
Ilchul Yoon
Assistant Professor

State University of New York, Korea

CSE 532 – Theory of Database Systems

Adapted from book authors’ slides

Lecture 20 (Chapter 11)
An Overview of Query Optimization

CSE 305 / CSE532

Lecturer: Sael Lee

Slide adapted from the author’s, Peter Bailis’s and Dr. Ilchul Yoon’s slides.

Query Evaluation

 Problem
 An SQL query is declarative – does not specify a query

execution plan.
 A relational algebra expression is procedural and there is an

associated query execution plan.

 Solution
 Convert SQL query to an equivalent relational algebra and

evaluate it using the associated query execution plan.
 But which equivalent expression is best?

2

Naive Conversion

3

SELECT DISTINCT TargetList
FROM R1, R2, …, RN
WHERE Condition

is equivalent to: πTargetList (σCondition (R1 × R2 × ... × RN))
but this may imply a very inefficient query execution plan.

Example: πName (σId=ProfId ∧CrsCode=‘CS532’ (Professor × Teaching))

• Result can be < 100 bytes
• But if each relation is 50K then we end up computing an
intermediate result Professor × Teaching of size 500M before
shrinking it down to just a few bytes.

Problem statement:
Find an equivalent relational algebra expression that can be
evaluated “efficiently”.

Query Processing Architecture

4

logical query plan

Physical query plan

Query Optimizer

 Uses heuristic algorithms to evaluate relational algebra
expressions. This involves:
 Estimating the cost of a relational algebra expression
 Transforming one relational algebra expression to an

equivalent one
 Choosing access paths for evaluating the sub-expressions

 Query optimizers do not “optimize” – just try to find
“reasonably good” evaluation strategies

5

7

Example: SQL query

SELECT title
FROM StarsIn
WHERE starName IN (
 SELECT name
 FROM MovieStar
 WHERE birthdate LIKE ‘%1960’
);

(Find the movies with stars born in 1960)

Peter Bailis’s slides

8

Example: 1 Parse Tree

<Query>

<SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Tuple> IN <Query>

title StarsIn <Attribute> (<Query>)

starName <SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> <Attribute> LIKE <Pattern>

name MovieStar birthDate ‘%1960’

Peter Bailis’s slides

9

Example: 2 Generating Relational Algebra
Πtitle

σ
StarsIn <condition>

<tuple> IN Πname

<attribute> σbirthdate LIKE ‘%1960’

starName MovieStar
Fig. An expression using a two-argument σ, midway between a parse

tree and relational algebra

Peter Bailis’s slides

10

Example: 3 Logical Query Plan
Πtitle

σstarName=name

StarsIn Πname

σbirthdate LIKE ‘%1960’

 MovieStar

Fig. Applying the rule for IN conditions

×

Peter Bailis’s slides

11

Example: 4 Improve Logical Query Plan
Πtitle

starName=name

StarsIn Πname

σbirthdate LIKE ‘%1960’

 MovieStar

Fig. 7.20: An improvement on fig. 7.18.

Question:
Push project to

StarsIn?

Peter Bailis’s slides

Example: Estimate Result Sizes

 Need expected size

 StarsIn

 MovieStar

12

Π

σ

Peter Bailis’s slides

13

Example: One Physical Plan

 Parameters: join order,

 memory size, project attributes,...
Hash join

SEQ scan index scan Parameters:
Select Condition,...

StarsIn MovieStar

Peter Bailis’s slides

14

Example: Estimate costs

 L.Q.P

 P1 P2 …. Pn

 C1 C2 …. Cn

 Pick best!

Peter Bailis’s slides

Equivalence Preserving Transformations

 To transform a relational expression into another
equivalent expression, we need transformation rules
that preserve equivalence

 Each transformation rule
 Is provably correct (i.e., does preserve equivalence)
 Has a heuristic associated with it

16

Commutativity and Associativity of Join
(and Cartesian Product as Special Case)

 Join commutativity: R S ≡ S R
 used to reduce cost of nested loop evaluation strategies (smaller relation

should be in outer loop)

 Join associativity: R (S T) ≡ (R S) T
 used to reduce the size of intermediate relations in computation of multi-

relational join – first compute the join that yields smaller intermediate
result

 N-way join has T(N)× N! different evaluation plans
 T(N) is the number of parenthesized expressions
 N! is the number of permutations

 Query optimizer cannot look at all plans (might take longer to find
an optimal plan than to compute query brute-force). Hence it
does not necessarily produce optimal plan

17

18

R x S = S x R
(R x S) x T = R x (S x T)

