-l

Stony Brook
Uhniversity

CSE 305/ CSES532

Lecture 19 (Chapter 10)
Query Processing: The Basics

Lecturer: Sael Lee

Slide adapted from the
author’s, Peter Bailis’s and Dr. llchul Yoon's slides.

Korea
T BT

Peter Bailis’s slides

Query Processing Example

Select B,D
From R,S
Where RA=“" A SSE=2 A R.C=S.C

Korea
3 M 7

Peter Bailis’s slides

Example cont.

R|IA | B | C SIC |D | E
a | 1 | 10 10 | x | 2
b | 1 | 20 20 |y | 2
c | 2 | 10 30z |2
d | 2 | 35 40 | x |1
e | 3 | 45 50 |y |3

Peter Bailis’s slides

Example cont.

R|A | B | C S|C |D |E
a | 1 | 10 10 | x |2
b | 1 | 20 20 |y |2
CBE 10 30 |z |2
d 2 35 40 | X 1
e | 3 | 45 50 |y |3

Answer B| D
2\ X

Peter Bailis’s slides

How do we execute query?

One idea> - Do Cartesian product
- Select tuples

- Do projection

CS 245 Notes 6 K
orea

RXS

Peter Bailis’s slides

RA|RB|R.C|S.C|SD|SE
a | 1 /10 |10 x | 2
a | 110 |20y | 2
C 210 |10 x | 2

Peter Bailis’s slides

RXS RA RBIRCISCI|SDI|SE
a | 110 |10 x | 2
a | 11020y | 2

Bingo! | :> 5 T_l\
Got one... xo/o A @

Peter Bailis’s slides

Relational Algebra - can be used to
describe plans...

Plan | I

GR.A:”c"/\ S.E=2 A R.C=S.C

X
R~ .S

OR: Ilgp [Ora=<c'rsE=2ArCc=5c (RXS)]

CS 245 Notes 6 Kuma

Another idea:

Plan |1

CS 245

Peter Bailis’s slides

1_IB,D
|
- > AN
Ora=we Ose-2
|
R S‘
Notes 6

10

>

natural join

Korea
. L

Peter Bailis’s slides

o 9 |>

O

o

Korea
11 M 7

Peter Bailis’s slides

Plan Ill: Utilizing Index

Use R.A and S.C Indexes
(1) Use R.A index to select R tuples with R.A = “c”

(2) For each R.C value found, use S.C index to find
matching tuples

(3) Eliminate S tuples S.E # 2

(4) Join matching R,S tuples, project B,D attributes
and place in result

CS 245 Notes 6 Kuma

12

Peter Bailis’s slides

R S
A C

a/l|10 10 x| 2

b|1|20 20 y| 2

c 2|10 30 z| 2

d 2|35 40 x| 1

e|3 45 50 iy B

CS 245 Notes 6 K
orea

13

Peter Bailis’s slides

R S
A=“c” C
alll|10 /(10 X 2
<c.2.10>
b|1|20 210 20 y| 2
c |2 |10 30 z| 2
d 2|35 40 x| 1
e 345 50 y 3

(1) Use R.A index to select R tuples with R.A = “Cc”

Korea
. L

14

Peter Bailis’s slides

R S

A—“C"

ABC4_ _,CDE

all|10 10 x| 2
<2 =

c |2 |10 30 z| 2

d2|35 40 x| 1

e |3 45 50 y 3

(2) For each R.C value found, use S.C index to
find matching tuples

Korea
. L

15

Peter Bailis’s slides

R S
A="C” C
al/l| 10 10 x| 2
<c,2
bl1/20 ~° 19> <10 20 y| 2
cl2 110 \G‘GCKZZ"%O 7| 2
d|2135 output: <2,x> 40 X1 1
e|3 |45 50 y B3

(3) Eliminate S tuples S.E # 2
(4) Join matching R,S tuples, project B,D attributes and place

IN result .
@ Korea

16

Peter Bailis’s slides

R S
A="c” C
a/l |10 10| x| 2
<c,2 I~
b|1|20 19 <10, 20 y| 2
c |2 |10 \G‘GCKZZ"’:&O z| 2
d|2|35 | output: <2,x> 40 X 1
€3 |45 néxt tuple: S0 y| 3
<c,/,15>

