
Adversarial Search

AIMA.3rd Chapter 5

AIMA.3rd Chapter 5 1

Outline

♦ Games

♦ Optimal decisions in games
– minimax decisions
– α–β pruning

♦ Imperfect real-time decisions

♦ Stochastic games - game of chance

♦ Partially observable games - games of imperfect information

AIMA.3rd Chapter 5 2

Games vs. search problems

Game theory: a branch of economics which views any multiagent environ-
ment (competitive or cooperative) as a game (provided that the impact of
the agents on each other is significant).
The presence of an opponent introduces uncertainty which in turn makes the
decision problem more complicated than search problems.
Unpredictable opponent −→ solution is a strategy specifying a move for ev-
ery possible opponent reply

Characteristics of adversarial search problems, also known as games:
♦ multiagent environment
♦ competitive environment
in which the agents’ goals are in conflict
♦ stochastic “Unpredictable” opponent → solution is a strategy speci-

fying a move for every possible opponent reply

AIMA.3rd Chapter 5 3

Game description

A game can be formally defined as a kind of search problem with:
♦ initial state: specifies how the game is set up at the start.
♦ PLAYES(s): Defines whiwh palyer has the move in a state
♦ ACTIONS(s): set of operators (which define the legal moves)
♦ RESULT(s,a): transition model that defines the result of the move
♦ TERMINAL-TEST(s): terminal test (goal test)
♦ UTILITY(s,p): utility function final numeric value for the outcome of

a game in terminal s for player p
Ex. backgammon (+1, -1, +2); Chess (win, lose, draw)...

AIMA.3rd Chapter 5 4

Game description

♦ Zero-sum games: if one opponent gains, the other loses an equal amount
(i.e. they are using opposite utility functions). More general concept is
constant-sum games.
♦ Non-zerosum games: opponents may join forces to increase their gains
together.

The initial state, ACRTIONS function, and RESULT function define the
game tree – a three where the nodes are game states and the edges are
moves.
Search tree is a tree that is subtree of the full game tree that traces the
nodes and edges examined by a player to determine what move to make.

AIMA.3rd Chapter 5 5

Games vs. search problems: time constraints

Real problem is that games are usually much too hard to solve:

In chess:
♦ Average branching factor: 35
♦ Games go to about 50 moves by each player
−→ 35100 nodes! 1040 different legal positions

Time limits −→ unlikely to find goal, must approximate

The complexity of games introduces a new kind of uncertainty:
not due to lack of information but because one does not have time to cal-
culate the exact consequences of any move

On the other hand tic-tac-toe is boring because it is too simple to determine
the best move.

AIMA.3rd Chapter 5 6

Types of games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war

battleships,
blind tictactoe

AIMA.3rd Chapter 5 7

Two-person games

Players: MAX and MIN taking turns until game is over

We can view MAX as the agent: in other words, MAX is constructing the
search tree at each move and plays so as to maximize its gains assuming a
perfect opponent

AIMA.3rd Chapter 5 8

Game tree (2-player, deterministic, turns)

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

AIMA.3rd Chapter 5 9

Minimax

Minimax algorithm is designed to determine the optimal strategy for MAX:
Perfect play for deterministic and perfect-information games

Idea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A 13A 12A 11
A 21 A 23

A 22
A 33A 32

A 31

3 2 2

AIMA.3rd Chapter 5 10

Minimax algorithm

function Minimax-Decision(state) returns an action

inputs: state, current state in game

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v←−∞

for a, s in Successors(state) do v←Max(v, Min-Value(s))

return v

function Min-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v←∞

for a, s in Successors(state) do v←Min(v, Max-Value(s))

return v

AIMA.3rd Chapter 5 11

Minimax algorithm

♦ Maximizes the utility under the assumption that the opponent will play
perfectly to minimize it.

♦ The optimal strategy can be determined by examining the minimax value
of each node.

♦ MAX maximizes its worst-case outcome!

♦ Recursive search.

AIMA.3rd Chapter 5 12

Properties of minimax

Complete??

Optimal??

Time complexity??

Space complexity??

AIMA.3rd Chapter 5 13

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
→ exact solution completely infeasible

But do we need to explore every path?

AIMA.3rd Chapter 5 14

α–β pruning example

MAX

3 12 8

MIN 3

3

AIMA.3rd Chapter 5 15

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X

3

AIMA.3rd Chapter 5 16

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

AIMA.3rd Chapter 5 17

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

AIMA.3rd Chapter 5 18

α–β pruning example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

AIMA.3rd Chapter 5 19

Why is it called α–β?

..

..

..

MAX

MIN

MAX

MIN V

α is the best value (i.e., highest-value) we have found so far off the current
path for max

If V is worse than α, max will avoid it → prune that branch

Define β similarly for min: the best value (i.e. lowest-value) choice we have
found so far at any choice point along the path for min

AIMA.3rd Chapter 5 20

The α–β algorithm

function Alpha-Beta-Search(state) returns an action

v←Min-Value(state, -∞, +∞)

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state,α,β) returns a utility value

inputs: state, current state in game

α, the value of the best alternative for max along the path to state

β, the value of the best alternative for min along the path to state

if Terminal-Test(state) then return Utility(state)

v←−∞

foreach a, s in Successors(state) do

v←Max(v, Min-Value(s,α,β))

if v ≥ β then return v

α←Max(α, v)

return v

function Min-Value(state,α,β) returns a utility value

same as Max-Value but with roles of α,β reversed

AIMA.3rd Chapter 5 21

Properties of α–β

Pruning does not affect final result

Effectivenss is highly dependent on the ordering which the states are exam-
ined.

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
→ doubles solvable depth

Good ordering will be the one that examine first the succesors that are likely
to be the best. (cannot be done perfectly. we can try depth limiting approach
for finding such successor)

AIMA.3rd Chapter 5 22

Imperfect decisions

The minimax algorithm assumes that the program has time to search all the
way down to terminal states which is exponential in the depth of the game
tree.

α–β algorithm allows us to prune but still has to search all the way to the
terminal state.

Shannon proposed that instead of going all the way down to terminal states
and using the utility function, the program should cut-off the search earlier,
and apply a heuristic evaluation function, turn the nonterminal nodes to
terminal nodes using a .

Standard approach:

• Use Cutoff-Test instead of Terminal-Test

e.g., depth limit (perhaps add quiescence search)

• Use Eval instead of Utility

i.e., evaluation function that estimates desirability of position

AIMA.3rd Chapter 5 23

Evaluation functions

♦ Eval should order the terminal states in the same way as the tru utility
function.
I.e., Behaviour is preserved under any monotonic transformation of Eval
Only the order matters:

payoff in deterministic games acts as an ordinal utility function

MIN

MAX

21

1

42

2

20

1

1 40020

20

♦ The computation must not take too long

♦ For nonterminal states, the Eval should be strongly correlated with the
actual chances of winning.

AIMA.3rd Chapter 5 24

Evaluation functions: chess example

Returns estimate of the expected utility of the game from a given position.

(b) White to move(a) White to move

For chess, weighted linear function can be used

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

where wi is the weight (e.g., values of the pieces of type i in state s) and
fi(s) is the value of feature i at state s (e.g., number of pieces of type i)

AIMA.3rd Chapter 5 25

Stochastic (nondeterministic) games: e.g. backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Dice rolling events cause random events to happen.

AIMA.3rd Chapter 5 26

Stochastic games in general

In stochastic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

chance node branches leading from each chance node denote the possible
dice rolls; each branch is labeled with the roll and its probability.

AIMA.3rd Chapter 5 27

Algorithm for nondeterministic games

Expectiminimax gives perfect play

Just like Minimax, except we must also handle chance nodes:

. . .
if state is a Max node then

return the highestExpectiMinimax-Value of Successors(state)
if state is a Min node then

return the lowestExpectiMinimax-Value of Successors(state)
if state is a chance node then

return average ofExpectiMinimax-Value of Successors(state)
. . .

AIMA.3rd Chapter 5 28

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20× (21× 20)3 ≈ 1.2× 109

As depth increases, probability of reaching a given node shrinks
→ value of lookahead is diminished

α–β pruning is much less effective

TDGammon uses depth-2 search + very good Eval

≈ world-champion level

AIMA.3rd Chapter 5 29

Digression: Exact values DO matter

DICE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

Behaviour is preserved only by positive linear transformation of Eval

Hence Eval should be proportional to the expected payoff

AIMA.3rd Chapter 5 30

Stochastic partially observable games

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having all the dice rolled at the beginning∗

Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals∗

Special case: if an action is optimal for all deals, it’s optimal.∗

AIMA.3rd Chapter 5 31