R U S = S U R
R U (S U T) = (R U S) U T

Commutativity and Associativity of Join

Natural joins & cross products & union
R S = S R
(R S) T = R (S T)

Commutative Law
Associative Law

Peter Bailis’s slides

Selection and Projection Rules

 Break complex selection into simpler ones:
 σCond1∧Cond2 (R) ≡ σCond1 (σCond2 (R))

 Break projection into stages:
 πattr (R) ≡ π attr (π attr′ (R)), if attr ⊆ attr′

 Commute projection and selection:
 π attr (σCond(R)) ≡ σCond (π attr (R)),
 if attr ⊇ all attributes in Cond

19

20

Laws Involving Selects

σp1∧p2(R) =

σp1vp2(R) =

σp1 [σp2 (R)]

[σp1 (R)] U [σp2 (R)]

Splitting Laws:

Since selections tend to reduce the size of relations
markedly, we want to move the selections down the tree
as far as they will go

Peter Bailis’s slides

21

Bags vs. Sets

R = {a,a,b,b,b,c}
S = {b,b,c,c,d}
R U S = ?

• Option 1 SUM
 RUS = {a,a,b,b,b,b,b,c,c,c,d}
• Option 2 MAX
 RUS = {a,a,b,b,b,c,c,d}

Peter Bailis’s slides

CS 245 Notes 6
25

Laws Involving Project

Let: X = set of attributes
 Y = set of attributes
 XY = X U Y

πxy (R) =

πx [πy (R)]

While selections reduce the size of a relation by a large
factor, projection keeps the number of tuples the same
and only reduce the length of tuples and sometimes
increase the length of tuples

Peter Bailis’s slides

Pushing Selections and Projections

 σCond (R × S) ≡ R Cond S
 Cond relates attributes of both R and S
 Reduces size of intermediate relation since rows can be

discarded sooner

 σCond (R × S) ≡ σCond (R) × S
 Cond involves only the attributes of R
 Reduces size of intermediate relation since rows of R are

discarded sooner

 πattr(R × S) ≡ πattr(πattr′ (R) × S),
 if attributes(R) ⊇ attr′ ⊇ attr ∩ attributes(R)
 reduces the size of an operand of product

 26

Ilchul Yoon
Assistant Professor

State University of New York, Korea

CSE 532 – Theory of Database Systems

Adapted from book authors’ slides

Lecture 21 (Chapter 11)
An Overview of Query Optimization

CSE 305 / CSE532

Lecturer: Sael Lee

Slide adapted from the author’s and Dr. Ilchul Yoon’s slides.

CS 245 Notes 6
28

Let p = predicate with only R attribs
 q = predicate with only S attribs
 m = predicate with only R,S attribs

σp (R S) =

σq (R S) =

Rules: σ + combined

 [σp (R)] S

 R [σq (S)]

Peter Bailis’s slides

CS 245 Notes 6
29

Rules: σ + combined

σp∧q (R S) = [σp (R)] [σq (S)]

σp∧q∧m (R S) =

 σm [(σp R) (σq S)]
σpvq (R S) =

 [(σp R) S] U [R (σq S)]

Peter Bailis’s slides

CS 245 Notes 6
30

Rules: π,σ combined

Let x = subset of R attributes
 z = attributes in predicate P

 (subset of R attributes)

πx[σp (R)] =

 {σp [πx (R)]}

Peter Bailis’s slides

CS 245 Notes 6
31

Rules: π,σ combined

Let x = subset of R attributes
 z = attributes in predicate P

 (subset of R attributes)

πx[σp (R)] =

 {σp [πx (R)]}

 πx

 πxz

Peter Bailis’s slides

CS 245 Notes 6
32

Rules: π, combined

Let x = subset of R attributes
 y = subset of S attributes
 z = intersection of R,S attributes

πxy (R S) =

πxy{[πxz (R)] [πyz (S)]}

Peter Bailis’s slides

CS 245 Notes 6
33

πxy {σp (R S)} =

πxy {σp [πxz’ (R) πyz’ (S)]}
 z’ = z U {attributes used in P }

Equivalence Example

 σC1 ∧C2 ∧C3 (R × S)
≡ σC1 (σC2 (σC3 (R × S)))
≡ σC1 (σC2 (R) × σC3 (S))
≡ σC2 (R) C1 σC3 (S)

 assuming that

C2 involves only attributes of R,
C3 involves only attributes of S, and
C1 relates attributes of R and S

34

CS 245 Notes 6
35

σp(R U S) = σp(R) U σp(S)

σp(R - S) = σp(R) - S = σp(R) - σp(S)

Rules σ, U combined:

CS 245 Notes 6
36

σp1∧p2 (R) → σp1 [σp2 (R)]

σp (R S) → [σp (R)] S

R S → S R

πx [σp (R)] → πx {σp [πxz (R)]}

Which are “good” transformations?

