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Query Evaluation 

 Problem 
 An SQL query is declarative –  does not specify a query 

execution plan. 
 A relational algebra expression is procedural and there is an 

associated query execution plan. 

 Solution 
 Convert SQL query to an equivalent relational algebra and 

evaluate it using the associated query execution plan. 
 But which equivalent expression is best? 
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Naive Conversion 
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SELECT DISTINCT  TargetList 
FROM      R1, R2, …, RN 
WHERE    Condition 
 
is equivalent to:   πTargetList (σCondition (R1 × R2 × ... × RN)) 
but this may imply a very inefficient query execution plan. 
 
Example:    πName (σId=ProfId ∧CrsCode=‘CS532’ (Professor × Teaching)) 

• Result can be  < 100  bytes 
• But if each relation is 50K then we end up computing an 
intermediate result Professor × Teaching  of size 500M before 
shrinking it down to  just a few bytes. 
 

Problem statement:  
Find an equivalent relational algebra expression that can be 
evaluated “efficiently”. 



Query Processing Architecture 
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logical query plan 

Physical query plan 



Query Optimizer 

 Uses heuristic algorithms to evaluate relational algebra 
expressions. This involves: 
 Estimating the cost of a relational algebra expression 
 Transforming one relational algebra expression to an 

equivalent one 
 Choosing access paths for evaluating the sub-expressions 

 

 Query optimizers do not “optimize” – just try to find 
“reasonably good” evaluation strategies 
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Example:   SQL query 

SELECT title 
FROM StarsIn 
WHERE starName IN ( 
  SELECT name 
  FROM MovieStar 
  WHERE birthdate LIKE ‘%1960’ 
); 
 
(Find the movies with stars born in 1960) 

Peter Bailis’s slides 
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Example:   1 Parse Tree 

<Query> 

<SFW> 

SELECT   <SelList>    FROM    <FromList>     WHERE     <Condition> 

<Attribute>              <RelName>                 <Tuple>  IN  <Query> 

title                       StarsIn               <Attribute>      (  <Query>  ) 

starName       <SFW> 

SELECT      <SelList>    FROM     <FromList>     WHERE     <Condition> 

<Attribute>           <RelName>         <Attribute>  LIKE  <Pattern> 

name                 MovieStar              birthDate            ‘%1960’ 

Peter Bailis’s slides 
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Example: 2 Generating Relational Algebra 
Πtitle 

σ 
StarsIn                    <condition> 

<tuple>      IN   Πname 

<attribute>      σbirthdate LIKE ‘%1960’ 

starName             MovieStar 
Fig. An expression using a two-argument σ, midway between a parse 

tree and relational algebra  

Peter Bailis’s slides 
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Example: 3  Logical Query Plan 
Πtitle 

σstarName=name 

StarsIn       Πname              

σbirthdate LIKE ‘%1960’ 

 MovieStar 

Fig. Applying the rule for IN conditions 

× 

Peter Bailis’s slides 
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Example: 4 Improve Logical Query Plan 
Πtitle 

starName=name 

StarsIn       Πname              

σbirthdate LIKE ‘%1960’ 

 MovieStar 

Fig. 7.20: An improvement on fig. 7.18. 

Question: 
Push project to 

StarsIn? 

Peter Bailis’s slides 



Example:    Estimate Result Sizes 

 
 
        Need expected size 
 
      StarsIn  
 
 
      MovieStar               
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Π 

σ 

 

Peter Bailis’s slides 
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Example:    One Physical Plan 

          
              Parameters: join order, 

       memory size, project attributes,... 
Hash join 

SEQ scan index scan Parameters: 
Select Condition,... 

StarsIn  MovieStar 

Peter Bailis’s slides 
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Example: Estimate costs 

    L.Q.P 
 
  P1     P2     ….   Pn 
 
  C1     C2     ….  Cn 
       
     Pick best! 

