O

Stony Brook
Uhniversity

CSE 305/ CSES532

Lecture 20 (Chapter 11)
An Overview of Query Optimization

Lecturer: Sael Lee

Slide adapted from the author’s, Peter Bailis’s and Dr. lichul Yoon'’s slides.

Korea
ISR Ed: - el

Query Evaluation

e Problem

e An SQL query is declarative — does not specify a query
execution plan.

e A relational algebra expression is procedural and there is an
associated query execution plan.

e Solution

e Convert SQL query to an equivalent relational algebra and
evaluate it using the associated query execution plan.

e But which equivalent expression is best?

Korea
2 TN T

Naive Conversion

SELECT DISTINCT TargetList
FROM R1, R2, ..., RN
WHERE Condition

IS eqUivaIent to: T TargetList (GCondition (Rl X R2 X X RN))
but this may imply a very inefficient query execution plan.

Example: TiName (Gld:ProfId ACrsCode='CS532’ (Professor X TeaChing))
e Result can be <100 bytes
e But if each relation is 50K then we end up computing an

intermediate result Professor x Teaching of size 500M before
shrinking it down to just a few bytes.

Problem statement:
Find an equivalent relational algebra expression that can be

evaluated “efficiently”.
3 T T

Query Processing Architecture

| SQL Query
----------------- -| SQL Parser
| Relational Algebra Expression \\\
Query Optimizer
fm——m—————n fmm———————n System
S :Query Plan: : Cost : € —————— Catalog
logical query plan | Generator | | Estimator |
e ___ e ___1
| Query Execution Plan g
Physical query plan Query Plan |,
Interpreter
| Query Result

Query Optimizer

e Uses heuristic algorithms to evaluate relational algebra
expressions. This involves:

e Estimating the cost of a relational algebra expression

e Transforming one relational algebra expression to an
equivalent one

e Choosing access paths for evaluating the sub-expressions

e Query optimizers do not “optimize” — just try to find
“reasonably good” evaluation strategies

Korea
5 TN T

Example: SQL query

Peter Bailis’s slides

SELECT title
FROM Starsin
WHERE starName IN (
SELECT name
FROM MovieStar
WHERE birthdate LIKE ‘%1960’

(Find the movies with stars born in 1960)

Korea
. L

Peter Bailis’s slides

Examgle: 1 Parse Tree

<Query>

=

SELECT <SelList> FROM <FromLi7t> WHERE /<C\oerion>

<Attribute> <ReIName>/ /Twle> IN <Query>
title Starsin <Attribute> (<Query>)

Vy} | =

SELECT <SelList> FROM <FromList> WHERE <Condition>
<Attribute> <RelName=> <Attribute> LIKE <Pattern=

| | | |

name MovieStar birthDate ‘061960’

Korea
8 M 7

Peter Bailis’s slides

Example: 2 Generating Relational Algebra

I Ititie
/ G\
Starsin <co/nd<cion>
<tuple> IN IIname

/ \

<attribute> Obirthdate LIKE ‘91960’

starName MovieStar

Fig. An expression using a two-argument o, midway between a parse
tree and relational algebra

Korea
9 M 7

Peter Bailis’s slides

Example: 3 Logical Query Plan

I Ititle

GstarName:name

\
X

/ L
Starslin Hname

Obirthdate LIKE ‘91960’

MovieStar

Fig. Applying the rule for IN conditions

Korea
10 M 7

Peter Bailis’s slides

Example: 4 Improve Logical Query Plan

I Ititle

] Question:

starName=name Push project tc

/ \ Starsin?

Starslin Hname

Obirthdate LIKE ‘91960’

MovieStar

Fig. 7.20: An improvement on fig. 7.18.

Korea
11 M 7

Peter Bailis’s slides

Example: Estimate Result Sizes

>

Need expected size

Starsin /

Korea
12 M 7

Peter Bailis’s slides

Examgle: One Physical Plan

Hash join

Parameters: join order,
memory size, project attributes,...

N

SEQ scan‘ index scan — * Parameters:
‘ ‘ Select Condition,...