CS 245 Notes 6
37

Conventional wisdom:
 do projects early

Example: R(A,B,C,D,E) x={E}
 P: (A=3) ∧ (B=“cat”)

πx {σp (R)} vs. πE {σp{πABE(R)}}

CS 245 Notes 6
38

 What if we have A, B indexes?

B = “cat” A=3

 Intersect pointers to get
 pointers to matching tuples

But

CS 245 Notes 6
39

Bottom line:

 No transformation is always good
 Usually good: early selections

Cost - Example 1

40

SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.ProfId -- join condition
 AND P. DeptId = ‘CS’ AND T.Semester = ‘F1994’

π Name(σDeptId=‘CS’ ∧ Semester=‘F1994’(Professor Id=ProfId Teaching))

π Name

σDeptId=‘CS’∧ Semester=‘F1994’

 Id=ProfId

Professor Teaching

Master query
execution plan
(nothing
pushed)

Metadata on Tables (in system catalogue)

 Professor (Id, Name, DeptId)
 size: 200 pages, 1000 rows, 50 departments (5 tuples/page)
 indices: clustered 2-level B+ tree on DeptId,
 hash on Id

 Teaching (ProfId, CrsCode, Semester)
 size: 1000 pages, 10,000 rows, 4 semesters, (10 tuples/page)
 indices: clustered 2-level B+ tree on Semester;
 hash on ProfId

 Definition: Weight of an attribute – average number of
rows that have a particular value
 weight of Id = 1 (it is a key)
 weight of ProfId = 10 (10,000 classes/1000 professors)

41

Estimating Cost - Example 1

 Assumption
 52 page buffer is available for evaluating join
 Small amount of additional memory is available for aux. info.

 Join - index-nested loops with 50 page buffers
 50 pages – input for Professor,
 5 profs per page and average 10 classes per each prof
 Cost to scan Professor relation

 200 page transfers

 Cost to find matching tuples in Teaching

42

Estimating Cost - Example 1 cont.

 Cost to find matching tuples in Teaching
 Max. 2500 tuples (50 pages x 5 faculty/page x avg 10

classes/faculty) in Teaching could be matched. (i.e., max.
page transfers could be 2500.) for loaded Professor pages

 However, by sorting record ids of the Teaching pointed by
the 2500 tuples, this can be done in 1000 page transfers =
size(Teaching)

 Repeating 4 times (200 pages/50 buffer) makes 4000 page
transfers from Teaching

43

Professor Teaching
4000 page 200 page

1200 page

Estimating Cost - Example 1 (cont’d)

 50 pages – input for Professor,
 5 profs per page and average 10 classes per each prof

 Cost to search index of Teaching (p.Id=t.ProfId)
 ProfID is hash-indexed.
 1.2 I/O per index search, assuming good hash function (1.2)
 If all matching tuples are stored in a single bucket (10 on

average), indices for the 10 tuples can be retrieved in one
I/O operation.

 There are 10000 tuples in Teaching. This requires 1000 I/Os
makes 1200 page transfers

 So… the total cost is 200 + 4000 + 1200 = 5400 page transfers
44

Estimating Cost - Example 1 (cont’d)

 Join - block-nested loops with 52 page buffers
 50 pages – input for Professor,
 1 page – input for Teaching,
 1 – output page

 Scanning Professor (outer loop): 200 page transfers, (4

iterations, 50 transfers each)
 Finding matching rows in Teaching (inner loop): 1000 page

transfers for each iteration of outer loop
 Total cost = 200 + 4*1000 = 4200 page transfers

45

Estimating Cost - Example 1 (cont’d)

 Selection and projection
 scan rows of intermediate file,

discard those that don’t satisfy
selection, project on those that
do, write result when output
buffer is full.