Korea
T BT

Peter Bailis’s slides

External Sorting

.|
e Sorting is used in implementing many relational

operations

e Problem:
e Relations are typically large, do not fit in main memory
e So cannot use traditional in-memory sorting algorithms

e Approach used:
e Combine in-memory sorting with clever techniques aimed at
minimizing I/O
e |/O costs dominate => cost of sorting algorithm is measured in
the number of page transfers

Korea
18 T

External Sorting (cont’d)

e External sorting has two main components:

e Computation involved in sorting records in buffers in main
memory

e |/O necessary to move records between mass store and main
memory

Korea
19 . L

Simple Sort Algorithm

e M = number of main memory page buffers
e F=number of pages in file to be sorted
e Typical algorithm has two phases:

e 1 Partial sort phase: sort M pages at a time; create
F/M sorted runs on mass store, cost = 2F

............................. - Original file
5 3 2 6 1 10 157@:2011 8 4 -
l Partially sorted file
2 3 5 6 1 7 01 1[4 s 120 -
N~),
'
run

Example: M=2,F=7

Korea
20 T

Simple Sort Algorithm

e 2 Merge Phase: merge all runs into a single run using
M-1 buffers for input and 1 output buffer
e Merge step: divide runs into groups of size M-1 and merge

each group into a run; cost = 2F
e FEach step reduces number of runs by a factor of M-1

|nput M pages BT S
l Run 1 —+| Buffer 1 \
Input
l Run 2 —+|
Buffer 2
M-1< . \ Output ——:-l Output Run
. . . . Buffer

| Input /
S —
\ l Run 'k Buffer k

FIGURE 10.2 k-way merge.

21 e

An Example

Merge

H
1
1
1
1
1
Korea
o

||||||

25

-

181

==

22

15

Aj
Aj

||||||

4

Duplicate Elimination

.|
e A major step in computing projection, union, and
difference relational operators

e Algorithm:
e Sort

e At the last stage of the merge step eliminate duplicates on the
fly
e No additional cost (with respect to sorting) in terms of |/O

Korea
24 T

Duplicate elimination During Merge

————————————————————————————

2 3|5 6 | 2 8 | [

A A A 81 35 i i

————————————————————————————

Key 3 ignored: duplicate
Key 5 ignored: duplicate

1
X I
Korea
. L

Sort-Based Projection

e Algorithm:

e Sort rows of relation at cost of 2F Log ,, ,F

e Eliminate unwanted columns in partial sort phase (no
additional cost)

e Eliminate duplicates on completion of last merge step (no
additional cost)

e Cost: the cost of sorting

Korea
26 . L

Hash-Based Projection

Phase 1:

Phase 2:

Input rows
Project out columns
Hash remaining columns using a

hash function with range 1...M-1
creating M-1 buckets on disk

Cost = 2F
I Input Run —+| LA [

Sort each bucket to eliminate

Hash
Function

*

b
" i
L
®
®
w
+
¥
+

4

- S

Hash
Table

L | Bucket M —1

d u pl Icates FIGURE 10.5 Hashing input relation into buckets.
Cost (assuming a bucket fits in M-1

buffer pages) = 2F

Total cost = 4F

27

Korea
ISR Ed: - el

Comparison

|
e Assume

e M=10000-page buffer (40MB) < use as hash table
e We have F=103-page file to process (400GB = 40M*10000)

e Hash-based projection
o 4*%108
e Sort-based projection
o 2Flogm-1)F =2x10°% xlog,gs_,10° = 4 x 10°

e However, it requires

e Even distribution from hash function
_ Korea
® In-memory sort of each bucket

Computing Selection G, o5 value)

e No index on attr:

e If rows are not sorted on attr:

e Scan all data pages to find rows satisfying selection
condition

o Cost=F
e If rows are sorted on attr and op is =, >, < then:

e Use binary search (atlog, F) to locate first data page
containing row in which (attr = value)

e Scan further to get all rows satisfying (attr op value)
e Cost =log, F + (cost of scan)

Korea
. L

29

Computing Selection G, o5 value)

