
Ilchul Yoon
Assistant Professor

State University of New York, Korea

CSE 532 – Theory of Database Systems

Adapted from book authors’ slides

Lecture 19 (Chapter 10)
Query Processing: The Basics

CSE 305 / CSE532

Lecturer: Sael Lee

Slide adapted from the
author’s, Peter Bailis’s and Dr. Ilchul Yoon’s slides.

3

Query Processing Example

 Select B,D
 From R,S
 Where R.A = “c” ∧ S.E = 2 ∧ R.C=S.C

Peter Bailis’s slides

4

 R A B C S C D E

 a 1 10 10 x 2

 b 1 20 20 y 2

 c 2 10 30 z 2

 d 2 35 40 x 1

 e 3 45 50 y 3

Peter Bailis’s slides

Example cont.

5

 R A B C S C D E

 a 1 10 10 x 2

 b 1 20 20 y 2

 c 2 10 30 z 2

 d 2 35 40 x 1

 e 3 45 50 y 3

Answer B D
 2 x

Peter Bailis’s slides

Example cont.

CS 245 Notes 6
6

How do we execute query?

 - Do Cartesian product
 - Select tuples
 - Do projection

One idea

Peter Bailis’s slides

7

RXS R.A R.B R.C S.C S.D S.E

 a 1 10 10 x 2

 a 1 10 20 y 2
 .
 .

 C 2 10 10 x 2
 .
 .

Peter Bailis’s slides

8

RXS R.A R.B R.C S.C S.D S.E

 a 1 10 10 x 2

 a 1 10 20 y 2
 .
 .

 C 2 10 10 x 2
 .
 .

Bingo!

Got one...

Peter Bailis’s slides

CS 245 Notes 6
9

Relational Algebra - can be used to
 describe plans...

 ΠB,D

 σR.A=“c”∧ S.E=2 ∧ R.C=S.C

 X
 R S

OR: ΠB,D [σR.A=“c”∧ S.E=2 ∧ R.C = S.C (RXS)]

Peter Bailis’s slides

Plan I

CS 245 Notes 6
10

Another idea:

 ΠB,D

 σR.A = “c” σS.E = 2

 R S

Plan II

 natural join

Peter Bailis’s slides

11

 R S

A B C σ (R) σ(S) C D E

a 1 10 A B C C D E 10 x 2
b 1 20 c 2 10 10 x 2 20 y 2
c 2 10 20 y 2 30 z 2
d 2 35 30 z 2 40 x 1
e 3 45 50 y 3

Peter Bailis’s slides

CS 245 Notes 6
12

Plan III: Utilizing Index

Peter Bailis’s slides

Use R.A and S.C Indexes
 (1) Use R.A index to select R tuples with R.A = “c”
 (2) For each R.C value found, use S.C index to find

matching tuples

 (3) Eliminate S tuples S.E ≠ 2
 (4) Join matching R,S tuples, project B,D attributes

and place in result

CS 245 Notes 6
13

 R S

A B C C D E

a 1 10 10 x 2
b 1 20 20 y 2
c 2 10 30 z 2
d 2 35 40 x 1
e 3 45 50 y 3

A C
I1 I2

Peter Bailis’s slides

14

 R S

A B C C D E

a 1 10 10 x 2
b 1 20 20 y 2
c 2 10 30 z 2
d 2 35 40 x 1
e 3 45 50 y 3

A C
I1 I2

=“c”

<c,2,10>

Peter Bailis’s slides

(1) Use R.A index to select R tuples with R.A = “c”

15

 R S

A B C C D E

a 1 10 10 x 2
b 1 20 20 y 2
c 2 10 30 z 2
d 2 35 40 x 1
e 3 45 50 y 3

A C
I1 I2

=“c”

<c,2,10> <10,x,2>

Peter Bailis’s slides

(2) For each R.C value found, use S.C index to
find matching tuples

16

 R S

A B C C D E

a 1 10 10 x 2
b 1 20 20 y 2
c 2 10 30 z 2
d 2 35 40 x 1
e 3 45 50 y 3

A C
I1 I2

=“c”

<c,2,10> <10,x,2>
check=2?

output: <2,x>

Peter Bailis’s slides

(3) Eliminate S tuples S.E ≠ 2
(4) Join matching R,S tuples, project B,D attributes and place
in result

17

 R S

A B C C D E

a 1 10 10 x 2
b 1 20 20 y 2
c 2 10 30 z 2
d 2 35 40 x 1
e 3 45 50 y 3

A C
I1 I2

=“c”

<c,2,10> <10,x,2>
check=2?

output: <2,x>

next tuple:
<c,7,15>

Peter Bailis’s slides

External Sorting

 Sorting is used in implementing many relational
operations

 Problem:
 Relations are typically large, do not fit in main memory
 So cannot use traditional in-memory sorting algorithms

