
Constraint Satisfaction Problems

AIMA-3rd Chapter 6

AIMA-3rd Chapter 6 1

Backtracking search algorithm

function BACKTRACKING-SEARCH() returns a solution, or failure

return BACKTRACK(,)

function BACKTRACK(,) returns a solution, or failure

if is complete then return

SELECT-UNASSIGNED-VARIABLE()

for each in ORDER-DOMAIN-VALUES(, ,) do

if is consistent with then

add = to

INFERENCE(, ,)

if then

add to

BACKTRACK(,)

if then

return

remove = and from

return

Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The algo-

rithm is modeled on the recursive depth-first search of Chapter ??. By varying the functions

SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, we can implement the general-

purpose heuristics discussed in the text. The function INFERENCE can optionally be used to impose

arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed either by INFERENCE

or by BACKTRACK), then value assignments (including those made by INFERENCE) are removed from

the current assignment and a new value is tried.

AIMA-3rd Chapter 6 2

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
var← Select-Unassigned-Variable(csp)

2. In what order should its values be tried?
value← Order-Domain-Values(var, assignment, csp)

3. What inference should be performed at each step?
inferences← Inference(csp, var, value)

4. Can we detect inevitable failure early?

5. Can we take advantage of problem structure?

AIMA-3rd Chapter 6 3

Variable ordering: Minimum remaining values

var ← Select-Unassigned-Variable(csp)

Simplest: Static ordering

Better: Order by minimum remaining values (MRV):
choose the variable with the fewest legal values

AIMA-3rd Chapter 6 4

Variable ordering: Degree heuristic

How do we breat a tie among MRV variables?

Degree heuristic:
choose the variable with the most constraints on remaining variables

AIMA-3rd Chapter 6 5

Value ordering: Least constraining value

value← Order-Domain-Values(var, assignment, csp)

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

* If we want to enumerate all solutions, the value ordering is irrelevant.

* Combining these heuristics makes 1000 queens feasible

AIMA-3rd Chapter 6 6

Inference: forward checking

inferences← Inference(csp, var, value)

A simplest type of inference that can be used with search is Forward check-

ing.

Idea: Whenever a variable X is assigned, establish arc consistency for it:
– for each unassigned variable Y that is connected to X by a constraint,
– delete from Y ’s domain any value that is inconsistent with
the value chosen for X .
– terminate search when any variable has no legal values

AIMA-3rd Chapter 6 7

Forward checking example

WA NT Q NSW V SA T

AIMA-3rd Chapter 6 8

Forward checking example

WA NT Q NSW V SA T

AIMA-3rd Chapter 6 9

Forward checking example

WA NT Q NSW V SA T

AIMA-3rd Chapter 6 10

Forward checking example

WA NT Q NSW V SA T

AIMA-3rd Chapter 6 11

Forward checking problem

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn’t provide early detection for all failures:
♦ makes the current variable arc-consistent,
♦ but doesnt look ahead and make all the other variables arc-consistent.

WA NT Q NSW V SA T

NT and SA cannot both be blue!

AIMA-3rd Chapter 6 12

Algorithm AC-3 (reminder)

function AC-3() returns false if an inconsistency is found and true otherwise

inputs: , a binary CSP with components

local variables: , a queue of arcs, initially all the arcs in

while is not empty do

REMOVE-FIRST()

if REVISE(,) then

if size of then return

for each in .NEIGHBORS - do

add () to

return

function REVISE(,) returns true iff we revise the domain of

for each in do

if no value in allows (,) to satisfy the constraint between and then

delete from

return

AIMA-3rd Chapter 6 13

Inference: Maintaining Arc Consistency (MAC)

A slightly better inference can be done via MAC.

Idea: After a variable Xi is assigend a value, the Inference procedure
calls AC-3 algo,

– but instead of a queue of all arcs in the CSP, start with only the arcs
(Xj, Xi) for all Xj that are unassigned variables that are neighbors of Xi.

– AC-3 then perform constraint propagation – if any variabvle has its
domain reduce to a empty set, then AC-3 fails and we know to backtrack.

