CSE 305 / CSE532

Lecture 19 (Chapter 10)
 Query Processing: The Basics

Lecturer: Sael Lee

Slide adapted from the
author's, Peter Bailis's and Dr. Ilchul Yoon's slides.

Query Processing Example

Select B,D
 From R,S
 Where R.A $=$ " c " $\wedge S . E=2 \wedge R . C=S . C$

Example cont.

Example cont.

How do we execute query?

One idea

- Do Cartesian product
 - Select tuples
 - Do projection

RXS

R.A	R.B	R.C	S.C	S.D	S.E
\mathbf{a}	$\mathbf{1}$	$\mathbf{1 0}$	$\mathbf{1 0}$	\mathbf{x}	2
\mathbf{a}	$\mathbf{1}$	$\mathbf{1 0}$	$\mathbf{2 0}$	\mathbf{y}	2
\cdot					
•					
C	2	$\mathbf{1 0}$	$\mathbf{1 0}$	\mathbf{x}	2
\cdot					

Peter Bailis's slides

RXS \mid R.A \mid R.B \mid R.C \mid S.C \mid S.D \mid S.E

Relational Algebra - can be used to

describe plans...

Plan I

$\sigma_{R . A}=" C " \wedge S . E=2 \wedge R . C=S . C$
x

OR: $\Pi_{B, D}\left[\sigma_{R . A=" c " \wedge S . E=2 \wedge R . C=s . C}(R X S)\right]$

Another idea:

Plan II

natural join

11

Plan III: Utilizing Index

Use R.A and S.C Indexes
(1) Use R.A index to select R tuples with R.A = " c " (2) For each R.C value found, use S.C index to find matching tuples
(3) Eliminate S tuples $S . E \neq 2$
(4) Join matching R,S tuples, project B,D attributes and place in result

R

A	B	B C
a	1	10
b	1	20
c	2	10
d	2	35
e	3	45

(1) Use R.A index to select R tuples with R.A = "C"

(2) For each R.C value found, use S.C index to find matching tuples

(3) Eliminate S tuples $S . E \neq 2$
(4) Join matching R,S tuples, project B,D attributes and place in result

External Sorting

- Sorting is used in implementing many relational operations
- Problem:
- Relations are typically large, do not fit in main memory
- So cannot use traditional in-memory sorting algorithms
- Approach used:
- Combine in-memory sorting with clever techniques aimed at minimizing l/O
- I/O costs dominate => cost of sorting algorithm is measured in the number of page transfers

External Sorting (cont'd)

- External sorting has two main components:
- Computation involved in sorting records in buffers in main memory
- I/O necessary to move records between mass store and main memory

Simple Sort Algorithm

- $M=$ number of main memory page buffers
- $F=$ number of pages in file to be sorted
- Typical algorithm has two phases:
- 1 Partial sort phase: sort M pages at a time; create F / M sorted runs on mass store, cost $=2 F$

Original file

Partially sorted file

Example: $M=2, F=7$

Simple Sort Algorithm

- 2 Merge Phase: merge all runs into a single run using M-1 buffers for input and 1 output buffer
- Merge step: divide runs into groups of size M-1 and merge each group into a run; cost $=2 F$
- Each step reduces number of runs by a factor of $M-1$

FIGURE 10.2 k-way merge.

Merge: An Example

Duplicate Elimination

- A major step in computing projection, union, and difference relational operators
- Algorithm:
- Sort
- At the last stage of the merge step eliminate duplicates on the fly
- No additional cost (with respect to sorting) in terms of I/O

Duplicate elimination During Merge

Sort-Based Projection

- Algorithm:
- Sort rows of relation at cost of $2 F \log _{M-1} F$
- Eliminate unwanted columns in partial sort phase (no additional cost)
- Eliminate duplicates on completion of last merge step (no additional cost)
- Cost: the cost of sorting

Hash-Based Projection

- Phase 1:
- Input rows
- Project out columns
- Hash remaining columns using a hash function with range $1 . . . M-1$ creating $M-1$ buckets on disk
- Cost = 2F
- Phase 2:
- Sort each bucket to eliminate
 duplicates

FIGURE 10.5 Hashing input relation into buckets.

