CSE 305 / CSE532

Lecture 20 (Chapter 11)
 An Overview of Query Optimization

Lecturer: Sael Lee

Slide adapted from the author's, Peter Bailis's and Dr. Ilchul Yoon's slides.

Query Evaluation

- Problem
- An SQL query is declarative - does not specify a query execution plan.
- A relational algebra expression is procedural and there is an associated query execution plan.

- Solution

- Convert SQL query to an equivalent relational algebra and evaluate it using the associated query execution plan.
- But which equivalent expression is best?

Naive Conversion

SELECTDISTINCT TargetList
 FROM R1, R2, ... RN
 WHERE Condition

is equivalent to: $\pi_{\text {TargetList }}\left(\sigma_{\text {Condition }}\left(R_{1} \times R_{2} \times \ldots \times R_{N}\right)\right)$
but this may imply a very inefficient query execution plan.
Example: $\quad \pi_{\text {Name }}\left(\sigma_{I d=P r o f l d ~}\right.$ ^CrsCode='Cs532' $($ Professor \times Teaching $)$)

- Result can be < 100 bytes
- But if each relation is 50K then we end up computing an intermediate result Professor \times Teaching of size 500M before shrinking it down to just a few bytes.

Problem statement:

Find an equivalent relational algebra expression that can be evaluated "efficiently".

Query Processing Architecture

Query Optimizer

- Uses heuristic algorithms to evaluate relational algebra expressions. This involves:
- Estimating the cost of a relational algebra expression
- Transforming one relational algebra expression to an equivalent one
- Choosing access paths for evaluating the sub-expressions
- Query optimizers do not "optimize" - just try to find "reasonably good" evaluation strategies

Example: SQL query

SELECT title
FROM StarsIn
WHERE starName IN (
SELECT name
FROM MovieStar
WHERE birthdate LIKE '\%1960’
);
(Find the movies with stars born in 1960)

Example: 1 Parse Tree

Example: 2 Generating Relational Algebra

Fig. An expression using a two-argument σ, midway between a parse tree and relational algebra

Example: 3 Logical Query Plan

Пtitle

OstarName=name

Obirthdate LI KE "\% 1960’

Fig. Applying the rule for I N conditions

Example: 4 I mprove Logical Query Plan

Fig. 7.20: An improvement on fig. 7.18.

Example: Estimate Result Sizes

Need expected size

StarsIn

Example: One Physical Plan

Starsl n
MovieStar

Example: Estimate costs

Equivalence Preserving Transformations

- To transform a relational expression into another equivalent expression, we need transformation rules that preserve equivalence
- Each transformation rule
- Is provably correct (i.e., does preserve equivalence)
- Has a heuristic associated with it

Commutativity and Associativity of Join (and Cartesian Product as Special Case)

- Join commutativity: $R \bowtie S \equiv S \bowtie R$
- used to reduce cost of nested loop evaluation strategies (smaller relation should be in outer loop)
- Join associativity: $R \bowtie(S \bowtie T) \equiv(R \bowtie S) \bowtie T$
- used to reduce the size of intermediate relations in computation of multirelational join - first compute the join that yields smaller intermediate result
- N-way join has $T(N) \times N$! different evaluation plans
- $T(N)$ is the number of parenthesized expressions
- N ! is the number of permutations
- Query optimizer cannot look at all plans (might take longer to find an optimal plan than to compute query brute-force). Hence it does not necessarily produce optimal plan

Commutativity and Associativity of Join

Natural joins \& cross products \& union

$\mathbf{R} \bowtie \mathbf{S}=\mathbf{S} \bowtie \mathbf{R}$
 $(R \bowtie S) \bowtie T \quad=R \bowtie(S \bowtie T) \quad$ Associative Law

$R \times S=S \times R$
$(R \times S) \times T=R \times(S \times T)$
$R \cup S=S U R$
$R \cup(S \cup T)=(R \cup S) \cup T$

Selection and Projection Rules

- Break complex selection into simpler ones:
- $\sigma_{\text {Cond1^Cond2 }}(\mathrm{R}) \equiv \sigma_{\text {Cond1 }}\left(\sigma_{\text {Cond } 2}(\mathrm{R})\right)$
- Break projection into stages:
- $\pi_{a t t r}(R) \equiv \pi_{a t t r}\left(\pi_{a t t r^{\prime}}(\mathrm{R})\right)$, if $a t t r \subseteq a t t r^{\prime}$
- Commute projection and selection:
- $\pi_{\text {attr }}\left(\sigma_{\text {cond }}(\mathrm{R})\right) \equiv \sigma_{\text {cond }}\left(\pi_{\text {attr }}(\mathrm{R})\right)$,
if attr \supseteq all attributes in Cond