.|
e Clustered B* tree index on attr (for “=” or range
search):
e Locate first index entry corresponding to a row in
which (attr = value).
e Cost = depth of tree
e Rows satisfying condition packed in sequence in
successive data pages; scan those pages.

e Cost: number of pages occupied by qualifying rows

B* tree ' |
€-f----m---e- |ndeX entries

(containing rows)
that satisfy

condition Kuma

30

Computing Selection o(attr op value)

“u_n

e Unclustered B* tree index on attr (for “=" or range
search):

e lLocate first index entry corresponding to a row in
which (attr = value).
e Cost = depth of tree

e Index entries with pointers to rows satisfying
condition are packed in sequence in successive index
pages
e Scan entries and sort record Ids to identify table data pages

with qualifying rows; Any page that has at least one such
row must be fetched once.

e Cost = number of rows that satisfy selection condition
Korea

31

Unclustered B* Tree Index

Index entries (containing row Ids)
that satisfy condition

} data page

\ T Datafile |

Korea
32 . L

Computing Selection G4, -

value)

(“_n

e Hash index on attr (for “=" search only):

e Hash on value. Cost (of finding the right bucket) ~ 1.2

e 1.2 —typical average cost of hashing (> 1 due to possible overflow
chains)

e Finds first the (unique) bucket containing all index entries satisfying
selection condition. Then,

e C(Clustered index — all qualifying rows packed in the bucket (a few pages)

Cost: number of pages occupies by the bucket

e Unclustered index — sort row Ids in the index entries to identify data
pages with qualifying rows

Each page containing at least one such row must be fetched once
Cost: min(number of qualifying rows in bucket, number of pages in file)

Korea
33 T

Computing Selection 6,4, - yarye)

.|
e Unclustered hash index on attr (for equality search)

=T

Buffer=buckets

data pages

Korea
34 T

Access Path

e Access path is the notion that denotes algorithm + data
structure used to locate rows satisfying some condition

e Examples:

File scan: can be used for any condition

Hash: equality search; all search key attributes of hash index
are specified in condition

B* tree: equality or range search; a prefix of the search key
attributes are specified in condition

e B*tree supports a variety of access paths

Binary search: relation sorted on a sequence of attributes and
some prefix of that sequence is specified in condition

Korea
35 T

Access Paths Supported by B* tree

e Example: Given a B* tree whose search key is the
sequence of attributes a2, a1, a3, a4
e Access path for search ;. c wo g2-3 avo g3= (R):

e find first entry having a2=3 ano a1>5 ano a3="%" and scan

leaves from there until entry having a2>3 or a3 = %’. Select
satisfying entries

e Access path for search o _,_; amo 4354 (R):

e |ocate first entry having a2=3 and scan leaves until entry
having a2>3. Select satisfying entries

e Access path for search o ;.5 anp 4324 (R):
e Scan of R

Korea
36 T

Choosing an Access Path

e Selectivity of an access path = number of pages retrieved
using that path

e If several access paths support a query, DBMS chooses the one
with lowest selectivity

e Size of domain of attribute is an indicator of the selectivity of
search conditions that involve that attribute

¢ Example: O Crscode='cS305 AND Grade='B’ (Transcript)

e Assume that we have two B* trees; one with search key
CrsCode, and the other with Grade

e a B*tree with search key CrsCode has lower selectivity than a
B* tree with search key Grade

Korea
37 T

Selections with Complex Conditions

.|
e Selection with conjunctive conditions

e Use the most selective access path to retrieve the
corresponding tuples
e e.g., one condition is for an indexed attribute

e Use several access paths that cover the expression
e e.g., use the most selective first, and use the other ones.
e Selection with disjunctive conditions

e If the condition contain disjunctions, convert to disjunctive
normal form. (disjunction of conjunctive conditions)

e Check available access paths for the individual disjuncts and
choose the appropriate strategy
e e.g.,, whatif a disjunct need file scan?
e e.g., whatif each disjunct has better access path than file scan?
Korea

38

Computing Joins
.|
e The cost of joining two relations makes the choice of a

join algorithm crucial

e Simple block-nested loops join algorithm for computing
r D<lagS

foreach page p, inr do
foreach page p. in s do

OUtpUt pr |><| A=B ps

e If we do thisin tuple level, Page(R) + Tuple(R) * Page(S)

e Consider that Page(R) = 1000, Page(S) = 100, tuple(R) = 10,000,
e Ifouterloop is for R, 1000 + 10000*100 = 1,001,000 page transfer. --- too many...
e Ifouterloopis forsS,
e 100+ 1000*1000 = 1,000,100 page transfer. --- fewer, too many...