X → Y is consistent iff
for every value x of X there is some allowed y

AIMA-3rd Chapter 6 14

MAC example

WA NT Q NSW V SA T

AIMA-3rd Chapter 6 15

MAC example

WA NT Q NSW V SA T

AIMA-3rd Chapter 6 16

MAC example

WA NT Q NSW V SA T

AIMA-3rd Chapter 6 17

MAC example

WA NT Q NSW V SA T

AIMA-3rd Chapter 6 18

Problem structure

Can we utilize the problem structure to find the solution faster?

Victoria

WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

AIMA-3rd Chapter 6 19

Problem structure contd.

Suppose each subproblem has c variables out of n total variables

Then there are n/c subproblems. Each subproblem takes at most dc work
to solve, where d is the size of the domain.

Worst-case solution cost is n/c · dc, linear in n

E.g., n=80, d=2, c=20
280 = 4 billion years at 10 million nodes/sec
4 · 220 = 0.4 seconds at 10 million nodes/sec

AIMA-3rd Chapter 6 20

Tree-structured CSPs

A

B

C

D

E

F

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(n d2) time. Any tree with n nodes has n − 1 arcs, make this graph in
to directed tree in O(n) steps, each of wich must compare up to d possible
domain values for two variables.

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

AIMA-3rd Chapter 6 21

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

A

B

C

D

E

F

A B C D E F

2. For j from n down to 2, applyRemoveInconsistent(Parent(Xj), Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)

AIMA-3rd Chapter 6 22

Reducing graphs to trees: Removing nodes

Conditioning: instantiate a variable, prune its neighbors’ domains

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size c ⇒ runtime O(dc · (n− c)d2), very fast for small c

AIMA-3rd Chapter 6 23

Reducing graphs to trees: Tree decomposition

Each subproblem is solved independently, and
resulting solutions are then combined.
Conditions:
♦ Every variable in the original problem

appears in at least one of the subproblems.
♦ If two variables are connected by a con-

straint in the original problem, they must ap-
pear together in at least one of the subprob-
lems.
♦ If a variablea apears in two subproblems

in the tree, it must appear in every subproblem
along the path connecting those subproblem.

T

WA

NT

SA

NT

SA

Q

SA

Q

NSW

SA NSW

V

AIMA-3rd Chapter 6 24

Local Search for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Simple: Variable selection: randomly select any conflicted variable

Better: Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

AIMA-3rd Chapter 6 25

Local Search for CSPs

function Min-Conflicts(csp,max-steps) returns a solution or failure

inputs: csp, a constraint satisfaction problem

max-steps, the number of steps allowed before giving up

local variables: current, a complete assignment

var, a variable

value, a value for a variable

current← an initial complete assignment for csp

for i = 1 to max-steps do

if current is a solution for csp then return current

var← a randomly chosen, conflicted variable from Variables[csp]

value← the value v for var that minimizes Conflicts(var, v, current, csp)

set var=value in current

return failure

AIMA-3rd Chapter 6 26

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0

AIMA-3rd Chapter 6 27

CSP example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?

Variables Q1, Q2, Q3, Q4

Domains Di = {1, 2, 3, 4}

Constraints
Qi 6= Qj (cannot be in same row)
|Qi −Qj| 6= |i− j| (or same diagonal)

Translate each constraint into set of allowable values for its variables

E.g., values for (Q1, Q2) are (1, 3) (1, 4) (2, 4) (3, 1) (4, 1) (4, 2)

AIMA-3rd Chapter 6 28

Min-conflicts example: 8-Queens

2

2

1

2

3

1

2

3

3

2

3

2

3

0

At each stage, a queen is chosen for reassignment in its column. The num-
ber of conflicts (the number of attacking queens) is shown in each square.
The algorithm moves the queen to the min-conflicts square, breaking ties
randomly.

Min-conicts is surprisingly effective for many CSPs.
n-queens problem, the run time of min-conicts is roughly independent of

problem size.

AIMA-3rd Chapter 6 29

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node

Variable ordering and value selection heuristics help significantly

Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice

AIMA-3rd Chapter 6 30