Laws Involving Selects

Splitting Laws:

$$
\begin{array}{ll}
\sigma_{p 1 \wedge p 2}(R)= & \sigma_{\mathbf{p} 1}\left[\sigma_{\mathbf{p} 2}(R)\right] \\
\sigma_{p 1 v p 2}(R)= & {\left[\sigma_{\mathbf{p} 1}(R)\right] \cup\left[\sigma_{p \mathbf{2}}(R)\right]}
\end{array}
$$

Since selections tend to reduce the size of relations markedly, we want to move the selections down the tree as far as they will go

Bags vs. Sets

$R=\{a, a, b, b, b, c\}$
$S=\{b, b, c, c, d\}$
$R \cup S=$?

- Option 1 SUM RUS = \{a,a,b,b,b,b,b,c,c,c,d\}
- Option 2 MAX RUS $=\{a, a, b, b, b, c, c, d\}$

Laws I nvolving Project

Let: $\mathrm{X}=$ set of attributes $Y=$ set of attributes $\mathbf{X Y}=\mathbf{X U Y}$

$\pi_{x y}(R)=\pi_{x}\left[\pi_{y}(R)\right]$

While selections reduce the size of a relation by a large factor, projection keeps the number of tuples the same and only reduce the length of tuples and sometimes increase the length of tuples

Pushing Selections and Projections

- $\sigma_{\text {Cond }}(\mathrm{R} \times \mathrm{S}) \equiv \mathrm{R} \aleph_{\text {Cond }} \mathrm{S}$
- Cond relates attributes of both R and S
- Reduces size of intermediate relation since rows can be discarded sooner
- $\sigma_{\text {Cond }}(\mathrm{R} \times \mathrm{S}) \equiv \sigma_{\text {Cond }}(\mathrm{R}) \times \mathrm{S}$
- Cond involves only the attributes of R
- Reduces size of intermediate relation since rows of R are discarded sooner
- $\pi_{a t t r}(\mathrm{R} \times \mathrm{S}) \equiv \pi_{a t t r}\left(\pi_{a t t r^{\prime}}(\mathrm{R}) \times \mathrm{S}\right)$,
if attributes $(R) \supseteq \operatorname{attr}{ }^{\prime} \supseteq \operatorname{attr} \cap$ attributes (R)
- reduces the size of an operand of product

CSE 305 / CSE532

Lecture 21 (Chapter 11)
 An Overview of Query Optimization

Lecturer: Sael Lee

Slide adapted from the author's and Dr. Ilchul Yoon's slides.

Rules: $\sigma+\bowtie$ combined

Let $\mathrm{p}=$ predicate with only R attribs
$q=$ predicate with only S attribs $\mathrm{m}=$ predicate with only R, S attribs
$\sigma_{p}(R \propto S)=\left[\sigma_{p}(R)\right] \bowtie S$
$\sigma_{q}(R \bowtie S)=\quad R \bowtie\left[\sigma_{q}(S)\right]$

Rules: $\sigma+\bowtie$ combined

$$
\begin{aligned}
& \sigma_{p \wedge q(}(R \bowtie S)=\left[\sigma_{p(R)}\right] \bowtie\left[\sigma_{q}(S)\right] \\
& \sigma_{p \wedge q \wedge m}(R \bowtie S)= \\
& \sigma_{m}\left[\left(\sigma_{p R)}\right) \bowtie\left(\sigma_{q S}\right)\right]
\end{aligned}
$$

$\sigma_{\text {pvq }}(\mathrm{R} \bowtie \mathrm{S})=$

$$
\left[\left(\sigma_{p R}\right) \bowtie S\right] \cup\left[R \bowtie\left(\sigma_{q} S\right)\right]
$$

Rules: π, σ combined

Let $x=$ subset of R attributes
$z=$ attributes in predicate P (subset of R attributes)

$$
\pi_{x}\left[\sigma_{p(R)}\right]=\quad\left\{\sigma_{p}\left[\pi_{x}(R)\right]\right\}
$$

Rules: π, σ combined

Let $\mathrm{x}=$ subset of R attributes

$z=$ attributes in predicate P (subset of R attributes)

$\pi_{x}\left\{\sigma_{p}\left[\begin{array}{l}\pi_{x z} \\ \left.\left.\pi_{x}(R)\right]\right\}\end{array}\right.\right.$
 $\pi_{x}\left[\sigma_{p(R)}\right]=$

Rules: π, \bowtie combined

Let $x=$ subset of R attributes $y=$ subset of S attributes $z=$ intersection of R,S attributes