Starslin MovieStar

Korea
13 M 7

Peter Bailis’s slides

Example: Estimate costs

L.Q.P
P1 P2 ... Pn
C‘l CZ‘ ... Cn ‘
T
Pick best!

Korea
14 T M

Equivalence Preserving Transformations

.|

e To transform a relational expression into another
equivalent expression, we need transformation rules
that preserve equivalence

e Fach transformation rule

e Is provably correct (i.e., does preserve equivalence)
e Has a heuristic associated with it

Korea
16 . L

Commutativity and Associativity of Join

(and Cartesian Product as Special Case)
|

e Join commutativity: RPXI S =S XI R

e used to reduce cost of nested loop evaluation strategies (smaller relation
should be in outer loop)

e Join associativity: R D (S T) = (R S) IXT

e used to reduce the size of intermediate relations in computation of multi-
relational join — first compute the join that yields smaller intermediate
result

e N-way join has T(N)x N! different evaluation plans
e T(N)isthe number of parenthesized expressions

e N!isthe number of permutations

e Query optimizer cannot look at all plans (might take longer to find
an optimal plan than to compute query brute-force). Hence it
does not necessarily produce optimal plan

Korea
17 T

Peter Bailis’s slides

Commutativity and Associativity of Join

.|
Natural joins & cross products & union

R S = S X R Commutative Law
(RXS)XT =RX((S X T) Associative Law
RxS=SxR

(RxS)XxT=Rx(SxT)

RUS=SUR
RU(SUT)=(RUS)UT

Korea
18 M 7

Selection and Projection Rules

e Break complex selection into simpler ones:

® OcondincCond2 (R) = GCondl (GCondZ (R))

e Break projection into stages:

o . (R)=m 4 (T, (R)), if attr cattr’

e Commute projection and selection:

® T gttr (GCond(R)) = Ocond (TC attr (R))'

if attr o all attributes in Cond

Korea
19 . L

Peter Bailis’s slides

Laws Involving Selects

Splitting Laws:

Gpl/\pz(R) - Gpl | sz (R)]

Gplvpz(R) - [0, R1U [O,; (R)]

Since selections tend to reduce the size of relations
markedly, we want to move the selections down the tree

as far as they will go
Korea
20 T P T

Peter Bailis’s slides

Bags vs. Sets

R={a,a,b,b,b,c}
S={b,b,c,c,d}
RUS="

e Option1 SUM

RUS = {a,a,b,b,b,b,b,c,c,c,d}
e Option 2 MAX

RUS = {a,a,b,b,b,c,c,d}

Korea
21 M 7

Peter Bailis’s slides

Laws Involving Project

Let: X = set of attributes
Y = set of attributes
XY =XUY

Tlxy (R) = TUlx]

While selections reduce the size of a relation by a large
factor, projection keeps the number of tuples the same

and only reduce the length of tuples and sometimes
Increase the length of tuples

CS 245 Notes 6 Kuma

Pushing Selections and Projections

|
¢ GCond(R X S) =R NCondS
e Cond relates attributes of both Rand S

e Reduces size of intermediate relation since rows can be
discarded sooner

¢ GCond(R X S) = GCond(R) xS
e Cond involves only the attributes of R

e Reduces size of intermediate relation since rows of R are
discarded sooner

¢ Tcattr(R X S) = Tcattr(nattr’ (R) X S)'

if attributes(R) o attr’> attr N attributes(R)
e reduces the size of an operand of product
Korea

26

O

Stony Brook
Uhniversity

CSE 305/ CSES532

Lecture 21 (Chapter 11)
An Overview of Query Optimization

Lecturer: Sael Lee

Slide adapted from the author’s and Dr. lichul Yoon'’s slides.

