Informed Search Algorithms

Chapter 4, Sections 1–2

Outline

- ♦ Best-first search
- \Diamond A* search
- ♦ Heuristics

Review: Tree search

```
function Tree-Search (problem, frontier) returns a solution, or failure
   frontier \leftarrow Insert(Make-Node(Initial-State[problem]), frontier)
   loop do
       if frontier is empty then return failure
       node \leftarrow Remove(frontier)
       if GOAL-TEST[problem] applied to STATE(node) succeeds return node
       frontier \leftarrow InsertAll(Expand(node, problem), frontier)
```

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node

- estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

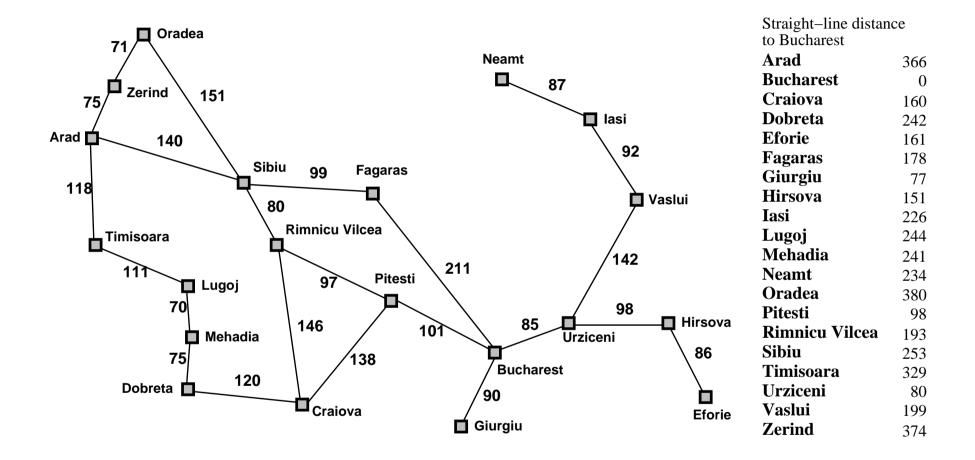
frontier is a priority queue sorted in decreasing order of desirability

Special cases:

greedy search

A* search

Romania with step costs in km

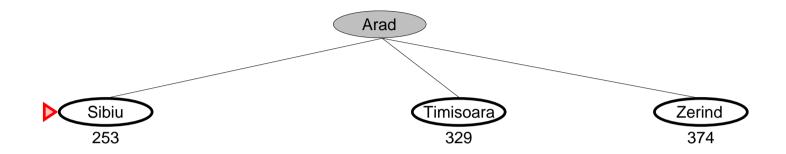


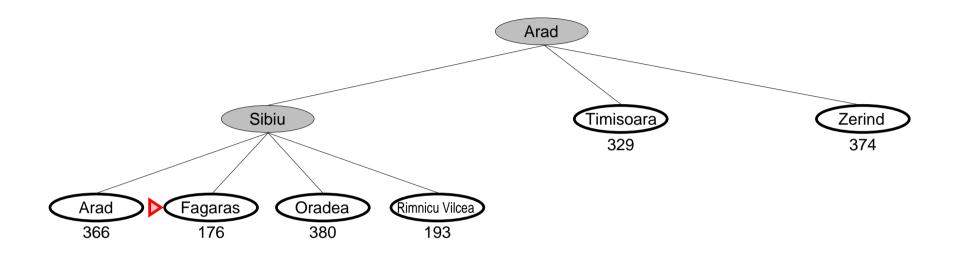
Greedy search

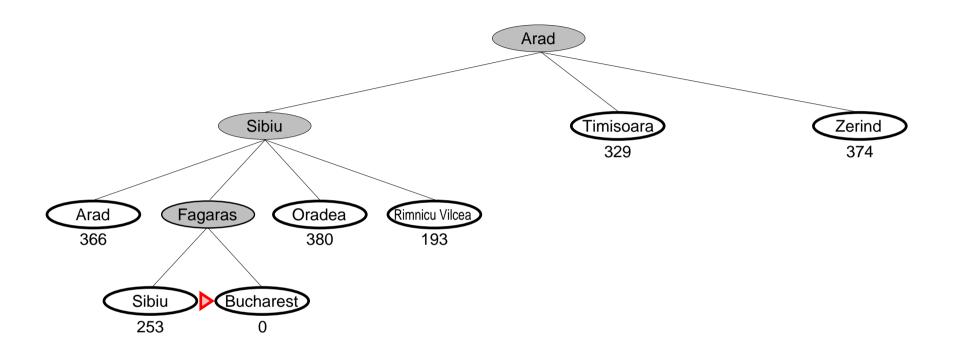
Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

E.g., $h_{\rm SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Greedy search expands the node that appears to be closest to goal







Properties of greedy search

Complete??

Time??

Space??

Optimal??

