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Query Processing Example 

 Select B,D 
 From R,S 
 Where R.A = “c”  ∧  S.E = 2  ∧  R.C=S.C 

Peter Bailis’s slides 
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   R A B C     S  C D E 

 a 1 10  10 x 2 

 b 1 20  20 y 2 

 c 2 10  30 z 2 

 d 2 35  40 x 1 

 e 3 45  50 y 3 

Peter Bailis’s slides 

Example cont. 
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   R A B C     S  C D E 

 a 1 10  10 x 2 

 b 1 20  20 y 2 

 c 2 10  30 z 2 

 d 2 35  40 x 1 

 e 3 45  50 y 3 

Answer B     D 
  2      x 

Peter Bailis’s slides 

Example cont. 
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How do we execute query? 

      
    - Do Cartesian product 
    - Select tuples 
    - Do projection 

One idea 

Peter Bailis’s slides 
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RXS  R.A R.B R.C S.C S.D S.E 

    a   1  10  10   x   2 

    a   1  10  20   y   2 
    . 
    . 

    C   2  10  10   x   2 
    . 
    . 

Peter Bailis’s slides 
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RXS  R.A R.B R.C S.C S.D S.E 

    a   1  10  10   x   2 

    a   1  10  20   y   2 
    . 
    . 

    C   2  10  10   x   2 
    . 
    . 

Bingo! 

Got one... 

Peter Bailis’s slides 
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Relational Algebra - can be used to 
       describe plans... 

    ΠB,D 
     

     σR.A=“c”∧ S.E=2 ∧ R.C=S.C 

 
     X 
   R  S 
 
OR:  ΠB,D [ σR.A=“c”∧ S.E=2 ∧ R.C = S.C (RXS)] 

Peter Bailis’s slides 

Plan I 
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Another idea: 

 
    ΠB,D  
 

    σR.A = “c”  σS.E = 2 
 
   R    S 

Plan II 

            natural join 

Peter Bailis’s slides 
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   R             S 

A  B  C σ (R)  σ(S)     C  D  E 

a  1  10        A   B  C       C  D  E     10  x  2 
b  1  20 c   2  10     10  x  2     20  y  2 
c  2  10         20  y  2     30  z  2 
d  2  35         30  z  2     40  x  1 
e  3  45                                         50  y  3 
  

Peter Bailis’s slides 
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Plan III: Utilizing Index 
 

Peter Bailis’s slides 

Use R.A and S.C Indexes 
 (1) Use R.A index to select R tuples with R.A = “c” 
 (2) For each R.C value found, use S.C index to find 

matching tuples 
 

 (3) Eliminate S tuples S.E ≠ 2 
 (4) Join matching R,S tuples, project B,D attributes 

and place in result 
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   R             S 

A  B  C        C  D  E 

a  1  10                    10  x  2 
b  1  20        20  y  2 
c  2  10               30  z  2 
d  2  35               40  x  1 
e  3  45                                         50  y  3 
  

A C 
I1 I2 

Peter Bailis’s slides 
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   R             S 

A  B  C        C  D  E 

a  1  10                    10  x  2 
b  1  20        20  y  2 
c  2  10               30  z  2 
d  2  35               40  x  1 
e  3  45                                         50  y  3 
  

A C 
I1 I2 

=“c” 

<c,2,10> 

Peter Bailis’s slides 

(1) Use R.A index to select R tuples with R.A = “c” 
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   R             S 

A  B  C        C  D  E 

a  1  10                    10  x  2 
b  1  20        20  y  2 
c  2  10               30  z  2 
d  2  35               40  x  1 
e  3  45                                         50  y  3 
  

A C 
I1 I2 

=“c” 

<c,2,10> <10,x,2> 

Peter Bailis’s slides 

(2) For each R.C value found, use S.C index to 
find matching tuples 
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   R             S 

A  B  C        C  D  E 

a  1  10                    10  x  2 
b  1  20        20  y  2 
c  2  10               30  z  2 
d  2  35               40  x  1 
e  3  45                                         50  y  3 
  