Peter Bailis’s slides 



Equivalence Preserving Transformations 

 To transform a relational expression into another 
equivalent expression, we need transformation rules 
that preserve equivalence 

 Each transformation rule 
 Is provably correct (i.e., does preserve equivalence) 
 Has a heuristic associated with it 
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Commutativity and Associativity of Join  
(and Cartesian Product as Special Case) 

 Join commutativity:  R        S  ≡  S        R 
 used to reduce cost of nested loop evaluation strategies (smaller relation 

should be in outer loop) 

 Join associativity:  R        (S        T)  ≡  (R        S)        T 
 used to reduce the size of intermediate relations in computation of multi-

relational join – first compute the join that yields smaller intermediate 
result 

 N-way join has T(N)×  N! different evaluation plans 
 T(N) is the number of parenthesized expressions 
 N! is the number of permutations 

 Query optimizer cannot look at all plans (might take longer to find 
an optimal plan than to compute query brute-force). Hence it 
does not necessarily produce optimal plan 
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R x S = S x R 
(R x S) x T = R x (S x T) 
 
R U S = S U R 
R U (S U T) = (R U S) U T 

Commutativity and Associativity of Join 
 

Natural joins & cross products & union 
R   S = S R 
(R  S)   T = R    (S      T)  

Commutative Law 
Associative Law 

Peter Bailis’s slides 



Selection and Projection Rules 

 Break complex selection into simpler ones: 
 σCond1∧Cond2 (R) ≡ σCond1 (σCond2 (R) ) 
 

 Break projection into stages: 
 πattr (R) ≡ π attr (π attr′ (R)),  if attr ⊆ attr′ 
 

 Commute projection and selection: 
 π attr (σCond(R)) ≡ σCond (π attr (R)),  
     if attr  ⊇  all attributes in Cond 
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Laws Involving Selects 

σp1∧p2(R) = 

σp1vp2(R) =  

σp1  [ σp2 (R)] 

[ σp1 (R)] U  [ σp2 (R)] 
  

Splitting Laws: 

Since selections tend to reduce the size of relations 
markedly, we want to move the selections down the tree 
as far as they will go 

Peter Bailis’s slides 
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Bags vs. Sets 

R = {a,a,b,b,b,c} 
S = {b,b,c,c,d} 
R U S = ? 

• Option 1    SUM 
 RUS = {a,a,b,b,b,b,b,c,c,c,d} 
• Option 2    MAX 
 RUS = {a,a,b,b,b,c,c,d} 

Peter Bailis’s slides 
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Laws Involving Project 

Let: X = set of attributes 
  Y = set of attributes 
  XY = X U Y 

πxy (R) =  
 

πx [πy (R)]  
 

While selections reduce the size of a relation by a large 
factor, projection keeps the number of tuples the same 
and only reduce the length of tuples and sometimes 
increase the length of tuples 

Peter Bailis’s slides 



Pushing Selections and Projections 

 σCond (R × S) ≡ R      Cond S  
 Cond relates attributes of both R and S 
 Reduces size of intermediate relation since rows can be 

discarded sooner 
 

 σCond (R × S) ≡ σCond (R) × S  
 Cond involves only the attributes of R 
 Reduces size of intermediate relation since rows of R are 

discarded sooner 
 

 πattr(R × S) ≡ πattr(πattr′ (R) × S), 
  if  attributes(R) ⊇ attr′ ⊇ attr ∩ attributes(R) 
 reduces the size of an operand of product 
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Let p = predicate with only R attribs 
   q = predicate with only S attribs 
   m = predicate with only R,S attribs 
 

σp (R      S) =  

σq (R      S) =    

Rules:  σ +      combined  

 [σp (R)]      S 

  R      [σq (S)]   

Peter Bailis’s slides 
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Rules:  σ +      combined  

σp∧q (R      S)  = [σp (R)]      [σq (S)] 

σp∧q∧m (R      S) =  

   σm [(σp R)      (σq S)] 
σpvq (R      S) =  

  [(σp R)     S] U [R    (σq S)]  

Peter Bailis’s slides 
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Rules:   π,σ  combined 

Let x = subset of R attributes 
    z = attributes in predicate P   

 (subset of R attributes) 
 

πx[σp (R) ] =   
 

     {σp [ πx  (R) ]}  
 

Peter Bailis’s slides 
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Rules:   π,σ  combined 

Let x = subset of R attributes 
    z = attributes in predicate P   

 (subset of R attributes) 
 

πx[σp (R) ] =   
 

     {σp [ πx  (R) ]}  
 
 πx  
 

 πxz 

 

Peter Bailis’s slides 
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Rules:   π,      combined 

Let  x = subset of R attributes 
      y = subset of S attributes 
     z = intersection of R,S attributes 

πxy (R      S)  =  

πxy{[πxz (R) ]     [πyz (S) ]}  
 

Peter Bailis’s slides 
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πxy {σp (R      S)}  = 