Korea
39 . L

Block-Nested Loops Join

-
e If B, and [3; are the number of pages in r and s, the cost

of algorlthm IS i Number of scans of

----------------------- \ relation S

__

e If r and s have 103 pages each,
costis 103 + 103 * 103
e Choose smaller relation for the outer loop:

® IfBr<Bs then Br"'Br* Bs< Bs-l-Br>X< Bs

Korea
40 TN T

Block-Nested Loops Join

e Cost can be reduced to Number of scans

________________________________ . of relation s

\

by using M buffer pages mstead of 1.

Input Buffer for r

.||T|T v

\ Qutput Buffer /’l ress
e e P i

Input Buffer for s

FIGURE 10.6 Block-nested loops join.

Korea
41 T BT

Block-Nested Loop Illustrated

————————————————————————————— R
__________________ 4

- -~

r
r><is
A A A N
>
N

T H B

A A A KN .and so on
Input buffer for S Output

Korea
42 T BT

Index-Nested Loop Join r ™ ,_.s

.|
e Use an index on s with search key B (instead of scanning
s) to find rows of s that match t,

e Cost = [3 TRt cost of outputting final result

~~~~~

_______________________________________________

, ) avg cost of retrieving all |
. Number of | . h n |
rowsin r | rows in s that match t,

___________________________________________________________________

e Effective if number of rows of s that match tuples in r is small
(i.e., ® is small) and index is clustered

foreach tuplet, in r do {
use index to find all tuples t. in s satisfying t.A=t..B;
output (t, t,)

Korea
43 . L




Sort-Merge Join r X ;s

sort r on A;

sort s on B;

while !leof(r) and !eof(s) do {
Scan r and s concurrently until t.A=1t.B =c;
Output 6,-.(r) x og- (S)

}

GA:c(r)

T

OB =c(S )

Korea
44 . L




Join During Merge lllustrated

I

N\

D |1
A PP gQg s ssuu vy

W YR
1313 8 7 3 575757
N_» PpPppPpP SSS uuuuuu
PPPP SSS UUUUUU
4004

v vvv v vv/ (77 225500

B [pp r s tt uuu X
E |40 9 7 25 250

o

/ r MA:B S

S
Korea
45 T BT




Cost of Sort-Merge Join

e Cost of sorting assuming M buffers:
o 2 Brlog M-1 Br + 2 Bs Iog M-1 Bs

e Cost of merging:

e Scanning s,_(r) and o, (s) can be combined with the last step of
sorting of r and s --- costs nothing

e Cost of o, (r)xcy. (s) depends on whether 5,_(r) can fit in the
buffer
e If yes, this step costs 0

e In not, each o,_(r)xc,_. (s) is computed using block-nested join, so the
cost is the cost of the join. (Think why indexed methods or sort-merge
are inapplicable to Cartesian product.)

e Cost of outputting the final result depends on the size

of the result
Korea
46 T




Hash-Join r >, ;s

e Step 1: Hash r on A and s on B into the same set of
buckets

e Step 2: Since matching tuples must be in same bucket,
read each bucket in turn and output the result of the
join

e Cost: 3 (B, + 3 ) + cost of output of final result
e assuming each bucket fits in memory

Korea
47 TN T



Hash Join

r
Input Buffer for r r r D><]
p _é__-_é ------8-1 ----- A=B r1 MS‘l
[ 1 D 1
_+ \ . ‘s\ . \
Hash . Hash ’
. Function : Table - Buckets
S _')"l \ . "o" }:‘
Input Buffer for s ‘ga“—_>}‘““§:;““+,,r A=B Fn>I8p
B T [ A %
" staget”” T Stage 2™

Korea
48 T BT




Star Joins

® I < r, <

r

> condn " n

conds condy ***

e Each cond,; involves only the attributes of r; and r

I
I
Condl cond SR .
e e 2 " star |
| Satellite - “""rﬂ"““ﬂﬂﬂﬂm"; relation |
L rebﬂonsrj [ cemeszEEIIIIIIIIIt oo osmm TS e ;
) . . Cond5 Cond3 r3
S
[ cond,
[y

Korea
49 TN T




Star Join

COURSE TEACHING
I CrsCode Deptld CrsName | Description l Profld CrsCode Semester
