} \cdots \bowtie_{cond_n} \mathbf{r}_n$
 - Each cond_i involves <u>only</u> the attributes of **r**_i and **r**

Star Join

TEACHING

Computing Star Joins

- Use join index
 - Scan **r** and the join index {<*r*,*r*₁,...,*r*_n>} (which is a set of tuples of rids) in one scan
 - Retrieve matching tuples in **r**₁,...,**r**_n
 - Output result

Computing Star Joins

- Use bitmap indices
 - Use one bitmapped join index, J_i , per each partial join

 $\mathbf{r} \longrightarrow_{cond_i} \mathbf{r}_i$

- *Recall*: J_i is a set of <v, *bitmap*>, where v is an rid of a tuple in r_i and *bitmap* has 1 in k-th position iff k-th tuple of r joins with the tuple pointed to by v
- 1. Scan J_i and logically OR all bitmaps. We get all rids in **r** that join with r_i
- 2. Now logically AND the resulting bitmaps for J_{ν} ..., J_{n} .
- 3. Result: a subset of **r**, which contains all tuples that can possibly be in the star join
 - *Rationale*: only a few such tuples survive, so can use indexed loops

Computing Aggregated Functions

- Require full scan
- In case that tuples are grouped by attributes,
 - Need to partition relation with the attribute values
 - Sorting
 - Hashing
 - Indexing

Choosing Indices

- DBMSs may allow user to specify
 - Type (hash, B⁺ tree) and search key of index
 - Whether or not it should be clustered
- Using information about the frequency and type of queries and size of tables, designer can use cost estimates to choose appropriate indices
- Several commercial systems have tools that suggest indices
 - Simplifies job, but index suggestions must be verified

Choosing Indices – Example

- If a frequently executed query that involves selection or a join and has a large result set,
 - Use a clustered B⁺ tree index
 - e.g., Retrieve all rows of Transcript for Studid
- If a frequently executed query is an <u>equality search</u> and has a <u>small result set</u>,
 - An unclustered hash index is best, since only one clustered index on a table is possible, choosing unclustered allows a different index to be clustered
 - *e.g.*, Retrieve all rows of **Transcript** for (*StudId*, *CrsCode*)