πxy {σp [πxz’ (R)     πyz’ (S)]}  
 z’ = z U {attributes used in P } 



Equivalence Example 

 σC1 ∧C2 ∧C3 (R × S)  
≡ σC1 (σC2 (σC3 (R × S) ) )    
≡ σC1 (σC2 (R) × σC3 (S) )      
≡ σC2 (R)        C1 σC3 (S)    
 
 assuming  that  

C2  involves only attributes of  R,  
C3  involves only attributes of  S, and   
C1  relates attributes of  R and  S 
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σp(R U S) = σp(R) U σp(S)  

σp(R - S) = σp(R) - S = σp(R) - σp(S)  

Rules    σ, U  combined: 
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σp1∧p2 (R) → σp1 [σp2 (R)]  

σp (R     S) → [σp (R)]       S 

R      S  →   S       R 

πx [σp (R)] → πx {σp [πxz (R)]} 

Which are “good” transformations? 
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Conventional wisdom:  
   do projects early 

Example: R(A,B,C,D,E)    x={E}   
           P: (A=3) ∧ (B=“cat”) 

 

πx {σp (R)}    vs.   πE {σp{πABE(R)}}   
 
 
 



CS 245 Notes 6 
38 

 What if we have A, B indexes? 

B = “cat”                                                       A=3 
 
 
 
    Intersect pointers to get 
    pointers to matching tuples 

But 
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Bottom line: 

 No transformation is always good 
 Usually good: early selections 



Cost - Example 1 
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SELECT  P.Name 
FROM   Professor P, Teaching T 
WHERE  P.Id = T.ProfId             -- join condition 
  AND  P. DeptId = ‘CS’  AND  T.Semester = ‘F1994’ 
 

π Name(σDeptId=‘CS’ ∧ Semester=‘F1994’(Professor          Id=ProfId Teaching))  

π Name 
 
 
 
σDeptId=‘CS’∧ Semester=‘F1994’ 
 
 
 
           Id=ProfId 

Professor                                         Teaching 

Master query 
execution plan 
(nothing 
pushed) 

 



Metadata on Tables  (in system catalogue) 

 Professor (Id, Name, DeptId) 
 size: 200 pages, 1000 rows, 50 departments (5 tuples/page) 
 indices:  clustered 2-level B+ tree on DeptId,  
  hash on Id 

 Teaching (ProfId, CrsCode, Semester) 
 size: 1000 pages, 10,000 rows, 4 semesters, (10 tuples/page) 
 indices:  clustered 2-level B+ tree on Semester; 
  hash on ProfId 

 Definition: Weight of an attribute –  average number of 
rows that have a particular value  
 weight of Id = 1 (it is a key) 
 weight of ProfId = 10 (10,000 classes/1000 professors) 
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Estimating Cost - Example 1 

 Assumption 
 52 page buffer is available for evaluating join 
 Small amount of additional memory is available for aux. info. 

 

 Join - index-nested loops with 50 page buffers  
 50 pages – input for Professor,  
 5 profs per page and average 10 classes per each prof 
 Cost to scan Professor relation 

 200 page transfers  

 Cost to find matching tuples in Teaching  
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Estimating Cost - Example 1 cont. 

 Cost to find matching tuples in Teaching 
 Max. 2500 tuples (50 pages x 5 faculty/page x avg 10 

classes/faculty) in Teaching could be matched. (i.e., max. 
page transfers could be 2500.) for loaded Professor pages 

 However, by sorting record ids of the Teaching pointed by 
the 2500 tuples, this can be done in 1000 page transfers = 
size(Teaching) 

 Repeating 4 times (200 pages/50 buffer) makes 4000 page 
transfers from Teaching 
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Professor                                         Teaching 
4000 page  200 page  

1200 page 



Estimating Cost - Example 1 (cont’d) 

 50 pages – input for Professor,  
 5 profs per page and average 10 classes per each prof 

 
 Cost to search index of Teaching (p.Id=t.ProfId) 
 ProfID is hash-indexed.  
 1.2 I/O per index search, assuming good hash function (1.2) 
 If all matching tuples are stored in a single bucket (10 on 

average), indices for the 10 tuples can be retrieved in one 
I/O operation. 

 There are 10000 tuples in Teaching. This requires 1000 I/Os 
makes 1200 page transfers 
 

 So… the total cost is 200 + 4000 + 1200 = 5400 page transfers 
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Estimating Cost - Example 1 (cont’d) 

 Join - block-nested loops with 52 page buffers  
 50 pages – input for Professor,  
 1 page – input for Teaching,  
 1 – output page 

 
 Scanning Professor (outer loop): 200 page transfers, (4 

iterations, 50 transfers each) 
 Finding matching rows in Teaching (inner loop):  1000 page 

transfers for each iteration of outer loop 
 Total cost = 200 + 4*1000 = 4200 page transfers 
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Estimating Cost - Example 1 (cont’d) 

 Selection and projection  
 scan rows of intermediate file, 

discard those that don’t satisfy 
selection, project on those that 
do, write result when output 
buffer is full. 