TRANSCRIPT  “>~.__
Studld CrsCode Semester Grade
i
:
|
]
E
! STUDENT
Id Name Status Address

@ l{urea_
50 ISR Ed: - el



Computing Star Joins

.|
e Use join index

e Scanr and the join index {<r,r,,...,r,>} (which is a set of tuples
of rids) in one scan

e Retrieve matching tuplesin r,,....r,
e Output result

Korea
51 . L




Computing Star Joins

|
e Use bitmap indices
e Use one bitmapped join index, J;, per each partial join
r =< cond, ri

e Recall: J; is aset of <v, bitmap>, where vis an rid of a tuple
inr, and bitmap has 1 in k-th position iff k-th tuple of r
joins with the tuple pointed to by v

1. Scan J; and logically OR all bitmaps. We get all rids in r that
join with r,

2. Now logically AND the resulting bitmaps forJ,, ..., J..

3. Result: a subset of r, which contains all tuples that can

possibly be in the star join
e Rationale: only a few such tuples survive, so can use indexed loops

Korea
. L

52




Computing Aggregated Functions

e Require full scan
e In case that tuples are grouped by attributes,

e Need to partition relation with the attribute values
e Sorting
e Hashing
e Indexing

Korea
53 . L




Choosing Indices

.|
e DBMSs may allow user to specify

e Type (hash, B* tree) and search key of index
e Whether or not it should be clustered

e Using information about the frequency and type of
gueries and size of tables, designer can use cost
estimates to choose appropriate indices

e Several commercial systems have tools that suggest
indices

e Simplifies job, but index suggestions must be verified

Korea
54 . L




Choosing Indices — Example

.|
e If a frequently executed query that involves selection or
a join and has a large result set,

e Use a clustered B* tree index
e e.g., Retrieve all rows of Transcript for Studld

e If a frequently executed query is an equality search and
has a small result set,

e An unclustered hash index is best, since only one clustered
index on a table is possible, choosing unclustered allows a
different index to be clustered

e e.g., Retrieve all rows of Transcript for (Studld, CrsCode)

Korea
55 T




	Lecture 19 (Chapter 10)�Query Processing: The Basics
	Query Processing Example
	Slide Number 4
	Slide Number 5
	How do we execute query?
	Slide Number 7
	Slide Number 8
	Relational Algebra - can be used to�				   describe plans...
	Another idea:
	Slide Number 11
	Plan III: Utilizing Index�
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	External Sorting
	External Sorting (cont’d)
	Simple Sort Algorithm
	Simple Sort Algorithm
	Merge: An Example
	Duplicate Elimination
	Duplicate elimination During Merge
	Sort-Based Projection
	Hash-Based Projection
	Comparison
	Computing Selection (attr  op  value)
	Computing Selection (attr  op  value)
	Computing Selection (attr  op  value)
	Unclustered B+ Tree Index
	Computing Selection (attr  =  value)
	Computing Selection (attr  =  value)
	Access Path
	Access Paths Supported by B+ tree
	Choosing an Access Path
	Selections with Complex Conditions 
	Computing Joins
	Block-Nested Loops Join
	Block-Nested Loops Join
	Block-Nested Loop Illustrated
	Index-Nested Loop Join  r       A=B s
	Sort-Merge Join  r       A=B s
	Join During Merge Illustrated
	Cost of Sort-Merge Join
	Hash-Join  r       A=B s
	Hash Join
	Star Joins
	Star Join
	Computing Star Joins
	Computing Star Joins
	Computing Aggregated Functions
	Choosing Indices
	Choosing Indices – Example