 Approach used:
 Combine in-memory sorting with clever techniques aimed at

minimizing I/O
 I/O costs dominate => cost of sorting algorithm is measured in

the number of page transfers

18

Peter Bailis’s slides

External Sorting (cont’d)

 External sorting has two main components:
 Computation involved in sorting records in buffers in main

memory
 I/O necessary to move records between mass store and main

memory

19

Simple Sort Algorithm
 M = number of main memory page buffers
 F = number of pages in file to be sorted
 Typical algorithm has two phases:
 1 Partial sort phase: sort M pages at a time; create

F/M sorted runs on mass store, cost = 2F

20

Example: M = 2, F = 7 run

Original file

Partially sorted file

5 3 2 6 1 10 15 7 20 11 8 4 7 5

2 3 5 6 1 7 10 15 4 8 11 20 5 7

Simple Sort Algorithm

 2 Merge Phase: merge all runs into a single run using
M-1 buffers for input and 1 output buffer
 Merge step: divide runs into groups of size M-1 and merge

each group into a run; cost = 2F
 Each step reduces number of runs by a factor of M-1

21

M pages
Buffer

M-1

Merge: An Example

22

2 3 5 6

1 7 10 15

Input buffers
Output buffer

1 2 3 5 6 7 10 15

2 3

1 7

5 6

10 15

1 2 3 5 6 7 10 15

Output run Input runs

Duplicate Elimination

 A major step in computing projection, union, and
difference relational operators

 Algorithm:
 Sort
 At the last stage of the merge step eliminate duplicates on the

fly
 No additional cost (with respect to sorting) in terms of I/O

24

Duplicate elimination During Merge

25

2 3 5 6

1 3 5 15

Input buffers
Output buffer

1 2 3 5 6 15

2 3

1 3

5 6

5 15

1 2 3 5 6 15

Output run Input runs Last key
used

1 2 15 3 5 6

Key 3 ignored: duplicate

Key 5 ignored: duplicate

26

Sort-Based Projection

 Algorithm:
 Sort rows of relation at cost of 2F Log M-1F
 Eliminate unwanted columns in partial sort phase (no

additional cost)
 Eliminate duplicates on completion of last merge step (no

additional cost)

 Cost: the cost of sorting

27

Hash-Based Projection

 Phase 1:
 Input rows
 Project out columns
 Hash remaining columns using a

hash function with range 1…M-1
creating M-1 buckets on disk

 Cost = 2F
 Phase 2:
 Sort each bucket to eliminate

duplicates
 Cost (assuming a bucket fits in M-1

buffer pages) = 2F

 Total cost = 4F

Comparison

 Assume
 M=10000-page buffer (40MB)  use as hash table
 We have F=108-page file to process (400GB = 40M*10000)

 Hash-based projection
 4*108

 Sort-based projection
 2𝐹𝑙𝑙𝑙(𝑀−1)𝐹 = 2 × 108 × 𝑙𝑙𝑙104−1108 ≥ 4 × 108

 However, it requires
 Even distribution from hash function
 In-memory sort of each bucket

28

Computing Selection σ(attr op value)

 No index on attr:
 If rows are not sorted on attr:
 Scan all data pages to find rows satisfying selection

condition
 Cost = F

 If rows are sorted on attr and op is =, >, < then:
 Use binary search (at log2 F) to locate first data page

containing row in which (attr = value)
 Scan further to get all rows satisfying (attr op value)
 Cost = log2 F + (cost of scan)

29

Computing Selection σ(attr op value)

 Clustered B+ tree index on attr (for “=” or range
search):
 Locate first index entry corresponding to a row in

which (attr = value).
 Cost = depth of tree

 Rows satisfying condition packed in sequence in
successive data pages; scan those pages.
 Cost: number of pages occupied by qualifying rows

30

B+ tree
index entries
(containing rows)
that satisfy
condition

Computing Selection σ(attr op value)

 Unclustered B+ tree index on attr (for “=” or range
search):
 Locate first index entry corresponding to a row in

which (attr = value).
 Cost = depth of tree

 Index entries with pointers to rows satisfying
condition are packed in sequence in successive index
pages
 Scan entries and sort record Ids to identify table data pages

with qualifying rows; Any page that has at least one such
row must be fetched once.