 Complete algorithm:
 do join, write result to

intermediate file on disk
 read (big) intermediate file, do

select/project, write final result
 Problem: unnecessary I/O

46

π Name

σDeptId=‘CS’∧ Semester=‘F1994’

 Id=ProfId

Professor Teaching

4200 page

Pipelining

 Solution: use pipelining:
 join and select/project act as co-routines, operate as

producer/consumer sharing a buffer in main memory.
 Output of one relational operator is “piped” to the input of the

next operator without saving the intermediate result on disk.
 When join fills buffer; select/project filters it and outputs result
 Process is repeated until select/project has processed last output from

join

 Performing select/project adds no additional cost

47

join select/project
Intermediate

result
output

final result

buffer

Estimating Cost - Example 1 (cont’d)

 I/O operations required for

storing data will be reduced

 Total cost:
 4200 + (cost of outputting final result)
 We will disregard the cost of outputting final result in

comparing with other query evaluation strategies, since this
will be same for all

48

Cost Example 2

49

πName(σSemester=‘F1994’ (σDeptId=‘CS’ (Professor) Id=ProfId Teaching))

SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.ProfId AND
 P. DeptId = ‘CS’ AND T.Semester = ‘F1994’

 π Name

 σSemester=‘F1994’

σDeptId=‘CS’

 Professor Teaching

Id=ProfId

Partially pushed plan:
selection pushed to
Professor

Cost Example 2 -- selection

 Compute σDeptId=‘CS’ (Professor) to reduce size of one join
table) using clustered, 2-level B+ tree on DeptId.
 50 departments and 1000 professors; hence weight of DeptId

is 20 (roughly 20 CS professors).
 These rows are in ~ 4 consecutive pages in Professor.
 Cost = 4 (to get rows) + 2 (to search index) = 6
 keep resulting 4 pages in memory and pipe to next step

50

clustered index
on DeptId

rows of
Professor

Cost Example 2 – join (cont’d)

 Each professor matches ~ roughly 10 Teaching rows. Since 20 CS
professors, hence 200 teaching records.

 All index entries for a particular ProfId are in same bucket.
Assume ~1.2 I/Os to get a bucket.
 Index fetch cost: 1.2 × 20 (to fetch index entries for 20 CS professors)

 Total Cost
 24 + 200 (to fetch Teaching rows, since hash index is

unclustered) = 224

52

Teaching hash

1.2 10

ProfId

Cost Example 2 – select/project

 Pipe result of join to select (on Semester) and project (on
Name) at no I/O cost

 Cost of output same as for Example 1
 Total cost:

 6 (select on Professor) + 224 (join) = 230

 Comparison:
 4200 (example 1) vs. 230 (example 2) !!!

53

Choosing Query Execution Plan

 Step 1: Choose a logical plan
 Step 2: Reduce search space
 Step 3: Use a heuristic search to further reduce

complexity

59

Step 1: Choosing a Logical Plan

 Involves choosing a query tree, which indicates the
order in which algebraic operations are applied

 Heuristic:
 Pushed trees are good, but sometimes “nearly fully pushed”

trees are better due to indexing
 Avoid exponential complexity problem by grouping

consecutive binary operators of the same kind into one node

 So: Take the initial “master plan” tree and produce a

fully pushed tree plus several nearly fully pushed trees.

60

61

Step 1: Choosing a Logical Plan (cont’d)

Step 2: Reduce Search Space

 Deal with associativity of binary operators (join, union,
…)

62

A B C D

Logical query
execution plan

A B C D

Equivalent query tree

D

C

A B
Equivalent left deep query tree

	Lecture 20 (Chapter 11)�An Overview of Query Optimization
	Query Evaluation
	Naive Conversion
	Query Processing Architecture
	Query Optimizer
	Example: SQL query
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Example: Estimate Result Sizes
	Example: One Physical Plan
	Example: Estimate costs
	Equivalence Preserving Transformations
	Commutativity and Associativity of Join �(and Cartesian Product as Special Case)
	Commutativity and Associativity of Join��Natural joins & cross products & union
	Selection and Projection Rules
	Laws Involving Selects
	Bags vs. Sets
	Slide Number 25
	Pushing Selections and Projections
	Lecture 21 (Chapter 11)�An Overview of Query Optimization
	Rules: s + combined
	Rules: s + combined
	Rules: p,s combined
	Rules: p,s combined
	Slide Number 32
	Slide Number 33
	Equivalence Example
	Rules s, U combined:
	Which are “good” transformations?
	Conventional wisdom: �			do projects early
		What if we have A, B indexes?
	Bottom line:
	Cost - Example 1
	Metadata on Tables (in system catalogue)
	Estimating Cost - Example 1
	Estimating Cost - Example 1 cont.
	Estimating Cost - Example 1 (cont’d)
	Estimating Cost - Example 1 (cont’d)
	Estimating Cost - Example 1 (cont’d)
	Pipelining
	Estimating Cost - Example 1 (cont’d)
	Cost Example 2
	Cost Example 2 -- selection
	Cost Example 2 – join (cont’d)
	Cost Example 2 – select/project
	Choosing Query Execution Plan
	Step 1: Choosing a Logical Plan
	Step 1: Choosing a Logical Plan (cont’d)
	Step 2: Reduce Search Space