A C 
I1 I2 

=“c” 

<c,2,10> <10,x,2> 
check=2? 

output: <2,x> 

Peter Bailis’s slides 

(3) Eliminate S tuples S.E ≠ 2 
(4) Join matching R,S tuples, project B,D attributes and place 
in result 
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   R             S 

A  B  C        C  D  E 

a  1  10                    10  x  2 
b  1  20        20  y  2 
c  2  10               30  z  2 
d  2  35               40  x  1 
e  3  45                                           50  y  3 
  

A C 
I1 I2 

=“c” 

<c,2,10> <10,x,2> 
check=2? 

output: <2,x> 

next tuple: 
<c,7,15> 

Peter Bailis’s slides 



External Sorting 

 Sorting is used in implementing many relational 
operations 
 

 Problem:  
 Relations are typically large, do not fit in main memory 
 So cannot use traditional in-memory sorting algorithms 

 Approach used: 
 Combine in-memory sorting with clever techniques aimed at 

minimizing I/O 
 I/O costs dominate => cost of sorting algorithm is measured in 

the number of page transfers 
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Peter Bailis’s slides 



External Sorting (cont’d) 

 External sorting has two main components: 
 Computation involved in sorting records in buffers in main 

memory 
 I/O necessary to move records between mass store and main 

memory 
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Simple Sort Algorithm 
 M = number of main memory page buffers 
 F = number of pages in file to be sorted 
 Typical algorithm has two phases: 
 1 Partial sort phase: sort M pages at a time; create 

F/M sorted runs on mass store, cost = 2F 
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Example:  M = 2, F = 7 run 

Original file 

Partially sorted file 

5      3 2      6 1    10   15    7 20  11   8    4   7    5 

2      3 5      6 1      7   10  15 4     8  11 20   5    7 



Simple Sort Algorithm 

 2 Merge Phase: merge all runs into a single run using   
M-1 buffers for input and 1 output buffer  
 Merge step: divide runs into groups of size M-1 and merge 

each group into a run; cost = 2F 
 Each step reduces number of runs by a factor of  M-1 
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M  pages 
Buffer  

M-1 



Merge: An Example 
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2      3 5      6 

1      7   10  15 

Input buffers 
Output buffer 

1      2   3      5 6      7 10  15 

2 3 

1 7 

5 6 

10 15 

1 2 3 5 6 7 10 15 

Output run Input runs 



Duplicate Elimination 

 A major step in computing projection, union, and 
difference relational operators 
 

 Algorithm: 
 Sort 
 At the last stage of the merge step eliminate duplicates on the 

fly 
 No additional cost (with respect to sorting) in terms of I/O 
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Duplicate elimination During Merge 
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2      3 5      6 

1      3   5   15 

Input buffers 
Output buffer 

1      2   3      5 6     15 

2 3 

1 3 

5 6 

5 15 

1 2 3 5 6 15 

Output run Input runs Last key 
used 

1 2 15 3 5 6 

Key 3 ignored: duplicate 

Key 5 ignored: duplicate 
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Sort-Based Projection 

 Algorithm: 
 Sort rows of relation at cost of  2F Log M-1F 
 Eliminate unwanted columns in partial sort phase (no 

additional cost) 
 Eliminate duplicates on completion of last merge step (no 

additional cost) 

 Cost: the cost of sorting 
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Hash-Based Projection 

 Phase 1:   
 Input rows 
 Project out columns 
 Hash remaining columns using a 

hash function with range 1…M-1 
creating  M-1  buckets on disk 

 Cost = 2F 
 Phase 2:  
 Sort each bucket to eliminate 

duplicates 
 Cost (assuming a bucket fits in  M-1  

buffer pages)  =  2F 

 Total cost = 4F 

 



Comparison 

 Assume  
 M=10000-page buffer (40MB)  use as hash table 
 We have F=108-page file to process (400GB = 40M*10000) 

 

 Hash-based projection  
 4*108 

 Sort-based projection 
 2𝐹𝑙𝑙𝑙(𝑀−1)𝐹 = 2 × 108 × 𝑙𝑙𝑙104−1108 ≥ 4 × 108 

 