Properties of greedy search

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

A^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost to goal from n

f(n) =estimated total cost of path through n to goal

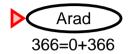
A* search uses an admissible heuristic

i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the **true** cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

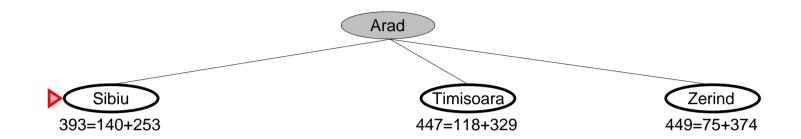
E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

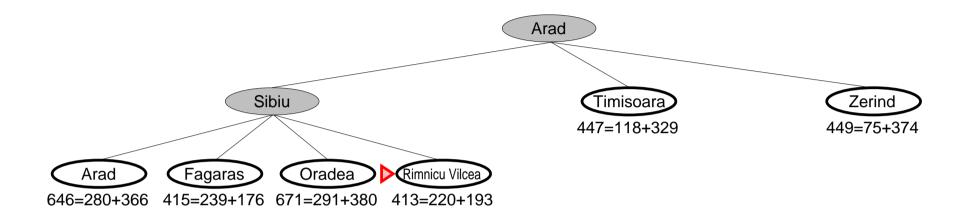
A^* search example



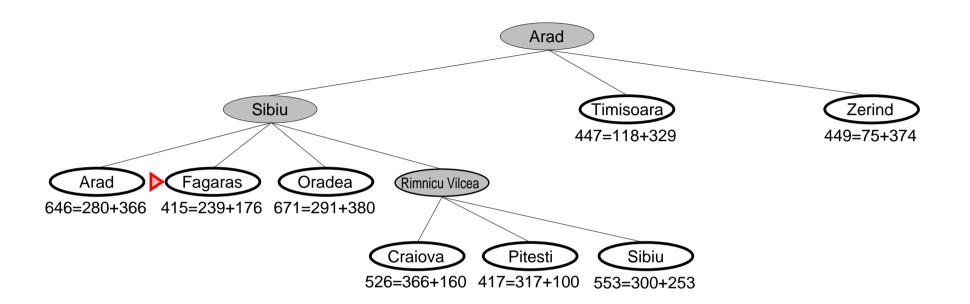
A^* search example



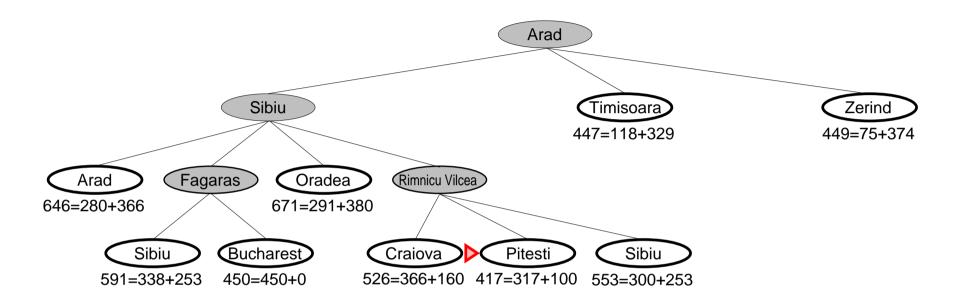
A* search example



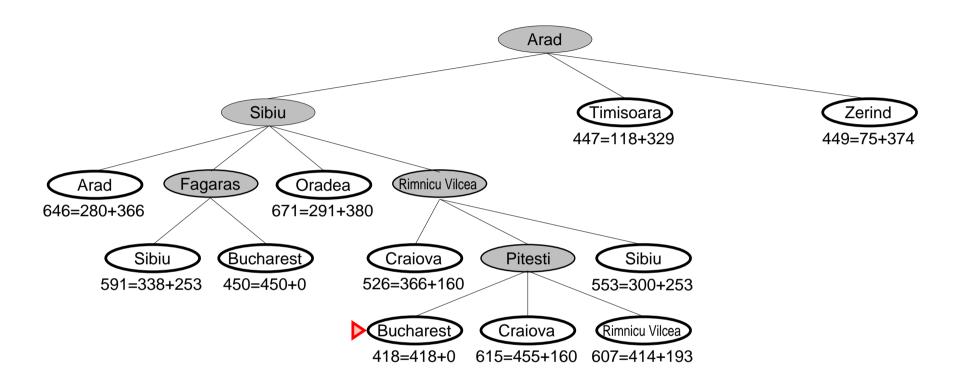
A* search example



A^* search example



A* search example



Conditions for optimality of A*

admissible: h(n) is never overestimates the cost to reach the goal. (optimistic) ex ξ straight-line distance.

consistent (or monotonic): (stronger condition) h(n) is required for A* in graph search framework.

$$h(n) \le c(n, a, n') + h(n')$$

A heuristic h(n) is consistent if, for every node n and every successor n' fo n generated by any action a, the estimated cost of reaching the goal from n is no greater than the step cost of geeting to n' plus the estimated cost of reaching the goal from n'

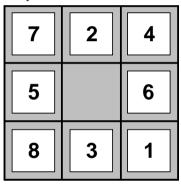
Admissible heuristics

E.g., for the 8-puzzle:

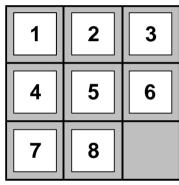
 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)



Start State



Goal State

$$\frac{h_1(S)}{h_2(S)} = ??$$

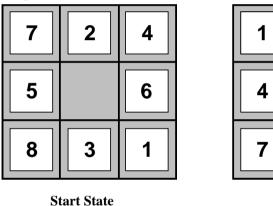
Admissible heuristics

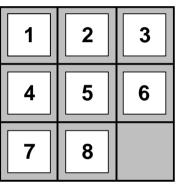
E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)





Goal State

 $\frac{h_1(S)}{h_2(S)} = ??? 6$ $\frac{h_2(S)}{h_2(S)} = ??? 4+0+3+3+1+0+2+1 = 14$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14$$
 IDS = 3,473,941 nodes
$$\mathsf{A}^*(h_1)=539 \text{ nodes}$$

$$\mathsf{A}^*(h_2)=113 \text{ nodes}$$

$$d=24 \text{ IDS} \approx 54,000,000,000 \text{ nodes}$$

$$\mathsf{A}^*(h_1)=39,135 \text{ nodes}$$

$$\mathsf{A}^*(h_2)=1,641 \text{ nodes}$$

Given any admissible heuristics h_a , h_b ,

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates h_a , h_b

Relaxed problems

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

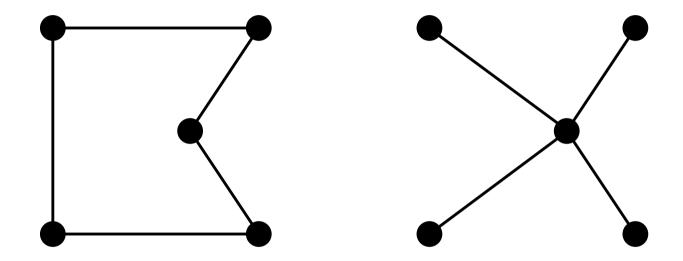
If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once

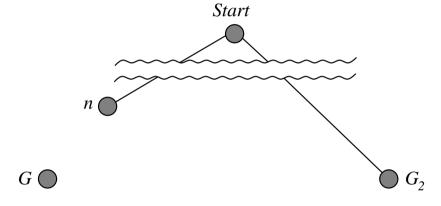


Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Optimality of A* - Tree search

The tree-search version of A^* is optimal if h(n) is admissible.

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G.



$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion

Optimality of A* - graph search

The graph-search version of A^* is optimal if h(n) is consistent.

Lemma: A* using graph - search expands in nondecreasing order of f(n).

1. A heuristic is consistent if

$$h(n) \le c(n, a, n') + h(n')$$

If h is consistent, we have

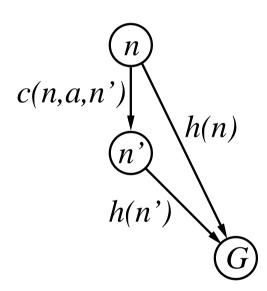
$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

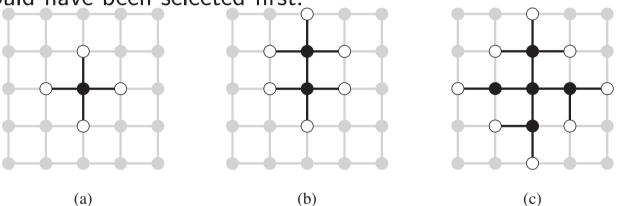
I.e., f(n) is nondecreasing along any path.



Optimality of A* - graph search cont.

2. Whenever A* selects a node n for expansion, the opimal path to that node has been found.

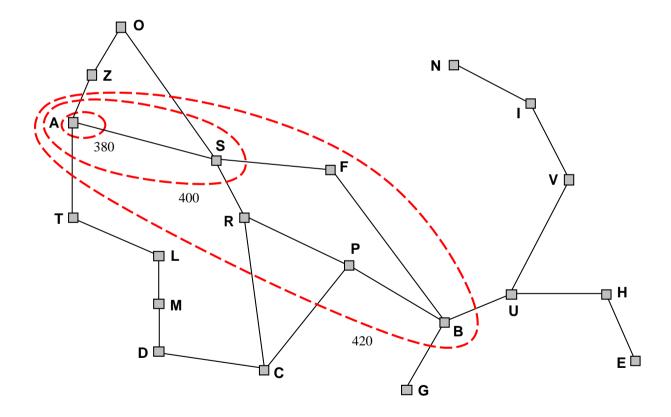
(Proof by contradiction) - If optimal path has not been found when A^* selects a node, there would have to be another frontier node n' on the optimal path from the start node to n, by the graph separation property of graph-search; because, f is nondecreasing along any path, n' would have lower f-cost than n and would have been selected first.



Optimality of A* - graph search cont.

From 1. and 2. we can see that A^* gradually adds "f-contours" of nodes (cf. breadth-first adds layers)

Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$



Complete??

Time??

Space??

Optimal??

Properties of A^*

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest *h*

- incomplete and not always optimal

 A^* search expands lowest g + h

- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems