

CSE 537 Fall 2015

LEARNING FROM EXAMPLES AIMA CHAPTER 18 (1-3)

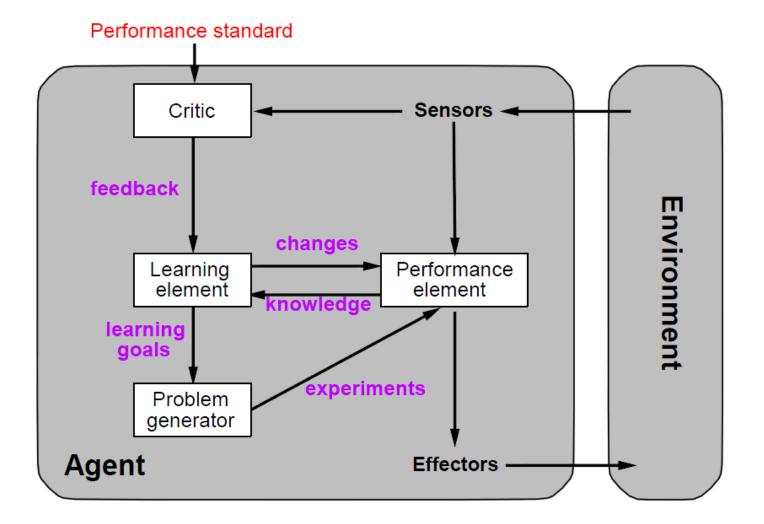
Instructor: Sael Lee

Slides are mostly made from AIMA resources, Andrew W. Moore's tutorials: <u>http://www.cs.cmu.edu/~awm/tutorials</u> and Bart Selman's Cornell CS4700 decision tree slides

- An agent is "learning" if it improves its performance on future tasks after making observations about the world.
- × Learning is essential for unknown environments,
 - + i.e., when designer lacks omniscience
- × Learning is useful as a system construction method,
 - + i.e., expose the agent to reality rather than trying to write it all down
- Learning modifies the agent's decision mechanisms to improve performance
 - + i.e., designer may not know how to solve a problem and leaves the agent to learn itself
- We will focus on specific type of learning problem that given a <u>collection of input-output pairs</u>, <u>learn a function the</u> <u>predicts the output fro new input (supervised learning)</u>

FORMS OF LEARNING

- Any component of an agent can be improved by learning.
- The improvement and the techniques to use to improve depends on four factors:
 - + Which **components** to improve
 - + What **prior knowledge** the agent already has.
 - + What **representation** is used for data and component.
 - + What feedback is available to learn from



COMPONENTS TO LEARN

- × Mapping conditions to action
- × Infer relevant information from the percept
- × Utility information (desirability of state)
- × Action-value information (desirability of action)
- Goals that describe states that has the maximum utility

REPRESENTATION AND PRIOR KNOWLEDGE

- × Examples
 - + Logical sentences
 - + Bayesian networks
- × For the following methods we will be looking at
 - + Input: Factored representations (A vector of attribute values)
 - + Output: continouse numerical value or a discrete value

TYPES OF LEARNING

Classification by representation

- Inductive learning
 - + Learning a general function or rule from specific input-output pair
- × Deductive (analytical) learning
 - + Going from a known general rule to a new rule that is logically entailed but is useful because it allows more efficient processing.

Classification by types of feedback

- Unsupervised learning
 - + Learns patterns in the input even though not explicit feedback (output) is supplied.
- × Reinforcement learning
 - Learns from a series of reinforcements rewards or punishments
- × Supervised learning
 - + Given example input-output pairs learns a function the maps input to output
- × Semi-supervised learning
 - + Given a few labeled samples and some unlabeled examples and learns a function the maps input to output

VOCABULARIES OF LEARNING

- × What is being learned?
 - + Parameters, structures (ex> Bayes net), hidden concepts
- × What for?
 - + Prediction, diagnosis, summarization
- × How?
 - + Passive vs Active,
 - + Online vs Offline
- × Output?
 - + Classification/ Regression/ Clusters
- × Other details
 - + Generative model vs discriminative model

SUPERVISED LEARNING

The task of supervised learning:

Given a Training set of N example input-output pairs,

(x1, y1), ... (xN, yN)

where each yj was generated by an unknown function y = f(x),

discover a function h (hypothesis) that approximates the true function f.

Supervised learning problem is :

- Classification problem if y is discrete and finite
- Regression problem if y is <u>continuous number</u>

Measure accuracy of hypothesis with test set.

Hypothesis generalizes well if it <u>correctly predicts the value of y for novel</u> <u>examples.</u>

AIMA Chapter 18 (3)

LEARNING DECISION TREES

Task:

- Given: collection of examples (x, f(x))
- Return: a function h (*hypothesis*) that approximates f
- h is a decision tree
- Input: an object or situation described by a set of attributes (or features)Output: a "decision" the predicts output value for the input.

The input attributes and the outputs can be discrete or continuous.

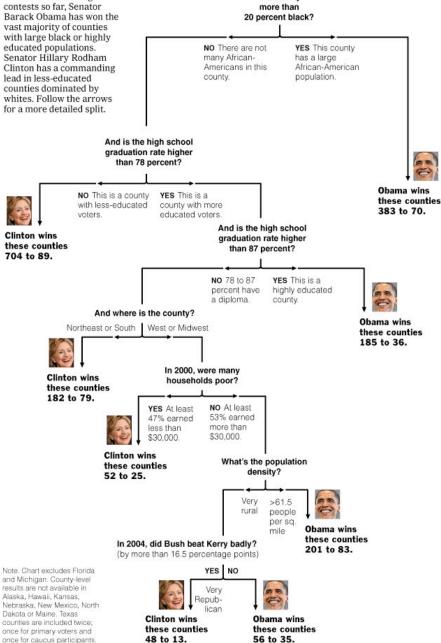
We will focus on decision trees for Boolean classification: each example is classified as positive or negative.

DECISION '

- What is a decision tree?
- ×A tree with two types of nodes:
 - +Decision nodes: Specifies a choice or test of some attribute with 2 or more alternatives; \rightarrow every decision node is part of a path to a leaf node
 - +Leaf node: Indicates classification of an example

In the nominating Is a county contests so far, Senator Barack Obama has won the vast majority of counties

Decision Tree: The Obama-Clinton Divide



Sources: Election results via The Associated Press; Census Bureau; Dave Leip's Atlas of U.S. Presidential Elections

AMANDA COX. THE NEW YORK TIMES

New York Times April 16, 2008

DECISION THREE REPRESENTATION

Problem: decide whether to wait for a table at a restaurant. What attributes would you use?

Attributes used by in the book

- 1. Alternate: is there an alternative restaurant nearby? What about
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

It could be great for generating a small tree but ...

It doesn't generalize!

restaurant name?

ATTRIBUTE-BASED REPRESENTATIONS

Examples described by attribute values (Boolean, discrete, continuous)

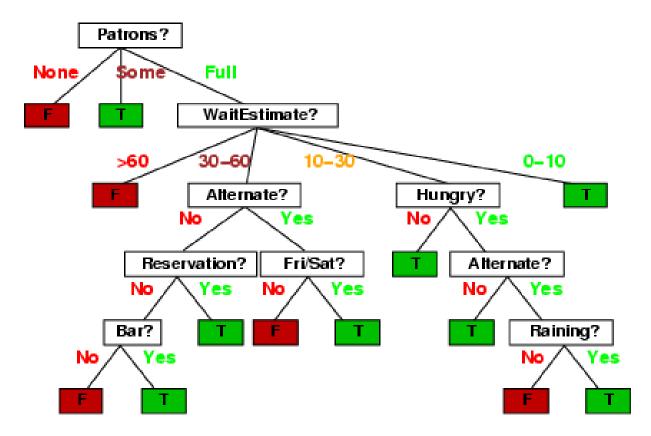
E.g.	Example	Attributes									Target	
	Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
	X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
	X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
	X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
	X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
	X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
	X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
	X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
	X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
	X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
	X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
	X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
	X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Classification of examples is positive (T) or negative (F)

REPRESENTATION FOR HYPOTHESES

One possible representation for hypotheses

E.g., here is a tree for deciding whether to wait:



EXPRESSIVENESS OF DECISION TREES

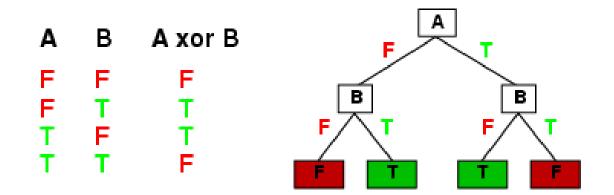
Any particular decision tree hypothesis for WillWait goal predicate can be seen as a disjunction of a conjunction of tests, i.e., an assertion of the form:

 $\forall s \text{ WillWait}(s) \leftrightarrow (P1(s) \lor P2(s) \lor \ldots \lor Pn(s))$

Where each condition Pi(s) is a conjunction of tests corresponding to the path from the root of the tree to a leaf with a positive outcome.

EXPRESSIVENESS CONT.

Decision trees can express any Boolean function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:



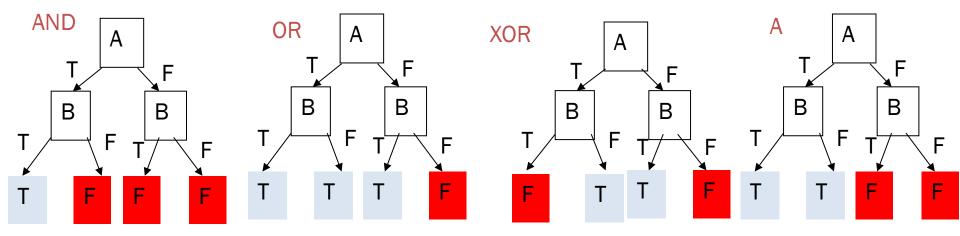
How many distinct decision trees with *n* Boolean attributes?

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

With 6 Boolean attributes, there are 18,446,744,073,709,551,616 possible trees!

There are even more decision trees!

EXPRESSIVENESS: BOOLEAN FUNCTION WITH 2 ATTRIBUTES $\rightarrow 2^{2^{2}}$ DTS

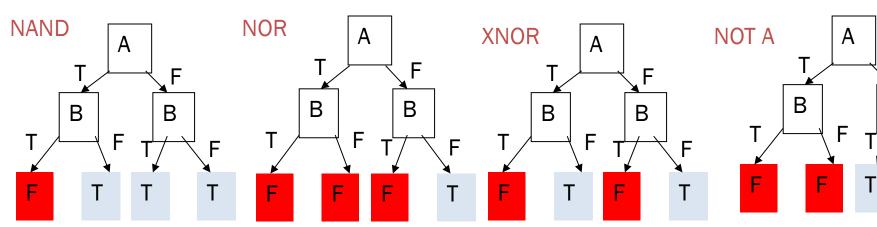


F

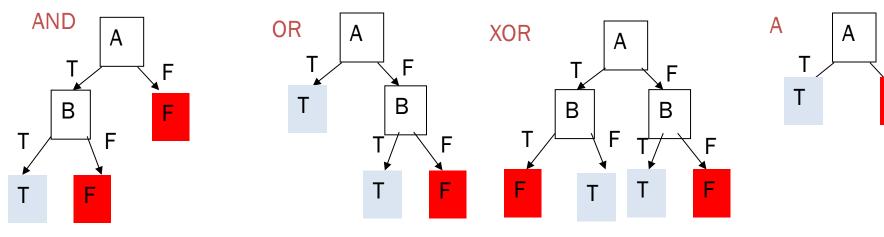
В

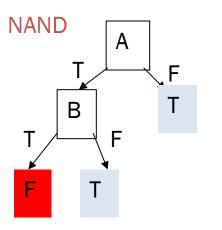
F

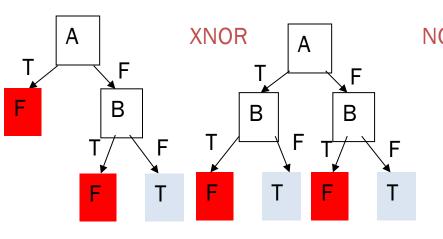
Т

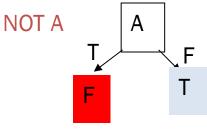


NOR









F

F

DECISION TREE LEARNING ALGORITHM

- Decision trees can express any Boolean function.
- **x** Goal: Finding a decision tree that agrees with training set.