Korea
ISR Ed: - el

Peter Bailis’s slides

Rules: o + > combined

Let p = predicate with only R attribs
g = predicate with only S attribs
m = predicate with only R,S attribs

O, R=15)= [O, (R)]<IS
O, (R = RI[O, (S)]

CS 245 Notes 6 Kuma

28

Peter Bailis’s slides

Rules: ¢ + ><icombined

Opag (RFIS) =[Op (RO q (9)]
O prgam (R><S) =
On [(Gp R)I><(O S)]

Opvq (R><IS) =
[(Gp R)Ns] U [R ><1(Oq S)]
CS 245 Notes 6 Kurfa

29

Peter Bailis’s slides

Rules: m,c combined

Let x = subset of R attributes

z = attributes in predicate P
(subset of R attributes)

TCx[Gp (R)] = {Gp [T R]}

CS 245 Notes 6 Kuma

30

Peter Bailis’s slides

Rules: m,c combined

Let x = subset of R attributes

z = attributes in predicate P
(subset of R attributes)

TCxz
Tx[Op(R)] = Tix {0 [TR 1}

CS 245 Notes 6 Kuma

31

Peter Bailis’s slides

Rules: T, >~ combined

Let X = subset of R attributes
y = subset of S attributes
Z = Intersection of R,S attributes

Tixy (RE><1S) =

ﬂ:xy{ [Tsz (R)] ><] [TCyz S]}

CS 245 Notes 6 Kuma

32

Tl {Op (R=<5)} =

TCxy {Gp [TTxz (R) ><TTyz (S)]}

z’=2zU {attributes used in P }

CS 245 Notes 6
33

Equivalence Example

® 01 c2nc3(R%S)

= 0¢; (0¢; (03 (RXS))
0c1 (0¢; (R) X 015 ())
= 0¢; (R) Xy 0r3(S)

e assuming that
C2 involves only attributes of R,
C3 involves only attributes of S, and
C1 relates attributes of Rand S

Korea
34 T

Rules o, U combined:

Op(RUS) =Op(R) U Op(S)

Op(R-S) = Op(R) -S=0Op(R) - Op(S)

CS 245 Notes 6
35

Which are “good” transformations?

1 Obpinp2 (R) > On1[On2 (R)]

= Op (Ri<6) > [Op (R)]< S
1 R><1S —» SIXIR

1 TUx[Op (R)] = TUx {Gp [TUxz (R)]}

CS 245 Notes 6
36

Conventional wisdom:

do projects early

Example: R(A,B,C,D,E) x={E}
P: (A=3) A (B="“cat”)

TUx{Op (R)} ws. TCE{Gp{TCABE(R)}}

CS 245 Notes 6
37

What if we have A, B indexes?

But

B = “cat”

CS 245

./

Intersect pointers to get

pointers to matching tuples

Notes 6
38

Korea
. L

Bottom line:

e No transformation is always good

e Usually good: early selections

CS 245 Notes 6 Km

39

Cost - Example 1

SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.Profld -- Join condition
AND P. Deptld =‘CS’ AND T.Semester = ‘F1994’

Tc Name(GDeptIdz‘CS’ A Semester=‘F1994’(PrOfessor > Id=Profld TeaChmg))

Tc Name
~ Master query
~execution plan 1.
. (nothing e
pusheq) ODeptld="CS’1 Semester="F1994"
- N |d%
Professor Teaching
Korea

40

Metadata on Tables (in system catalogue)

e Professor (Id, Name, Deptld)
e size: 200 pages, 1000 rows, 50 departments (5 tuples/page)

e indices: clustered 2-level B* tree on Deptld,
hash on Id

e Teaching (Profld, CrsCode, Semester)
e size: 1000 pages, 10,000 rows, 4 semesters, (10 tuples/page)

e indices: clustered 2-level B*tree on Semester;
hash on Profld

e Definition: Weight of an attribute — average number of
rows that have a particular value

e weightof ld =1 (itis a key)
e weight of Profld = 10 (10,000 classes/1000 professors) Km

41

Estimating Cost - Example 1

.|
e Assumption

e 52 page buffer is available for evaluating join
e Small amount of additional memory is available for aux. info.

e Join - index-nested loops with 50 page buffers

e 50 pages — input for Professor,
e 5 profs per page and average 10 classes per each prof

e Cost to scan Professor relation
e 200 page transfers

e Cost to find matching tuples in Teaching

Korea
42 TN T

Estimating Cost - Example 1 cont.

.|
e Cost to find matching tuples in Teaching

e Max. 2500 tuples (50 pages x 5 faculty/page x avg 10
classes/faculty) in Teaching could be matched. (i.e., max.
page transfers could be 2500.) for loaded Professor pages

e However, by sorting record ids of the Teaching pointed by
the 2500 tuples, this can be done in 1000 page transfers =
size(Teaching)

e Repeating 4 times (200 pages/50 buffer) makes 4000 page
transfers from Teaching

120b page

200 page N 4000 page

Professor Teaching
Korea

43

Estimating Cost - Example 1 (cont’d)

|
e 50 pages — input for Professor,

e 5 profs per page and average 10 classes per each prof

e Cost to search index of Teaching (, -t profia)
e ProfID is hash-indexed.
e 1.21/0 per index search, assuming good hash function (1.2)

e If all matching tuples are stored in a single bucket (10 on
average), indices for the 10 tuples can be retrieved in one
/O operation.

e There are 10000 tuples in Teaching. This requires 1000 I/Os
makes 1200 page transfers

e So... the total cost is 200 + 4000 + 1200 = 5400 page transtm

44

Estimating Cost - Example 1 (cont’d)

e Join - block-nested loops with 52 page buffers

50 pages — input for Professor,
1 page — input for Teaching,
1 — output page

Scanning Professor (outer loop): 200 page transfers, (4
iterations, 50 transfers each)

Finding matching rows in Teaching (inner loop): 1000 page
transfers for each iteration of outer loop

Total cost = 200 + 4*1000 = 4200 page transfers

Korea
45 . L

Estimating Cost - Example 1 (cont’d)

.|
e Selection and projection

e scan rows of intermediate file,
discard those that don’t satisfy TC e
selection, project on those that
do, write result when output
. GDeptId=‘CS’/\ Semester="F1994’
buffer is full. 4200 page

e Complete algorithm: N.d_pmf.d
P g i =

e dojoin, write result to Professor Teaching
intermediate file on disk

e read (big) intermediate file, do
select/project, write final result

Korea
46 . L

e Problem: unnecessary I/O

Pipelining
.|
e Solution: use pipelining:

e join and select/project act as co-routines, operate as
producer/consumer sharing a buffer in main memory.

e Output of one relational operator is “piped” to the input of the
next operator without saving the intermediate result on disk.
e When join fills buffer; select/project filters it and outputs result
e Process is repeated until select/project has processed last output from
join

e Performing select/project adds no additional cost

output

Intermediate _
final result

__result

join select/project

~ buffer Kuma

47

Estimating Cost - Example 1 (cont’d)

Hl\lame -

e |/O operations required for

] . -- Pipelining
storing data will be reduced “

-
r

GDeptId ='CS' N Semester = 'F1994'

) .-Block-nested
><]*" Ior::ps
Id= ProfId

N\

PROFESSOR TEACHING
e Total cost:

e 4200 + (cost of outputting final result)

e We will disregard the cost of outputting final result in
comparing with other query evaluation strategies, since this

will be same for all Kurea

48

Cost Example 2

SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.Profld AND
P. Deptld = ‘CS’ AND T.Semester = ‘F1994’

7ame(Osemester="F1994 (O-Deptld:‘CS’ (Professor) D><14=prong T€ACHING))

7T Name
' Partially pushed plan:
~ selection pushedto Osemester="F1994'
~ Professor

/ Nld:Profld

ODeptld="CS’

Professor Teaching l{urea

49

Cost Example 2 -- selection

|
e Compute op,,4-cs (Professor) to reduce size of one join
table) using clustered, 2-level B* tree on Deptid.

e 50 departments and 1000 professors; hence weight of Deptld
is 20 (roughly 20 CS professors).

e These rows are in ~ 4 consecutive pages in Professor.

e Cost =4 (to get rows) + 2 (to search index) =6
e keep resulting 4 pages in memory and pipe to next step

.

clustered index
on Deptld <

: rows of
\
l{urea
50 P

Cost Example 2 —join (cont’d)
.|
e Each professor matches ~ roughly 10 Teaching rows. Since 20 CS

professors, hence 200 teaching records.