 However, it requires  
 Even distribution from hash function 
 In-memory sort of each bucket 
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Computing Selection σ(attr  op  value) 

 No index on attr: 
 If rows are not sorted on attr: 
 Scan all data pages to find rows satisfying  selection 

condition 
 Cost = F 

 If rows are sorted on attr and  op is  =, >, <  then:  
 Use binary search  (at log2 F )  to locate first data page 

containing row in which (attr = value) 
 Scan further to get all rows satisfying  (attr op value) 
 Cost = log2 F + (cost of scan) 
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Computing Selection σ(attr  op  value) 

 Clustered  B+ tree index on attr  (for “=” or range 
search): 
 Locate first  index entry corresponding to a row in 

which  (attr = value).   
 Cost = depth of tree 

 Rows satisfying condition packed in sequence in 
successive data pages; scan those pages. 
 Cost:  number of pages occupied by qualifying rows 
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B+ tree 
index entries 
(containing rows) 
that satisfy 
condition 



Computing Selection σ(attr  op  value) 

 Unclustered B+ tree index on attr  (for “=” or range 
search): 
 Locate first index entry corresponding to a row in 

which (attr = value).  
 Cost = depth of tree 

 Index entries with pointers to rows satisfying 
condition are packed in sequence in successive index 
pages 
 Scan entries and sort record Ids to identify table data pages 

with qualifying rows; Any page that has at least one such 
row must be fetched once. 

 Cost = number of rows that satisfy selection condition 
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Unclustered B+ Tree Index 
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index entries (containing row Ids) 
that satisfy condition 

data page 

Data file 

B+ Tree 



Computing Selection σ(attr  =  value) 
 Hash index on attr (for “=” search only): 
 Hash on value. Cost (of finding the right bucket) ≈ 1.2 

 1.2 – typical average cost of hashing  (> 1 due to possible overflow 
chains)  
 

 Finds first the (unique) bucket containing all index entries satisfying 
selection condition. Then,  

 Clustered index – all qualifying rows packed in the bucket (a few pages) 
 Cost: number of pages occupies by the bucket 
 Unclustered index – sort row Ids in the index entries to identify data 

pages with qualifying rows 
 Each page containing at least one such row must be fetched once 
 Cost: min(number of qualifying rows in bucket, number of pages in file) 
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Computing Selection σ(attr  =  value) 

 Unclustered hash index on attr  (for equality search) 
 

34 

Buffer=buckets 

data pages 



Access Path 

 Access path is the notion that denotes algorithm + data 
structure used to locate rows satisfying some condition 
 

 Examples: 
 File scan: can be used for any condition 
 Hash: equality search;  all search key attributes of hash index 

are specified in condition 
 B+ tree:  equality or range search; a prefix of the search key 

attributes are specified in condition 
 B+ tree supports a variety of access paths 

 Binary search: relation sorted on a sequence of attributes and 
some prefix of that sequence is specified in condition 

35 



Access Paths Supported by B+ tree 

 Example: Given a B+ tree whose search key is the 
sequence of attributes a2, a1, a3, a4  
 Access path for search σa1>5 AND a2=3 AND a3=‘x’ (R):  
 find first entry having a2=3 AND a1>5 AND a3=‘x’ and scan 

leaves from there until entry having a2>3 or a3 ≠ ‘x’.  Select 
satisfying entries 

 Access path for search σ a2=3 AND a3 >‘x’ (R):   
 locate first entry having a2=3 and scan leaves until entry 

having a2>3.  Select satisfying entries 

 Access path for search σ a1>5 AND a3 =‘x’ (R):   
 Scan of R 
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Choosing an Access Path 

 Selectivity of an access path = number of pages retrieved 
using that path 
 If several access paths support a query, DBMS chooses the one 

with lowest selectivity 
 Size of domain of attribute is an indicator of the selectivity of 

search conditions that involve that attribute 
 

 Example:  σ CrsCode=‘CS305’ AND Grade=‘B’ (Transcript) 
 Assume that we have two B+ trees; one with search key 

CrsCode, and the other with Grade 
 a B+ tree with search key CrsCode has lower selectivity than a 

B+ tree with search key Grade 
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Selections with Complex Conditions  

 Selection with conjunctive conditions 
 Use the most selective access path to retrieve the 

corresponding tuples  
 e.g., one condition is for an indexed attribute 

 Use several access paths that cover the expression 
 e.g., use the most selective first, and use the other ones.  

 Selection with disjunctive conditions 
 If the condition contain disjunctions, convert to disjunctive 

normal form. (disjunction of conjunctive conditions) 
 Check available access paths for the individual disjuncts and 

choose the appropriate strategy 
 e.g., what if a disjunct need file scan?  
 e.g., what if each disjunct has better access path than file scan?  

38 



Computing Joins 

 The cost of joining two relations makes the choice of a 
join algorithm crucial 

 Simple block-nested loops join algorithm for computing  
r        A=B s 
 
 
 
 

 If we do this in tuple level,  Page(R) + Tuple(R) * Page(S) 
 Consider that Page(R) = 1000, Page(S) = 100, tuple(R) = 10,000,  

 If outer loop is for R, 1000 + 10000*100 = 1,001,000 page transfer. --- too many… 
 If outer loop is for S, 
 100 + 1000*1000 = 1,000,100 page transfer. --- fewer, too many… 
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foreach page pr in r do 
     foreach page ps in s do 
         output pr           A=B  ps 



Block-Nested Loops Join 

 If βr and βs are the number of pages in r and s, the cost 
of algorithm is  

                   

          βr  +  βr ∗  βs  +  cost of outputting final result 
 

 If  r  and  s  have 103 pages each, 
 cost is 103 + 103 * 103 
 Choose smaller relation for the outer loop: 

 If βr < βs  then βr + βr∗ βs  <  βs + βr∗ βs 
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Number of scans of 
relation s 



Block-Nested Loops Join 

 Cost can be reduced to 
          βr  +  (βr/(M-2)) ∗ βs    +  cost of outputting final result 

    by using M buffer pages instead of 1. 
 

41 

Number of scans 
of relation s 



Block-Nested Loop Illustrated 
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Output 
buffer 

s 

r 

Input buffer for  s 

Input buffer for  r 

… and so on 

r         s 



Index-Nested Loop Join  r       A=B s 

 Use an index on s with search key B (instead of scanning 
s) to find rows of s that match tr 
 Cost  =  βr + τr ∗ ω + cost of outputting final result 
 

 
 Effective if number of rows of s that match tuples in r is small 

(i.e., ω  is small) and index is clustered 
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Number of 
rows in  r 

avg cost of retrieving all 
rows in  s  that match  tr 

foreach   tuple tr  in  r   do  { 
      use index to find all tuples ts in s satisfying tr.A=ts.B; 
      output (tr, ts)  
} 
 



Sort-Merge Join  r       A=B s 
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sort  r  on  A; 
sort  s  on  B; 
while !eof(r) and !eof(s) do { 
    Scan  r and s concurrently until tr.A = ts.B = c; 
    Output σA=c(r) × σB=c (s)  
} 

r 

s 

× 

σB=c (s)  

σA=c(r) 



Join During Merge Illustrated 
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Cost of Sort-Merge Join 

 Cost of sorting assuming M buffers:  
 2 βr log M-1 βr  +  2 βs log M-1 βs  
 

 Cost of merging: 
 Scanning σA=c(r) and σB=c (s) can be combined with the last step of 

sorting of r and s --- costs nothing 
 Cost of σA=c(r)×σB=c (s) depends on whether σA=c(r) can fit in the 

buffer 
 If yes, this step costs 0  
 In not, each σA=c(r)×σB=c (s) is computed using block-nested  join, so the 

cost is the cost of the join.  (Think why indexed methods or sort-merge 
are inapplicable to Cartesian product.) 