 Cost = number of rows that satisfy selection condition

 31

Unclustered B+ Tree Index

32

index entries (containing row Ids)
that satisfy condition

data page

Data file

B+ Tree

Computing Selection σ(attr = value)
 Hash index on attr (for “=” search only):
 Hash on value. Cost (of finding the right bucket) ≈ 1.2

 1.2 – typical average cost of hashing (> 1 due to possible overflow
chains)

 Finds first the (unique) bucket containing all index entries satisfying
selection condition. Then,

 Clustered index – all qualifying rows packed in the bucket (a few pages)
 Cost: number of pages occupies by the bucket
 Unclustered index – sort row Ids in the index entries to identify data

pages with qualifying rows
 Each page containing at least one such row must be fetched once
 Cost: min(number of qualifying rows in bucket, number of pages in file)

33

Computing Selection σ(attr = value)

 Unclustered hash index on attr (for equality search)

34

Buffer=buckets

data pages

Access Path

 Access path is the notion that denotes algorithm + data
structure used to locate rows satisfying some condition

 Examples:
 File scan: can be used for any condition
 Hash: equality search; all search key attributes of hash index

are specified in condition
 B+ tree: equality or range search; a prefix of the search key

attributes are specified in condition
 B+ tree supports a variety of access paths

 Binary search: relation sorted on a sequence of attributes and
some prefix of that sequence is specified in condition

35

Access Paths Supported by B+ tree

 Example: Given a B+ tree whose search key is the
sequence of attributes a2, a1, a3, a4
 Access path for search σa1>5 AND a2=3 AND a3=‘x’ (R):
 find first entry having a2=3 AND a1>5 AND a3=‘x’ and scan

leaves from there until entry having a2>3 or a3 ≠ ‘x’. Select
satisfying entries

 Access path for search σ a2=3 AND a3 >‘x’ (R):
 locate first entry having a2=3 and scan leaves until entry

having a2>3. Select satisfying entries

 Access path for search σ a1>5 AND a3 =‘x’ (R):
 Scan of R

36

Choosing an Access Path

 Selectivity of an access path = number of pages retrieved
using that path
 If several access paths support a query, DBMS chooses the one

with lowest selectivity
 Size of domain of attribute is an indicator of the selectivity of

search conditions that involve that attribute

 Example: σ CrsCode=‘CS305’ AND Grade=‘B’ (Transcript)
 Assume that we have two B+ trees; one with search key

CrsCode, and the other with Grade
 a B+ tree with search key CrsCode has lower selectivity than a

B+ tree with search key Grade

 37

Selections with Complex Conditions

 Selection with conjunctive conditions
 Use the most selective access path to retrieve the

corresponding tuples
 e.g., one condition is for an indexed attribute

 Use several access paths that cover the expression
 e.g., use the most selective first, and use the other ones.

 Selection with disjunctive conditions
 If the condition contain disjunctions, convert to disjunctive

normal form. (disjunction of conjunctive conditions)
 Check available access paths for the individual disjuncts and

choose the appropriate strategy
 e.g., what if a disjunct need file scan?
 e.g., what if each disjunct has better access path than file scan?

38

Computing Joins

 The cost of joining two relations makes the choice of a
join algorithm crucial

 Simple block-nested loops join algorithm for computing
r A=B s

 If we do this in tuple level, Page(R) + Tuple(R) * Page(S)
 Consider that Page(R) = 1000, Page(S) = 100, tuple(R) = 10,000,

 If outer loop is for R, 1000 + 10000*100 = 1,001,000 page transfer. --- too many…
 If outer loop is for S,
 100 + 1000*1000 = 1,000,100 page transfer. --- fewer, too many…

39

foreach page pr in r do
 foreach page ps in s do
 output pr A=B ps

Block-Nested Loops Join

 If βr and βs are the number of pages in r and s, the cost
of algorithm is

 βr + βr ∗ βs + cost of outputting final result

 If r and s have 103 pages each,
 cost is 103 + 103 * 103
 Choose smaller relation for the outer loop:

 If βr < βs then βr + βr∗ βs < βs + βr∗ βs

40

Number of scans of
relation s

Block-Nested Loops Join

 Cost can be reduced to
 βr + (βr/(M-2)) ∗ βs + cost of outputting final result

 by using M buffer pages instead of 1.

41

Number of scans
of relation s

Block-Nested Loop Illustrated

42

Output
buffer

s

r

Input buffer for s

Input buffer for r

… and so on

r s

Index-Nested Loop Join r A=B s

 Use an index on s with search key B (instead of scanning
s) to find rows of s that match tr
 Cost = βr + τr ∗ ω + cost of outputting final result

 Effective if number of rows of s that match tuples in r is small

(i.e., ω is small) and index is clustered

43

Number of
rows in r

avg cost of retrieving all
rows in s that match tr

foreach tuple tr in r do {
 use index to find all tuples ts in s satisfying tr.A=ts.B;
 output (tr, ts)
}

Sort-Merge Join r A=B s

44

sort r on A;
sort s on B;
while !eof(r) and !eof(s) do {
 Scan r and s concurrently until tr.A = ts.B = c;
 Output σA=c(r) × σB=c (s)
}

r

s

×

σB=c (s)

σA=c(r)