e All index entries for a particular Profld are in same bucket.
Assume ~1.2 |/Os to get a bucket.

e Index fetch cost: 1.2 x 20 (to fetch index entries for 20 CS professors)

e Total Cost
e 24 + 200 (to fetch Teaching rows, since hash index is

unclustered) = 224 T

1.2 N 10

Profld @ Teaching

52

Korea
. L

Cost Example 2 — select/project

|
e Pipe result of join to select (on Semester) and project (on

Name) at no 1/O cost

e Cost of output same as for Example 1

e Total cost:
6 (select on Professor) + 224 (join) = 230

e Comparison:
4200 (example 1) vs. 230 (example 2) !!!

Korea
53 . L

Choosing Query Execution Plan

e Step 1: Choose a logical plan
e Step 2: Reduce search space

e Step 3: Use a heuristic search to further reduce
complexity

Korea
59 . L

Step 1: Choosing a Logical Plan

.|
e Involves choosing a query tree, which indicates the

order in which algebraic operations are applied

e Heuristic:

e Pushed trees are good, but sometimes “nearly fully pushed”
trees are better due to indexing

e Avoid exponential complexity problem by grouping
consecutive binary operators of the same kind into one node

Ill

e So: Take the initial “master plan” tree and produce a
fully pushed tree plus several nearly fully pushed trees.

Korea
60 T

Step 1: Choosing a Logical Plan (cont’d)

T rjame T rjame

Tpeptid = 'S ~ Semester = 'F1994°
| I1d= Prerld

N

L= FI'“ Ld Cpeptid = 'G5 T Samaster = F1904°

N | |

PrRoFESSOR TEACHIMG ProFEssOR TEACHING
(a) (b)
M jame T rjame
T Semester = F 1994 Foeptid = ‘TS
ld—F'rl::-I I4 Id= P'r-::-:l'_' IAd
T Deptld = 'CS' T samester = 'F19949°
ProFEsSSOR TEACHIMG ProFEssOR TEaACHIMNG

(<) (cl) _@ s
) Rores

Step 2: Reduce Search Space

|
e Deal with associativity of binary operators (join, union,

..)

> > >
T RR A
A \B C D K c

Equivalent query tree A B

Logical query
execution plan

Equivalent left deep query tree

Korea
62 . L

	Lecture 20 (Chapter 11)�An Overview of Query Optimization
	Query Evaluation
	Naive Conversion
	Query Processing Architecture
	Query Optimizer
	Example: SQL query
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Example: Estimate Result Sizes
	Example: One Physical Plan
	Example: Estimate costs
	Equivalence Preserving Transformations
	Commutativity and Associativity of Join �(and Cartesian Product as Special Case)
	Commutativity and Associativity of Join��Natural joins & cross products & union
	Selection and Projection Rules
	Laws Involving Selects
	Bags vs. Sets
	Slide Number 25
	Pushing Selections and Projections
	Lecture 21 (Chapter 11)�An Overview of Query Optimization
	Rules: s + combined
	Rules: s + combined
	Rules: p,s combined
	Rules: p,s combined
	Slide Number 32
	Slide Number 33
	Equivalence Example
	Rules s, U combined:
	Which are “good” transformations?
	Conventional wisdom: �			do projects early
		What if we have A, B indexes?
	Bottom line:
	Cost - Example 1
	Metadata on Tables (in system catalogue)
	Estimating Cost - Example 1
	Estimating Cost - Example 1 cont.
	Estimating Cost - Example 1 (cont’d)
	Estimating Cost - Example 1 (cont’d)
	Estimating Cost - Example 1 (cont’d)
	Pipelining
	Estimating Cost - Example 1 (cont’d)
	Cost Example 2
	Cost Example 2 -- selection
	Cost Example 2 – join (cont’d)
	Cost Example 2 – select/project
	Choosing Query Execution Plan
	Step 1: Choosing a Logical Plan
	Step 1: Choosing a Logical Plan (cont’d)
	Step 2: Reduce Search Space