 Cost of  outputting the final result depends on the size 
of the result 
 46 



Hash-Join  r       A=B s 

 Step 1: Hash r on A and s on B into the same set of 
buckets 

 Step 2: Since matching tuples must be in same bucket, 
read each bucket in turn and output the result of the 
join 

 Cost:  3 (βr + βs ) + cost of output of final result 
 assuming each bucket fits in memory 
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Hash Join 

48 



Star Joins 

 r        cond1 r1        cond2 …        condn rn 
 Each  cond i  involves only the attributes of  ri  and  r 
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r 

r1 
r2 

r3 

r4 

r5 

cond1 cond2 

cond3 

cond4 

cond5 

Star 
relation Satellite 

relations 



Star Join 
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Computing Star Joins 

 Use join index 
 Scan r and the join index {<r,r1,…,rn>} (which is a set of tuples 

of rids) in one scan 
 Retrieve matching tuples in  r1,…,rn 

 Output result 
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Computing Star Joins 

 Use bitmap indices 
 Use one bitmapped join index,  Ji ,  per each partial join 
  r            condi ri  
 Recall:  Ji  is a set of  <v, bitmap>,  where v is an rid of a tuple 

in ri  and  bitmap has 1 in k-th position iff  k-th tuple of  r  
joins with the tuple pointed to by v 
 

1. Scan Ji  and logically OR all bitmaps.  We get all rids in r that 
join with ri 

2. Now logically AND the resulting bitmaps for J1, …, Jn. 
3. Result: a subset of  r, which contains all tuples that can 

possibly be in the star join  
 Rationale: only a few such tuples survive, so can use indexed loops 
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Computing Aggregated Functions 

 Require full scan 
 In case that tuples are grouped by attributes, 
 Need to partition relation with the attribute values 

 Sorting 
 Hashing 
 Indexing 

53 
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Choosing Indices 

 DBMSs may allow user to specify  
 Type (hash, B+ tree) and search key of index 
 Whether or not it should be clustered 

 
 Using information about the frequency and type of 

queries and size of tables, designer can use cost 
estimates to choose appropriate indices 

 
 Several commercial systems have tools that suggest 

indices 
 Simplifies job, but index suggestions must be verified 



Choosing Indices – Example 

 If a frequently executed query that involves selection or 
a join and has a large result set,  
 Use a clustered B+ tree index 
 e.g., Retrieve all rows of Transcript for StudId 

 If a frequently executed query is an equality search and 
has a small result set,  
 An unclustered hash index is best, since only one clustered 

index on a table is possible, choosing unclustered allows a 
different index to be clustered 

 e.g., Retrieve all rows of Transcript for (StudId, CrsCode) 

 

55 


	Lecture 19 (Chapter 10)�Query Processing: The Basics
	Query Processing Example
	Slide Number 4
	Slide Number 5
	How do we execute query?
	Slide Number 7
	Slide Number 8
	Relational Algebra - can be used to�				   describe plans...
	Another idea:
	Slide Number 11
	Plan III: Utilizing Index�
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	External Sorting
	External Sorting (cont’d)
	Simple Sort Algorithm
	Simple Sort Algorithm
	Merge: An Example
	Duplicate Elimination
	Duplicate elimination During Merge
	Sort-Based Projection
	Hash-Based Projection
	Comparison
	Computing Selection (attr  op  value)
	Computing Selection (attr  op  value)
	Computing Selection (attr  op  value)
	Unclustered B+ Tree Index
	Computing Selection (attr  =  value)
	Computing Selection (attr  =  value)
	Access Path
	Access Paths Supported by B+ tree
	Choosing an Access Path
	Selections with Complex Conditions 
	Computing Joins
	Block-Nested Loops Join
	Block-Nested Loops Join
	Block-Nested Loop Illustrated
	Index-Nested Loop Join  r       A=B s
	Sort-Merge Join  r       A=B s
	Join During Merge Illustrated
	Cost of Sort-Merge Join
	Hash-Join  r       A=B s
	Hash Join
	Star Joins
	Star Join
	Computing Star Joins
	Computing Star Joins
	Computing Aggregated Functions
	Choosing Indices
	Choosing Indices – Example