 Complete algorithm: 
 do join, write result to 

intermediate file on disk 
 read (big) intermediate file, do 

select/project, write final result 
 Problem: unnecessary I/O 
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π Name 
 
 
 
σDeptId=‘CS’∧ Semester=‘F1994’ 
 
 
 
           Id=ProfId 

Professor                                         Teaching 

4200 page 



Pipelining 

 Solution: use pipelining:  
 join and select/project act as co-routines, operate as 

producer/consumer sharing a buffer in main memory. 
 Output of one relational operator is “piped” to the input of the 

next operator without saving the intermediate result on disk. 
 When join fills buffer; select/project filters it and outputs  result 
 Process is repeated until select/project has processed last output from 

join  

 Performing select/project adds no additional cost 
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join select/project 
Intermediate 

result 
output 

final result 

buffer 



Estimating Cost - Example 1 (cont’d) 

 
 I/O operations required for  

storing data will be reduced 

 
 
 
 

 Total cost: 
 4200 + (cost of outputting final result) 
 We will disregard the cost of  outputting final result in 

comparing with other query evaluation strategies, since this 
will be same for all 
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Cost Example 2 
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πName(σSemester=‘F1994’ (σDeptId=‘CS’ (Professor)         Id=ProfId Teaching)) 

SELECT   P.Name 
FROM    Professor P,  Teaching T 
WHERE  P.Id = T.ProfId  AND 
  P. DeptId = ‘CS’ AND  T.Semester = ‘F1994’ 

                    π Name 
 

 
             σSemester=‘F1994’ 
 
 
 
 
   
σDeptId=‘CS’ 
 
 
 
  Professor                   Teaching 

Id=ProfId 

Partially pushed plan:   
selection pushed to 
Professor 

 



Cost Example 2 -- selection 

 Compute σDeptId=‘CS’ (Professor) to reduce size of one join 
table) using clustered, 2-level B+ tree on DeptId. 
 50 departments and 1000 professors; hence weight of DeptId 

is 20 (roughly 20 CS professors).   
 These rows are in ~ 4 consecutive pages in Professor. 
 Cost = 4 (to get rows) + 2 (to search index) = 6 
 keep resulting 4 pages in memory and pipe to next step 
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clustered index 
on DeptId 

rows of 
Professor 



Cost Example 2 – join (cont’d) 

 Each professor matches ~ roughly 10 Teaching rows. Since 20 CS 
professors, hence 200 teaching records. 

 All index entries for a particular ProfId are in same bucket.  
Assume ~1.2 I/Os to get a bucket. 
 Index fetch cost: 1.2 × 20 (to fetch index entries for 20 CS professors)  

 Total Cost 
 24 + 200 (to fetch Teaching rows, since hash index is 

unclustered) = 224 
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Teaching hash 

1.2 10 

ProfId 



Cost Example 2 – select/project 

 Pipe result of join to select (on Semester) and project (on 
Name) at no I/O cost 

 Cost of output same as for Example 1 
 Total cost: 

 6 (select on Professor) + 224 (join)  =  230 

 Comparison:  
 4200 (example 1) vs. 230 (example 2) !!! 
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Choosing Query Execution Plan 

 Step 1: Choose a logical plan 
 Step 2: Reduce search space 
 Step 3: Use a heuristic search to further reduce 

complexity 
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Step 1: Choosing a Logical Plan 

 Involves choosing a query tree, which indicates the 
order in which algebraic operations are applied 
 

 Heuristic:  
 Pushed trees are good, but sometimes “nearly fully pushed” 

trees are better due to indexing  
 Avoid exponential complexity problem by grouping 

consecutive binary operators of the same kind into one node 

 
 So: Take the initial “master plan” tree and produce a 

fully pushed tree plus several nearly fully pushed trees. 
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Step 1: Choosing a Logical Plan (cont’d) 



Step 2: Reduce Search Space 

 Deal with associativity of binary operators (join, union, 
…) 
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A     B      C     D 

Logical query 
execution plan 

A          B      C        D 

Equivalent query tree 

D 

C 

A       B 
Equivalent left deep query tree 
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