Join During Merge Illustrated

45

1 3
p p

r

s

D
A

B
E

p p
4 0

0 9
q q

r
9

8 7 3
s s s

s
7

t t
2 5

u u u
2 5 0

5 7
u u

1 1
v v

x
0

1 3 1 3
p p p p
p p p p
4 0 0 4

8 7 3
s s s
s s s
7 7 7

5 7 5 7 5 7
u u u u u u
u u u u u u
2 2 5 5 0 0

r A=B s

Cost of Sort-Merge Join

 Cost of sorting assuming M buffers:
 2 βr log M-1 βr + 2 βs log M-1 βs

 Cost of merging:
 Scanning σA=c(r) and σB=c (s) can be combined with the last step of

sorting of r and s --- costs nothing
 Cost of σA=c(r)×σB=c (s) depends on whether σA=c(r) can fit in the

buffer
 If yes, this step costs 0
 In not, each σA=c(r)×σB=c (s) is computed using block-nested join, so the

cost is the cost of the join. (Think why indexed methods or sort-merge
are inapplicable to Cartesian product.)

 Cost of outputting the final result depends on the size
of the result
 46

Hash-Join r A=B s

 Step 1: Hash r on A and s on B into the same set of
buckets

 Step 2: Since matching tuples must be in same bucket,
read each bucket in turn and output the result of the
join

 Cost: 3 (βr + βs) + cost of output of final result
 assuming each bucket fits in memory

47

Hash Join

48

Star Joins

 r cond1 r1 cond2 … condn rn
 Each cond i involves only the attributes of ri and r

49

r

r1
r2

r3

r4

r5

cond1 cond2

cond3

cond4

cond5

Star
relation Satellite

relations

Star Join

50

Computing Star Joins

 Use join index
 Scan r and the join index {<r,r1,…,rn>} (which is a set of tuples

of rids) in one scan
 Retrieve matching tuples in r1,…,rn

 Output result

51

Computing Star Joins

 Use bitmap indices
 Use one bitmapped join index, Ji , per each partial join
 r condi ri
 Recall: Ji is a set of <v, bitmap>, where v is an rid of a tuple

in ri and bitmap has 1 in k-th position iff k-th tuple of r
joins with the tuple pointed to by v

1. Scan Ji and logically OR all bitmaps. We get all rids in r that
join with ri

2. Now logically AND the resulting bitmaps for J1, …, Jn.
3. Result: a subset of r, which contains all tuples that can

possibly be in the star join
 Rationale: only a few such tuples survive, so can use indexed loops

52

Computing Aggregated Functions

 Require full scan
 In case that tuples are grouped by attributes,
 Need to partition relation with the attribute values

 Sorting
 Hashing
 Indexing

53

54

Choosing Indices

 DBMSs may allow user to specify
 Type (hash, B+ tree) and search key of index
 Whether or not it should be clustered

 Using information about the frequency and type of

queries and size of tables, designer can use cost
estimates to choose appropriate indices

 Several commercial systems have tools that suggest

indices
 Simplifies job, but index suggestions must be verified

Choosing Indices – Example

 If a frequently executed query that involves selection or
a join and has a large result set,
 Use a clustered B+ tree index
 e.g., Retrieve all rows of Transcript for StudId

 If a frequently executed query is an equality search and
has a small result set,
 An unclustered hash index is best, since only one clustered

index on a table is possible, choosing unclustered allows a
different index to be clustered

 e.g., Retrieve all rows of Transcript for (StudId, CrsCode)

55

	Lecture 19 (Chapter 10)�Query Processing: The Basics
	Query Processing Example
	Slide Number 4
	Slide Number 5
	How do we execute query?
	Slide Number 7
	Slide Number 8
	Relational Algebra - can be used to�				 describe plans...
	Another idea:
	Slide Number 11
	Plan III: Utilizing Index�
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	External Sorting
	External Sorting (cont’d)
	Simple Sort Algorithm
	Simple Sort Algorithm
	Merge: An Example
	Duplicate Elimination
	Duplicate elimination During Merge
	Sort-Based Projection
	Hash-Based Projection
	Comparison
	Computing Selection (attr op value)
	Computing Selection (attr op value)
	Computing Selection (attr op value)
	Unclustered B+ Tree Index
	Computing Selection (attr = value)
	Computing Selection (attr = value)
	Access Path
	Access Paths Supported by B+ tree
	Choosing an Access Path
	Selections with Complex Conditions
	Computing Joins
	Block-Nested Loops Join
	Block-Nested Loops Join
	Block-Nested Loop Illustrated
	Index-Nested Loop Join r A=B s
	Sort-Merge Join r A=B s
	Join During Merge Illustrated
	Cost of Sort-Merge Join
	Hash-Join r A=B s
	Hash Join
	Star Joins
	Star Join
	Computing Star Joins
	Computing Star Joins
	Computing Aggregated Functions
	Choosing Indices
	Choosing Indices – Example