We could construct a decision tree that has one path to a leaf for each example, where the path tests sets each attribute value to the value of the example.

What is the problem with this from a learning point of view?

Problem: This approach would just memorize example. How to deal with new examples? It doesn't generalize!

(But sometimes hard to avoid --- e.g. parity function, 1, if an even number of inputs, or majority function, 1, if more than half of the inputs are 1).

We want a compact/smallest tree.

But finding the smallest tree consistent with the examples is NP-hard!

• Overall Goal: get a good classification with a small number of tests.

DATA (INPUT-OUTPUT)

Examples described by attribute values (Boolean, discrete, continuous) E.g., situations where I will/won't wait for a table:

	input-										output
Example	Attributes										Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	ltalian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Classification of examples is positive (T) or negative (F)

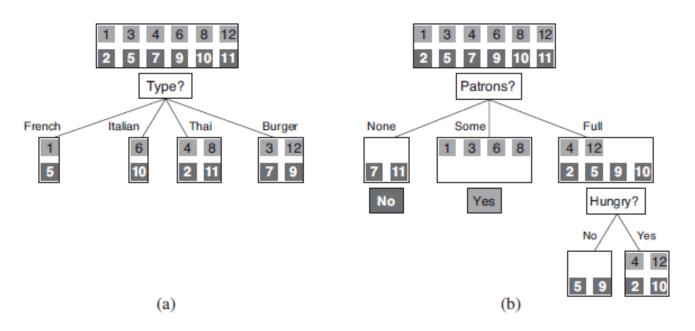
DECISION TREE LEARNING

× Goal:

+ find a *small* tree consistent with the training examples

- × Idea:
 - (recursively) choose "most significant" attribute as root of (sub)tree;
 - 2. Use a divide-and-conquer greedy search through the space of possible decision trees.
 - 3. Greedy because there is no backtracking. It picks highest values first.
- » Divide-and-conquer greedy construction
 - + Which attribute should be tested?
 - \times Heuristics and Statistical testing with current data
 - + Repeat for descendants

- × "most significant attribute":
 - One that makes the most difference to the classification of an example such that we may get to the correct classification with a small number of tests (= shallow tree)
- x Ex> Patrons is better attribute than types.



```
function DECISION-TREE-LEARNING(examples, attributes, parent_examples) returns a

tree

if examples is empty then return PLURALITY-VALUE(parent_examples)

else if all examples have the same classification then return the classification

else if attributes is empty then return PLURALITY-VALUE(examples)

else

A \leftarrow \operatorname{argmax}_{a \in attributes} IMPORTANCE(a, examples)

tree \leftarrow a new decision tree with root test A

for each value v_k of A do

exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\}

subtree \leftarrow DECISION-TREE-LEARNING(exs, attributes - A, examples)

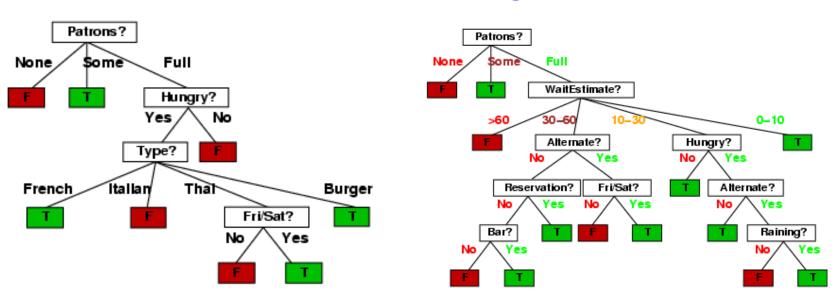
add a branch to tree with label (A = v_k) and subtree subtree

return tree
```

Figure 18.4 The decision-tree learning algorithm. The function IMPORTANCE is described in Section ??. The function PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties randomly.

EXAMPLE CONTD.

***** Decision tree learned from the 12 examples:



Original Tree

Learned Three

Substantially simpler than "true" tree --but a more complex hypothesis isn't justified from just the data.

EVALUATIONS OF ACCURACY OF THE LEARNING

- × One way is to look at a learning curve
- × Decide how many examples we need as well