$\pi_{x y}(\mathbf{R} \bowtie \mathbf{S})=$

$$
\pi_{x y}\left\{\left[\pi_{x z}(\mathbf{R})\right] \bowtie\left[\pi_{y z}(\mathbf{S})\right]\right\}
$$

$\pi_{x y}\left\{\sigma_{p(R \bowtie S)}\right\}=$

$\pi_{x y}\left\{\sigma_{p}\left[\pi_{x z^{\prime}}(\mathbf{R}) \bowtie \pi_{y z^{\prime}}(\mathbf{S})\right]\right\}$ $z^{\prime}=\mathbf{z} \mathbf{U}$ \{attributes used in $\left.P\right\}$

Equivalence Example

- $\sigma_{C 1 \wedge C 2 \wedge C 3}(\mathrm{R} \times \mathrm{S})$

$$
\equiv \sigma_{C 1}\left(\sigma_{C 2}\left(\sigma_{C 3}(\mathrm{R} \times \mathrm{S})\right)\right)
$$

$$
\equiv \sigma_{C 1}\left(\sigma_{C 2}(\mathrm{R}) \times \sigma_{C 3}(\mathrm{~S})\right)
$$

$$
\equiv \sigma_{C 2}(\mathrm{R}) \bowtie_{C 1} \sigma_{C 3}(\mathrm{~S})
$$

- assuming that

C2 involves only attributes of R,
C3 involves only attributes of S, and $C 1$ relates attributes of R and S

Rules σ, U combined:

$\sigma_{p}(R \cup S)=\sigma_{p}(R) \cup \sigma_{p}(S)$
$\sigma p(R-S)=\sigma_{p}(R)-S=\sigma_{p}(R)-\sigma p(S)$

Which are "good" transformations?

$$
\square \sigma_{p 1 \wedge p 2}(R) \rightarrow \sigma_{p 1}\left[\sigma_{p 2}(R)\right]
$$

$\square \sigma_{p(R \bowtie S) \rightarrow\left[\sigma_{p}(R)\right] \bowtie S}$
$\square R \bowtie S \rightarrow S \bowtie R$
$\square \pi_{x}\left[\sigma_{p}(R)\right] \rightarrow \pi_{x}\left\{\sigma_{p}\left[\pi_{x z}(R)\right]\right\}$

Conventional wisdom:

do projects early

Example: $R(A, B, C, D, E) \quad x=\{E\}$

$$
P:(A=3) \wedge(B=" c a t ")
$$

$\pi_{x}\left\{\sigma_{p}(R)\right\}$ vs. $\pi_{E}\left\{\sigma_{p}\left\{\pi_{A B E}(R)\right\}\right\}$

What if we have A, B indexes?

But

B = "cat"

Bottom line:

- No transformation is always good
- Usually good: early selections

Cost - Example 1

SELECT P.Name
 FROM Professor P, Teaching T
 WHERE P.Id = T.Profld $\quad-$ join condition
 AND P. Deptld = ‘CS' AND T.Semester = ‘F1994’

$\pi_{\text {Name }}\left(\sigma_{\text {Deptld='Cs' } \wedge \text { Semester=F1994 }}\right.$ (Professor $\bowtie_{l d=\text { Proftd }}$ Teaching))

Metadata on Tables (in system catalogue)

- Professor (Id, Name, DeptId)
- size: 200 pages, 1000 rows, 50 departments (5 tuples/page)
- indices: clustered 2-level B+ tree on Deptld, hash on Id
- Teaching (Profld, CrsCode, Semester)
- size: 1000 pages, 10,000 rows, 4 semesters, (10 tuples/page)
- indices: clustered 2-level B^{+}tree on Semester; hash on Profld
- Definition: Weight of an attribute - average number of rows that have a particular value
- weight of Id = 1 (it is a key)
- weight of Profld $=10$ (10,000 classes $/ 1000$ professors)

Estimating Cost - Example 1

- Assumption
- 52 page buffer is available for evaluating join
- Small amount of additional memory is available for aux. info.
- Join - index-nested loops with 50 page buffers
- 50 pages - input for Professor,
- 5 profs per page and average 10 classes per each prof
- Cost to scan Professor relation
- 200 page transfers
- Cost to find matching tuples in Teaching

Estimating Cost - Example 1 cont.

- Cost to find matching tuples in Teaching
- Max. 2500 tuples (50 pages $\times 5$ faculty/page x avg 10 classes/faculty) in Teaching could be matched. (i.e., max. page transfers could be 2500.) for loaded Professor pages
- However, by sorting record ids of the Teaching pointed by the 2500 tuples, this can be done in 1000 page transfers = size(Teaching)
- Repeating 4 times (200 pages/50 buffer) makes 4000 page transfers from Teaching

Estimating Cost - Example 1 (cont’d)

- 50 pages - input for Professor,
- 5 profs per page and average 10 classes per each prof
- Cost to search index of Teaching (p.ld=t.Profld $)$
- ProfID is hash-indexed.
- 1.2 I/O per index search, assuming good hash function (1.2)
- If all matching tuples are stored in a single bucket (10 on average), indices for the 10 tuples can be retrieved in one I/O operation.
- There are 10000 tuples in Teaching. This requires 1000 I/Os makes 1200 page transfers
- So... the total cost is $200+4000+1200=5400$ page transferss

Estimating Cost - Example 1 (cont'd)

- Join - block-nested loops with 52 page buffers
- 50 pages - input for Professor,
- 1 page - input for Teaching,
- 1 - output page
- Scanning Professor (outer loop): 200 page transfers, (4 iterations, 50 transfers each)
- Finding matching rows in Teaching (inner loop): 1000 page transfers for each iteration of outer loop
- Total cost $=200+4 * 1000=4200$ page transfers

Estimating Cost - Example 1 (cont’d)

- Selection and projection
- scan rows of intermediate file, discard those that don't satisfy selection, project on those that do, write result when output buffer is full.
- Complete algorithm:
- do join, write result to
 intermediate file on disk
- read (big) intermediate file, do select/project, write final result
- Problem: unnecessary I/O

Pipelining

- Solution: use pipelining:
- join and select/project act as co-routines, operate as producer/consumer sharing a buffer in main memory.
- Output of one relational operator is "piped" to the input of the next operator without saving the intermediate result on disk.
- When join fills buffer; select/project filters it and outputs result
- Process is repeated until select/project has processed last output from join
- Performing select/project adds no additional cost

Estimating Cost - Example 1 (cont’d)

- I/O operations required for storing data will be reduced

- Total cost:
- 4200 + (cost of outputting final result)
- We will disregard the cost of outputting final result in comparing with other query evaluation strategies, since this will be same for all

Cost Example 2

```
SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.Profld AND
    P. Deptld = 'CS' AND T.Semester = 'F1994'
\pi}\mp@subsup{\pi}{\mathrm{ Name }}{}(\mp@subsup{\sigma}{\mathrm{ Semester='F1994'}}{\prime}(\mp@subsup{\sigma}{\mathrm{ Deptld='CS''}}{
```

Partially pushed plan: selection pushed to Professor

Cost Example 2 -- selection

- Compute $\sigma_{\text {Deptld='cs' }}$ (Professor) to reduce size of one join table) using clustered, 2-level B^{+}tree on Deptld.
- 50 departments and 1000 professors; hence weight of Deptld is 20 (roughly 20 CS professors).
- These rows are in ~ 4 consecutive pages in Professor.
- Cost $=4$ (to get rows) +2 (to search index) $=6$
- keep resulting 4 pages in memory and pipe to next step
clustered index on Deptld

rows of
Professor

Cost Example 2 - join (cont'd)

- Each professor matches ~ roughly 10 Teaching rows. Since 20 CS professors, hence 200 teaching records.
- All index entries for a particular Profld are in same bucket. Assume ~ 1.2 I/Os to get a bucket.
- Index fetch cost: 1.2×20 (to fetch index entries for 20 CS professors)
- Total Cost
- 24 + 200 (to fetch Teaching rows, since hash index is

Cost Example 2 - select/project

- Pipe result of join to select (on Semester) and project (on Name) at no I/O cost
- Cost of output same as for Example 1
- Total cost:

6 (select on Professor) +224 (join) $=230$

- Comparison:

4200 (example 1) vs. 230 (example 2) !!!

Choosing Query Execution Plan

- Step 1: Choose a logical plan
- Step 2: Reduce search space
- Step 3: Use a heuristic search to further reduce complexity

Step 1: Choosing a Logical Plan

- Involves choosing a query tree, which indicates the order in which algebraic operations are applied
- Heuristic:
- Pushed trees are good, but sometimes "nearly fully pushed" trees are better due to indexing
- Avoid exponential complexity problem by grouping consecutive binary operators of the same kind into one node
- So: Take the initial "master plan" tree and produce a fully pushed tree plus several nearly fully pushed trees.

Step 1: Choosing a Logical Plan (cont'd)

(a)

(c)

(b)

(d)

Step 2: Reduce Search Space

- Deal with associativity of binary operators (join, union, ...)

Logical query execution plan

Equivalent query tree

Equivalent left deep query tree