- Cost (assuming a bucket fits in M-1 buffer pages) $=2 F$
- Total cost $=4 F$

Comparison

- Assume
- $M=10000$-page buffer $(40 \mathrm{MB}) \leftarrow$ use as hash table
- We have $\mathrm{F}=10^{8}$-page file to process $(400 \mathrm{~GB}=40 \mathrm{M} * 10000)$
- Hash-based projection
- $4^{*} 10^{8}$
- Sort-based projection
- $2 F \log _{(M-1)} F=2 \times 10^{8} \times \log _{10^{4}-1} 10^{8} \geq 4 \times 10^{8}$
- However, it requires
- Even distribution from hash function
- In-memory sort of each bucket

Computing Selection $\sigma_{(a t t r}$ op value)

- No index on attr:
- If rows are not sorted on attr:
- Scan all data pages to find rows satisfying selection condition
- Cost $=F$
- If rows are sorted on attr and op is $=,>,<$ then:
- Use binary search (at $\log _{2} F$) to locate first data page containing row in which (attr = value)
- Scan further to get all rows satisfying (attr op value)
- Cost $=\log _{2} F+$ (cost of scan)

Computing Selection $\sigma_{(a t t r ~ o p ~ v a l u e) ~}$

- Clustered B^{+}tree index on attr (for "=" or range search):
- Locate first index entry corresponding to a row in which (attr = value).
- Cost = depth of tree
- Rows satisfying condition packed in sequence in successive data pages; scan those pages.
- Cost: number of pages occupied by qualifying rows
B^{+}tree

Computing Selection σ (attr op value)

- Unclustered B^{+}tree index on attr (for " $=$" or range search):
- Locate first index entry corresponding to a row in which (attr = value).
- Cost = depth of tree
- Index entries with pointers to rows satisfying condition are packed in sequence in successive index pages
- Scan entries and sort record Ids to identify table data pages with qualifying rows; Any page that has at least one such row must be fetched once.
- Cost = number of rows that satisfy selection condition

Unclustered B+ Tree Index

Computing Selection $\sigma_{(\text {attr }=\text { value })}$

- Hash index on attr (for "=" search only):
- Hash on value. Cost (of finding the right bucket) ≈ 1.2
- 1.2 - typical average cost of hashing (> 1 due to possible overflow chains)
- Finds first the (unique) bucket containing all index entries satisfying selection condition. Then,
- Clustered index - all qualifying rows packed in the bucket (a few pages) Cost: number of pages occupies by the bucket
- Unclustered index - sort row Ids in the index entries to identify data pages with qualifying rows
Each page containing at least one such row must be fetched once
Cost: min(number of qualifying rows in bucket, number of pages in file)

Computing Selection $\sigma_{(a t t r}=$ value $)$

- Unclustered hash index on attr (for equality search)

Access Path

- Access path is the notion that denotes algorithm + data structure used to locate rows satisfying some condition
- Examples:
- File scan: can be used for any condition
- Hash: equality search; all search key attributes of hash index are specified in condition
- B^{+}tree: equality or range search; a prefix of the search key attributes are specified in condition
- B^{+}tree supports a variety of access paths
- Binary search: relation sorted on a sequence of attributes and some prefix of that sequence is specified in condition

Access Paths Supported by B^{+}tree

- Example: Given a B^{+}tree whose search key is the sequence of attributes $a 2, a 1, a 3, a 4$
- Access path for search $\sigma_{a 1>5 \text { and }} 22=3$ and $a 3=x^{\prime}(R)$:
- find first entry having $a 2=3$ AND $a 1>5$ AND $a 3={ }^{\prime} x$ ' and scan leaves from there until entry having $a 2>3$ or $a 3 \not \neq '^{\prime} x^{\prime}$. Select satisfying entries
- Access path for search $\sigma_{a 2=3 \text { And } a 3 \gg^{\prime}}(R)$:
- locate first entry having $a 2=3$ and scan leaves until entry having $a 2>3$. Select satisfying entries
- Access path for search $\sigma_{a 1>5 \text { AND } a 3==^{\prime}}(R)$:
- Scan of R

Choosing an Access Path

- Selectivity of an access path = number of pages retrieved using that path
- If several access paths support a query, DBMS chooses the one with lowest selectivity
- Size of domain of attribute is an indicator of the selectivity of search conditions that involve that attribute
- Example: $\sigma_{\text {CrsCode='CS305' Ano } G r a d e=' B ' ~}^{\prime}$ (Transcript)
- Assume that we have two B^{+}trees; one with search key CrsCode, and the other with Grade
- a B ${ }^{+}$tree with search key CrsCode has lower selectivity than a B^{+}tree with search key Grade

Selections with Complex Conditions

- Selection with conjunctive conditions
- Use the most selective access path to retrieve the corresponding tuples
- e.g., one condition is for an indexed attribute
- Use several access paths that cover the expression
- e.g., use the most selective first, and use the other ones.
- Selection with disjunctive conditions
- If the condition contain disjunctions, convert to disjunctive normal form. (disjunction of conjunctive conditions)
- Check available access paths for the individual disjuncts and choose the appropriate strategy
- e.g., what if a disjunct need file scan?
- e.g., what if each disjunct has better access path than file scan?

Computing Joins

- The cost of joining two relations makes the choice of a join algorithm crucial
- Simple block-nested loops join algorithm for computing
$r \bigotimes_{A=B} S$

foreach page p_{r} in r do foreach page p_{s} in s do output $p_{r} \bowtie{ }_{A=B} P_{s}$

- If we do this in tuple level, $\operatorname{Page}(R)+\operatorname{Tuple}(R)$ * Page((S)
- Consider that $\operatorname{Page}(R)=1000, \operatorname{Page}(S)=100$, tuple $(R)=10,000$,
- If outer loop is for $R, 1000+10000 * 100=1,001,000$ page transfer. --- too many...
- If outer loop is for S,
- $100+1000 * 1000=1,000,100$ page transfer. --- fewer, too many...

Block-Nested Loops Join

- If β_{r} and β_{s} are the number of pages in r and s, the cost of algorithm is Number of scans of relation \mathbf{s}

$$
\beta_{\mathrm{r}}+\beta_{\mathrm{r}} * \beta_{\mathrm{s}}+\text { cost of outputting final result }
$$

- If \mathbf{r} and \boldsymbol{s} have 10^{3} pages each, cost is $10^{3}+10^{3} * 10^{3}$
- Choose smaller relation for the outer loop:
- If $\beta_{\mathrm{r}}<\beta_{\mathrm{s}}$ then $\beta_{\mathrm{r}}+\beta_{\mathrm{r}} * \beta_{\mathrm{s}}<\beta_{\mathrm{s}}+\beta_{\mathrm{r}} * \beta_{\mathrm{s}}$

Block-Nested Loops Join

- Cost can be reduced to of relation s
$\beta_{\mathrm{r}}+\left(\beta_{\mathrm{r}} /(\mathrm{M}-2)\right) * \beta_{\mathrm{s}}+$ cost of outputting final result by using M buffer pages instead of 1 .

FIGURE 10.6 Block-nested loops join.

Block-Nested Loop Illustrated

Index-Nested Loop Join $\mathbf{r} \bowtie_{A=B} \mathbf{s}$

- Use an index on swith search key B (instead of scanning s) to find rows of s that match t_{r}
- Cost $=\beta_{r}+\tau_{r} * \omega+$ cost of outputting final result

Number of rows in \mathbf{r}
avg cost of retrieving all rows in \mathbf{s} that match t_{r}

- Effective if number of rows of \boldsymbol{s} that match tuples in \mathbf{r} is small (i.e., ω is small) and index is clustered
foreach tuple t_{r} in \mathbf{r} do \{ use index to find all tuples t_{s} in s satisfying $t_{r} \cdot A=t_{s} \cdot B$; output $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{s}}\right)$ \}

Sort-Merge Join $\mathbf{r} \bowtie_{A=B} \mathbf{S}$

sort r on A;
sort s on B;
while !eof(r) and !eof(s) do \{
Scan r and s concurrently until $t_{r} \cdot A=t_{s} . B=c$;
Output $\sigma_{A=c}(r) \times \sigma_{B=c}(s)$
\}

$$
\sigma_{A=c}(r)
$$

44

Join During Merge Illustrated

Cost of Sort-Merge Join

- Cost of sorting assuming M buffers:
- $2 \beta_{\mathrm{r}} \log _{M-1} \beta_{\mathrm{r}}+2 \beta_{\mathrm{s}} \log _{M-1} \beta_{\mathrm{s}}$
- Cost of merging:
- Scanning $\sigma_{A=c}(r)$ and $\sigma_{B=c}(s)$ can be combined with the last step of sorting of r and s--- costs nothing
- Cost of $\sigma_{A=c}(\mathbf{r}) \times \sigma_{B=c}(\mathbf{s})$ depends on whether $\sigma_{A=c}(r)$ can fit in the buffer
- If yes, this step costs 0
- In not, each $\sigma_{A=c}(\mathbf{r}) \times \sigma_{B=c}(\mathbf{s})$ is computed using block-nested join, so the cost is the cost of the join. (Think why indexed methods or sort-merge are inapplicable to Cartesian product.)
- Cost of outputting the final result depends on the size of the result

Hash-Join $\mathbf{r} \bowtie_{A=B} \mathbf{s}$

- Step 1: Hash r on A and \mathbf{s} on B into the same set of buckets
- Step 2: Since matching tuples must be in same bucket, read each bucket in turn and output the result of the join
- Cost: $3\left(\beta_{r}+\beta_{s}\right)+$ cost of output of final result
- assuming each bucket fits in memory

Hash Join

Star Joins

- $\mathbf{r} \bowtie_{\text {cond }_{1}} \mathbf{r}_{1} \bowtie_{\text {cond }_{2} \ldots \bowtie \operatorname{cond}_{n}} \mathbf{r}_{n}$
- Each cond ${ }_{i}$ involves only the attributes of \mathbf{r}_{i} and \mathbf{r}

Star Join

Course

Computing Star Joins

- Use join index
- Scan \mathbf{r} and the join index $\left.\left\{<r, r_{1}, \ldots, r_{n}\right\rangle\right\}$ (which is a set of tuples of rids) in one scan
- Retrieve matching tuples in $\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}$
- Output result

Computing Star Joins

- Use bitmap indices
- Use one bitmapped join index, J_{i}, per each partial join $\mathbf{r} \bowtie_{\text {condi }} \mathbf{r}_{i}$
- Recall: J_{i} is a set of $\langle v$, bitmap \rangle, where v is an rid of a tuple in \mathbf{r}_{i} and bitmap has 1 in k-th position iff k-th tuple of \mathbf{r} joins with the tuple pointed to by v

1. Scan J_{i} and logically $O R$ all bitmaps. We get all rids in r that join with \mathbf{r}_{i}
2. Now logically AND the resulting bitmaps for $\mathrm{J}_{1}, \ldots, \mathrm{~J}_{n}$.
3. Result: a subset of \mathbf{r}, which contains all tuples that can possibly be in the star join

- Rationale: only a few such tuples survive, so can use indexed loops

Computing Aggregated Functions

- Require full scan
- In case that tuples are grouped by attributes,
- Need to partition relation with the attribute values
- Sorting
- Hashing
- Indexing

Choosing Indices

- DBMSs may allow user to specify
- Type (hash, B^{+}tree) and search key of index
- Whether or not it should be clustered
- Using information about the frequency and type of queries and size of tables, designer can use cost estimates to choose appropriate indices
- Several commercial systems have tools that suggest indices
- Simplifies job, but index suggestions must be verified

Choosing Indices - Example

- If a frequently executed query that involves selection or a join and has a large result set,
- Use a clustered B^{+}tree index
- e.g., Retrieve all rows of Transcript for Studld
- If a frequently executed query is an equality search and has a small result set,
- An unclustered hash index is best, since only one clustered index on a table is possible, choosing unclustered allows a different index to be clustered
- e.g., Retrieve all rows of Transcript for (Studld, CrsCode)

